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I - Noether theorem
and e-m surface charges



Noether’s theorem

If a Lagrangian has a continuous symmetry, then:
1. there exist a current which is conserved on shell,

2. theintegral of the current defines a charge
- conserved in time
- canonical generator of the symmetry

Noether’s theorem, in formulas: Throughout the talk, it will be convenient
’ g

to work with Lagrangians as 4-forms)

if 0 = 6.L=dY. then  dj.=~0 je 1= 0(8.) — Y.

Typical examples:
e Poincaré invariance & conserved energy-momentum tensor
e Global U(1) invariance & conservation of electric charge

Less known examples:

e Diffeomorphisms & conservation laws for surface charges
(in vacuum, with isometries)

e Local U(1) invariance & conservation laws for surface charges
(in vacuum)
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Surface charges: electromagnetism
Lagrangian: L=—-F*= —%F N *F 0(6) = —0AANXF

5L = —dSAN*F = —SANd* F — d(5A A *F)



Surface charges: electromagnetism

Lagrangian: L=—--F"= —%F N xF 0(0) = —0ANKF



Surface charges: electromagnetism

1 1

Lagrangian: L:_ZFQ = —§F/\*F 0(8) = —5AAF
Gauge transformations: 0NA = —dA AL =0
Noether current: Ia=000x) =dANKF =d\A xF) = Ad*x F ~d(\ xF)

Noether charge: Q = /



Surface charges: electromagnetism

: 1 1
Lagrangian: L= _ZFQ = —5 FA+F 0(0) = —0A A xF
Gauss law (the constraint
Gauge transformations: ~ 0xA = —dA oxL =0 / associated with the
gauge symmetry)
Noether current: Ia=000x) =dANKF =dA xF) = Ad*x F~d(\xF)

Noether charge: Q = /] —/ A x F
oY

Without boundaries, or with trivial gauge transformations at the boundaries,
no charges for the e-m field

With boundaries and non-trivial gauge transformations we have access to infinitely many
surface charges and their conservation laws



Surface charges: electromagnetism
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Gauge transformations: 0NA = —dA AL =0
Noether current: Ia=000x) =dANKF =dA xF) = Ad*x F~d(\xF)
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Without boundaries, or with trivial gauge transformations at the boundaries,
no charges for the e-m field

With boundaries and non-trivial gauge transformations we have access to infinitely many
surface charges and their conservation laws

Coupling matter:

Q:/zj Z/EAJer/Zd)\ * F Global transformations: electric charge

N N Local transformations: balance law between the matter

‘hard’ ‘soft’ and e-m multipole moments



The case of null infinity
In which physical context are we interested in non-vanishing gauge transformations at the
boundary?

An important example that has come to prominence in recent years
(Bieri-Garfinkle 13, Strominger 14, ... ) concerns IR problems in scattering theory

Consider compactified Minkowski spacetime:

For a standard Cauchy hypersurface,
there is a natural choice of boundary conditions:

;0
A, — 0

For null Cauchy hypersurface intersecting future null infinity,
care is needed, as some choices would rule out electromagnetic radiation

z
A, = 0 too fast means no waves

Choosing appropriate b.c. at null infinity is delicate:
too strong may rule out physics, too weak may lead to divergences



Surface charges and electromagnetic memory
(Bieri-Garfinkle ’13, Strominger 14, Ashtekar-Bonga ’17, Pastersky '16)

Choosing the weakest possible conditions compatible with finite energy, +

one discovers that there is a residual gauge freedom at null infinity: \ = (6, ¢)

(It can be eliminated with stronger boundary conditions,
1 1
but again, this may rule out interesting physics) A, ~01), A ~O (—2> , A, ~O (;>

T

Finding the right boundary and fall off conditions is a trial and error procedure,

or in nicer words, a mix of art and science.
Surface charges offer a precious tool to discriminate: changing the boundary conditions means

—
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changing the asymptotic symmetry group

Consider now the integral of the QZ/j Z/)\J¢+/ dA x F
> ) >

Noether current on a portion X of null infinity:
‘hard’ ‘soft’

A=M0,0) = /duéQdA/\*F:/dQ(d)\/\/du*F>
H/_/

e zero Fourier mode ( & soft ) ‘e-m memory’

e has the physical effect of a velocity kick to the particles in the detector

mf’:qﬁ o Aﬁ’:i/ E
m — OO



Strominger’s infrared triangle

The big surprise (Strominger et al) is that the Ward identities of the o
large gauge symmetry A\ = \(0, ¢) reproduce Weinberg’s soft theorem

A remarkable set of relationships between seemingly unrelated theoretical results (and
communities) whose implications are just beginning to be explored

asymptotic symmetries

memory effects soft theorems

A similar story is unfolding in gravity, but there the identification of the "'weakest possible boundary
conditions’ or equivalently ‘largest possible symmetry group’ is not over yet



II - Surface charges in GR
and the BMS group



Symmetries in general relativity

General relativity has no global symmetries

Only special solutions admit global symmetries, which are referred to as isometries, since they
preserve the metric: e.g.

e the Poincaré symmetry of the Minkowski metric

e the spherical or axial symmetry of the Schwarzschild and Kerr black holes

e the spatial symmetries (e.g. homogeneity, isotropy) of cosmological metrics

For a generic metric, no isometries, no conserved quantities.
This is always the case for radiating spacetimes. If GW are present, there are no global charges, but
only surface charges, which change with the gravitational flux



Surface charges in GW astronomy

We pick up a GW signal, we would like to understand
what generated it

How is the flux of GW related to properties of the source?
The study of asymptotic symmetries allows to understand the dynamical flux-balance laws
in terms of Noether’s theorem, and to approach physical questions with more tools



Surface charges: gravity

(side remark: description easier
and more elegant using tetrads
instead of the metric)

Lagrangian: L =+/—gRe
Gauge transformations:  0¢L = d(i¢L) O¢Gur = L£eGuv

Noether current: Je = 0(0¢) —ieL = dke + 1¢C =~ dke kepw = €uvpo V©E°
Noether charge: Qe = / Je = / ke
)

Without boundaries, or with trivial gauge transformations at the boundaries,
no charges for the gravitational field

With boundaries and non-trivial gauge transformations we have access to infinitely many
surface charges and their conservation laws

If the spacetime admits isometries, e.g. stationary (§ = 0- ) or axisymmetric (§ = 0y), then

. 174 1 14
/]E ~ / (TM — 59“ T)Sudzu
> >

Two key properties then hold:
e The Noether charge does not depend on the surface in vacuum
e The variation of the Noether charge measures the matter energy-momentum content



Isometries versus radiation
- R g . B
1
QclS') = Qels] ~ [ (T = 5" )65,

This is good, but does not hold in the presence of gravitational radiation.

S)

A
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A

Qe[S — Qe[S] = f(9. T, S,5")

CHE S

If there is radiation, there is no isometry, no Killing vector: the Noether charge then depends on the
surface chosen, hence the difference now depends on arbitrary choices such as coordinates and the

2-surface of integration, which have nothing to do with the gravitational dynamics.

Either the surfaces are somehow physically characterized, or these charges are not good observables

G0 BIG OR'GO HOME?
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One common approach is to take the boundary all the way to infinity,
so that spacetime is effectively empty, thus flat
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Two ways to go to infinity

‘o Space-like infinity:
;0
there is a natural choice of boundary conditions:  qab — Nab

Residual diffeos: the isometries of the flat metric! The Poincaré group, absent as global symmetry

group of GR, emerges as asymptotic symmetry group of asymptotically flat metrics
Surfaces charges at spatial infinity: mass, angular momentum and more in general all Poincaré

charges (ADM, Regge-Teitelboim, Beig-Murchadha, Ashtekar-Hansen, ...)

A

Null infinity:

T
the same choice can be done, Qab F2 Nab
but does not select the Poincaré group

—

ﬂ

Residual diffeos: the isometries of a null slicing of the flat metric. This gives an infinite-dimensional
group, known as the BMS group, which contains infinitely many copies of the Poincaré group, one

for each cut of null infinity
Surfaces charges at null infinity: mass, angular momentum and more in general all BMS charges

(Bondi-Metzer-Sachs, Newman-Penrose, Ashtekar-Streubel, Wald, ...)




Why an infinite-dimensional symmetry group?

The big difference is that a null hyperplane has a degenerate metric:
there is no distinguished notion of Cartesian coordinate in the degenerate direction

transverse directions: zero distances along the null directions

distances measured

by the round 2-sphere metric
the blue cut and the red cut are equivalently good observers

The extension is the freedom of making the translations of the Poincaré group not rigid, but
depending on the point of the sphere: supertranslations T'(6, ¢)

The ten-parameter Poincaré group is extended to the 6+a-function-on-S infinite-d BMS group

P*=SL(2,C)xT* — BMS =SL(2,C)x R®

(Pick a frame on the sphere, then the first 4 harmonics of T provide the translations wrt that frame)



Some details of the BMS group

Asymptotic expansion in Bondi coordinates:
ds® = —du® — 2dudr + T2§ABd$Ad.CEB «——  Leading order: Minkowski

9 _
—l——mdu2 + Ududx?® + rCagdzdx®

r
VN
"‘Tdudw T shear induced by a
\ gravitational wave
mass aspect

angular momentum aspect

The corresponding fall-off conditions:

Gur = —1+ O(T_Q)a JuA = O(l)a Juu = —1+ O(T_l)a dAB = 4B + O(T_l)
are preserved by the following vector fields:

_ 1

Ery =T, + Y04 + §D Y (u0,, — 10;) with Y a CKV of the sphere

— BMS =SL(2,C) x R®

In other words, the BMS group is generated by asymptotic Killing vectors,
and the asymptotic metric has an infinite number of asymptotic symmetries



Flux-Balance laws at null infinity
Bondi-Metzer-Sachs, Newman-Penrose, Thorne, Ashtekar...

By going to null infinity, and picking up an enlarged infinite-d symmetry along the way, we are able
to define surface charges that are independent of the surface and coordinate used,

and that can be related to the gra\”tatlonal flux Caveat: for some diffeomorphisms (those not tangent to S),

there is a shift between the Noether charge

and the canonical generator of the symmetry
We can then:

e identify those surface charges that in the stationary case reproduce the mass and angular

Mz/Sm J:/S(8¢)APA

e derive flux-balance laws directly from the Einstein’s equations

1 : 1 . : . 1 :
m = ZDADBCAB — écABCAB Pa = gDA(CBccBC) + ...

momentum of black holes

Bondi energy-loss formula Angular momentum flux-balance law

These flux-balance [aws are what allows us to reconstruct the physics of the source
(i.e. the merging of BHs) from the observed signals (the GWs5s)



Strominger’s infrared triangle

: — GW with
As in the e-m case, the boundary infinite-d symmetry ) AP “\ | memory
associated with 71'(0, ¢) is related to a memory effect: ;m f **\ / \ / g}"f"”“
a permanent displacement of the shape of the detector “aslf \/ 'gi} \J | | GWw/o
ok G memory
(Christodoulou ‘90s, Teukolsky, Nichols, Favata, ...) owp T

Again (Strominger et al) the Ward identities of the BMS symmetry
reproduce Weinberg’s soft theorem

asymptotic symmetries

memory effects soft theorems



II1 - The Weyl BMS group



Motivations
Is the BMS symmetry the end of the story? Many reasons to think not!

e subleading soft theorems (Strominger, ... ) & gen. BMS group (Campiglia-Laddha, Compere-
Fiorucci-Ruzziconi ’18)

e holography (Barnich, ... ) & extended BMS group (Barnich-Troessaert "11)
e biggest symmetry algebra better quantization (Barnich, Grumiller, Freidel, ...)
e the algebra of quasi-local observables is actually bigger (Flanagan et al, Ciambelli et al, Freidel...)

e ...various further ideas (Hawking-Strominger-Perry, ... )



A hierarchy of asymptotic symmetries

Asymptotic background structure Symmetry parameters Algebra
Original BMS round 2-sphere | T(6,¢), Y2(0,¢) CKV SL(2,C) x R
Extended BMS round 2-sphere T(0,9), Y2(,¢) meroCKV | Virasoro x R®
Generalized BMS scale factor T(0,¢) Y*(0,0) Diff(S) x R®
Weyl BMS foliation of scri T(0,0) Y2(0,¢0) W(b,0) (Diff(S) x R°) x R®

These extensions are quite challenging to achieve, and one has to deal with various technical points:
holographic renormalization, charge-integrability, covariant phase space with anomalies, etc.



Some technical details of the BMSW group

We relax the original BMS conditions

Gur — —1+ O(T_Q)a GuA — O<1)7 Guu = —1+ O(T_l)a dAB — ED]AB + O(T_l)
- 1
Ery =T, + Y04 + DY (udy — 1) BMS = SL(2,C) x R?

to:

Gur = —1+ O(T_2)7 GJuA — 0(1)7 Juu :O(l)a dAB — O(l)
Erwyy i=T0, + Y04+ W(ud, —rd,)  (Diff(S) x RS) x RS
4 " 4 4

Recovering BMS as a subgroup:
O

Legap = T2(£YM/QAB) + O(r) = Y CKV

O

_ = 1
Legun = (£y + WAW + oY 5 W=:-DY

In particular this shows that the BMSW vectors are not asymptotic Killing vectors of the flat
Minkowski metric
They provide asymptotic symmetries in a more general sense, wrt a smaller background structure



Advantages of the BMSW extension

e Includes all other symmetries as subcases
e matches the algebra of quasi-local observables
e disentangles diffeos and Weyl rescalings of the 2-sphere

A new, precise motivation to enlarge the asymptotic symmetry, uncovered from our work:
there is a deep interplay between dynamics and the symmetry algebra

[ {Qe, Qx} = Qe +/S§”X”GW J

e The surface charges provide a representation of the algebra on-shell of the field equations
e Conversely, requiring a representation of the algebra imposes the Einstein’s equations
But how many of them? the larger the algebra, the more of the ten equations can be derived

Original BMS : only 1 equation! (The Bondi energy loss)
Generalized BMS : 3 equations (The energy and angular momentum loss formulas)

Our new Weyl BMS : 8 equations



Representation of the charge algebra in phase space

Constructing this bracket representation of the charge
algebra require solving a non trivial problem:

How do we construct a phase space when dofs are being radiated away?



Potential for physical predictions

Extending the symmetry also means potentially new memory effects

The extension from BMS to generalized BMS has already been shown to lead to new memory
effects; How about the Weyl BMS group?

We don’t know yet, but we have a few years to figure it out: memory is broadcasted to be observed
in the next decade through piling up LIGO/Virgo data and through LISA

Why the question mark: New symmetries of GR?

We have identified a new class of symmetries associated with weaker mathematical b.c.,
but whether they are physically realised is still to be seen

In any case, it is an area of study that seats at a beautiful crossroad:

implications for quantum gravity mathematical general relativity

study of asymptotic symmetries

entanglement of
& and surface charges

subregions

potential physical predictions

links to a specific notion of holography
dual charges



