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The current understanding of sound properties in glasses is reviewed and compared to that in crystals. Sound damping 
in oxide glasses is controlled mainly by three processes which in increasing order of the frequency at which they dominate 
are: the thermal relaxation of defects, relaxation via anharmonic interactions with the thermal bath, and hybridization 
with optic-like vibrations. The former two also affect distinctly the velocity of sound. The latter one relates to the boson 
peak and the low temperature plateau generally observed in the thermal conductivity. In addition, in silica and other 
tetrahedrally coordinated glasses, the sound velocity tends to increase with temperature, presumably owing to a progres-
sive structural change.

I. Introduction
Sound in glasses is a subject which, in spite of its 
long history, remains of much actuality and activity. 
Contrary to high quality insulating crystals, many 
different mechanisms do affect sound velocity and 
attenuation in insulating glasses, particularly in 
oxide ones. The purpose of the present paper is to 
review in simple terms recent progress that has been 
achieved in the understanding of the frequency and 
temperature dependencies of acoustic properties in 
some important model glasses, such as silica.

In single crystals, the main damping mechanism 
is anharmonicity of thermal atomic vibrations, 
which results from the interaction of sound with the 
high frequency vibrational modes constituting the 
thermal bath.(1) Although often forgotten, the same 
mechanism also should be active in glasses.(2,3) How-
ever, in addition, there is in glasses the interaction 
of sound with local entities, often called “defects”, 
although the definition of what forms a defect in a 
disordered system is not necessarily clear. It is the 
latter that dominates sound attenuation at low and 
intermediate frequencies, up to fairly high ones, 
often in the gigahertz (GHz) range.(4,5) On the other 
hand, anharmonicity affects in a major manner the 
sound velocity in the same temperature and frequency 
regions in many glasses,(2) and this has obscured the 
comparative understanding of sound velocity and 
attenuation in such cases.

In this paper we use T for the temperature, Ω 

for the frequency of specific modes, v for the sound 
velocity, and α for the energy damping constant, so 
that  α=l−1 where l is the energy mean free path. At 
sonic and ultrasonic frequencies there are several 
well established methods to determine v and α, al-
though obtaining accurately the absolute value of α 
might be a delicate point. At hypersonic frequencies, 
typically in the range of several ten GHz, and in 
sufficiently transparent glasses, one uses Brillouin 
light scattering (BLS). In that case, the scattering 
geometry fixes a scattering vector whose length is 
given by 4πnsinθ/λ, where n is the refractive index, 
θ is the angle between the incident and the scattered 
light directions, and λ is the light wavelength in 
vacuum. For reasons of momentum conservation, 
the scattering vector is also the wavevector q of the 
observed sound wave, with q=2π/λs, where λs is the 
sound wavelength. The spectroscopy measures the 
frequency Ω of the sound wave, which relates to v 
by v=Ω/q. The Brillouin signal also has a frequency 
width Γ (the full width at half maximum, expressed 
in angular frequencies, just like Ω). This width relates 
to l−1 by l−1=2Γ/v. It also gives the quality factor of 
the related harmonic oscillator, Q=Ω/Γ, and thus the 
damping constant is proportional to the internal fric-
tion Q−1=Γ/Ω, a form that will be used in this paper. 
It is a merit of BLS that Q−1 can be determined with 
high accuracy in the same experiment that gives  
Ω(q). To obtain information at higher frequencies 
Ω, one might envisage BLS at shorter excitation 
wavelengths λ. This can be done to some extent 
using excitation with UV light,(6,7) as long as the 
samples are sufficiently transparent.(8) At still higher 
frequencies the samples strongly absorb, until one 
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reaches the x-ray region where they become again 
transparent. The latter has allowed determination 
of sound frequencies in the terahertz (THz) range 
using a Brillouin spectroscopy known as inelastic 
x-ray scattering (IXS).(9) In the difficult frequency 
region between ~50 GHz and ~1 THz, there exists 
but a single spectroscopy, known as the picosecond 
optical technique (POT).(10) This delicate technique 
is essentially based on the observation of the time-
of-flight and decay of a picosecond thermal pulse 
propagating through a thin glass film.

Sound at THz frequencies is of considerable inter-
est as it controls the thermal conductivity κ(T) at low 
temperatures T. In glasses around 1 K, κ(T) grows 
approximately with T2, reaching a plateau centred at 
Tp~10 K.(11) This plateau typically extends over sev-
eral kelvins, beyond which κ starts increasing again. 
Below Tp, κ results from the transport of energy by 
propagating acoustic waves, the phonons, associated 
with the thermal motion of the atoms. These phonons 
are excited over a range of frequencies. As T increases, 
this range broadens. The frequency for the most 
efficient transport by waves – the dominant excita-
tions – is given by Ω≈5kBT/ħ, where kB and ħ are the 
Boltzmann and Planck constants, respectively.(12) For 
T=Tp ~10 K, this relation gives Ω/2π ~1 THz. Hence, 
the properties of sound at these extremely high fre-
quencies are of direct relevance to κ. The existence 
of the plateau indicates a fundamental change in the 
nature of the dominant excitations.

The remainder of the paper will be as follows. 
In Section 2 we explain in detail the position of the 
problem, pointing out clearly the strong differences 
between crystals and glasses for what v(Ω,T) and 
Q−1(Ω,T) are concerned. In Section 3, the damping 
produced by the thermally activated relaxation (TAR) 

of defects is discussed. It is shown that this dominates 
Q−1 at low and intermediate frequencies, this over a 
range of T that can reach up to room temperature. 
On the other hand, this is not true for v, in which 
case the influence of anharmonicity is generally 
relatively strong. In Section 4, we discuss a velocity 
anomaly of silica and the high frequency end of sound 
waves. Indeed, in addition to the contributions of 
anharmonicity and TAR, we find in silica a sizeable 
contribution to the T-dependence of v which must 
arise from structural modifications. We also return 
to the origin of the plateau in κ(T) and show that it 
relates to an observed crossover in the fundamental 
behavior of sound, from propagating waves at low 
Ω to diffusive excitations at high Ω. The main points 
are summarised in the Conclusion.

2. Position of the problem

2.1 Anharmonicity effects on sound waves in 
crystals
In non-defective large insulating crystals the sole 
mechanism for sound attenuation is the anharmonic 
interaction with the phonon bath. In the Akhiezer 
description,(13) one assumes that T is sufficiently high 
for the bath to be appreciably populated. The sound 
wave of frequency Ω perturbs the equilibrium as its 
associated strain e modifies the frequencies ωi of the 
thermal phonon modes by γi=∂lnωi/∂e. The latter can 
be parametrised by a Grüneisen constant(12) γ=<γi>, 
where the brackets designate a suitable average 
over the population. The perturbed thermal bath 
relaxes towards its new equilibrium via anharmonic 
interactions, with a characteristic time τth. In doing 
so, it dissipates the energy of the sound wave, and 
this relaxation is most efficient for Ωτth=1. This leads 
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Figure 1. The internal friction (a) of shear waves at 1 GHz in X-cut crystal quartz from Ref. 14. The velocity changes (b) 
at 35 MHz are taken from an ultrasonic measurement in Ref. 15. The inset in (a) shows the thermal relaxation time τth 
from Ref. 16. It should be noted that the line is not a fit through the data points explained in Ref. 16, but an independent 
theoretical determination calculated from the thermal conductivity
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to the internal friction(1)

Q−1(Ω,T) = AΩτth/(1+Ω2τth
2)	 (1)

As τth(T) is generally short, and decreases rapidly 
with T, the effect on damping is best seen at high Ω 
and low T where  α µ Ω2. It can be shown [1] that in 
this approximation

A=γ2CVTv/2ρvD
3	 (2)

where CV is the specific heat per unit volume, ρ is the 
mass density, and vD is the Debye velocity defined by 
3/vD

3=1/vL
3+2/vT

3, where vL and vT are the longitudinal 
and transverse sound velocities, respectively.

As a practical example, we consider in Figure 1 the 
case of crystal quartz, q-SiO2. We select this crystal 
as the material is of direct interest for silica glass. 
Also, the determination of Q−1 in q-SiO2 is a histori-
cal experiment, the very first of its kind.(14) Indeed, 
τth being so short, the observation of a measurable 
damping requires experimenting at high Ω. Figure 
1(a) shows the value of Q−1 obtained at 1 GHz. The 
increase with T at low T is mostly controlled by 
the rapid increase of A µ T4, since CV µ T3.(12) Hence, 
the knee in the curve around 40 K occurs in a re-
gion where τth has already decreased much below  
Ω−1. In the inset, the values of τth taken from Ref. 16 
are presented. They illustrate this point.

The frequency dependence of the sound damping 
automatically implies a frequency dependence of the 
velocity. The Kramers–Kronig transform(17) gives

−2δv(Ω,T)/v=A/(1+Ω2τth
2)	 (3)

In this relation, δv=v−v∞, where v∞(T)=v(ΩÆ∞,T) is the 
high frequency limit of v. In a crystal, one expects that 
v∞ is constant in T, and it can be taken as the low T 
limit of the measured velocity. For Ωτth<<1, which is 
the case in ultrasonics, one simply has δv(T)/v=−A/2. 

This produces the T-dependence of δv/v illustrated 
in Figure 1(b). One should note that for small Ωτth, 
Q−1=AΩτth is small compared to A, whereas δv/v=−A/2 
is Ω-independent. Hence, for increasing Ω an effect is 
seen on the velocity much before it can be observed on 
the damping. The reason is that the velocity integrates 
over all modes with τth<Ω−1.

In glasses, even if very high frequency plane waves 
might not exist, there is thermal agitation, and corre-
spondingly there are populated vibrational excitations. 
Hence, a mechanism of sound damping similar to the 
Akhiezer one ought to exist, as discussed below.

2.2 Attenuation and velocity in glasses

Figure 2 shows two examples of internal friction and 
velocity changes in oxide glasses. It is evident that the 
behavior pictured in Figure 2(a) is very different from 
that of Figure 1(a). First, Q−1 in glasses is orders of 
magnitude larger than in q-SiO2, especially so when 
one accounts for the fact that the data of Figure 1(a) 
are taken at a frequency which is 50 times larger than 
in Figure 2(a). Also the shapes of the signal are very 
different. It is clear that the signatures in Figure 2(a) 
should be assigned to another mechanism. This will 
be explained in Section 3.

On the other hand the decays of δv/v at sufficiently 
high T in q-SiO2 (Figure 1(b)) and B2O3 (Figure 2(b)) 
are qualitatively similar. It was already recognised 
long ago that velocity changes in several glasses are 
dominated by anharmonicity.(2,3) However, there is 
a strong difference between Figures 1(b) and 2(b) at 
low temperatures. While in q-SiO2 the onset is µT4, 
in the glasses it is much more abrupt, apparently 
µT. This difference, of course, arises from the very 
contribution that leads to the peaks in Figure 2(a), 
and it is given by the Kramers–Kronig transformation 
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Figure 2. Internal friction (a) and velocity changes (b) measured at 20 MHz in vitreous boron oxide and vitreous 
silica(18)
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as explained in the following Section. In addition, 
in vitreous silica, v-SiO2, the slope in T in Figure 
2(b) has the wrong sign. This anomaly is specific to 
tetrahedrally coordinated glasses.(18) As discussed in 
Section 4, it suggests progressive structural changes 
with increasing T.

2.3 Thermal conductivities

It is also of interest, for reasons briefly explained in 
the Introduction, to compare the thermal conductivi-
ties of glasses and crystals. Figure 3 reproduces a well 
known result.(11)

In q-SiO2, κ first raises in T3. The kinetic theory 
predicts that  κ=⅓CVvDlth, where lth is an average mean 
free path of the thermal phonons.(12) The observed 

T3 law corresponds to the Casimir regime where lth 
is either the size of the sample or the mean distance 
between sound scattering defects. In that case lth is 
constant and the T3 law reflects the T-dependence of 
CV. Above this peak, κ decreases strongly owing to 
anharmonic effects, in which case κ=⅓CVvD

2τth. It is 
that expression which produces the solid line in the 
inset of Figure 1(a), in remarkable agreement with 
the observed data points.(16)

In v-SiO2, and more generally in glasses, κ is orders 
of magnitude smaller than in the corresponding 
crystal. The straightforward kinetic expression for κ 
is also not valid. Below the plateau, the modes that 
contribute to CV are to a large extent non-propagative 
(the two-level systems), and thus do not contribute 
to κ. The interaction of the thermal phonons with 
these two level systems limits their mean free path 
lth. A modified kinetic expression, restricted to the ap-
propriate specific heat, is still usable. Near and above 
the plateau, the dominant thermal phonons cease to 
be propagative plane waves. In that case, the kinetic 
expresion cannot be used at all to estimate κ.

3. Thermally activated relaxation versus 
anharmonicity

Figure 4(a) represents schematically a network glass, 
such as silica.(5) Owing to disorder, several atoms or 
groups of atoms can occupy two or more equilibrium 
positions. The displacements indicated by the letters 
A, B, C (or more complex ones) rather than being 
harmonic modes could correspond, at defect sites, 
to double well potentials as shown in Figure 4(b). 
Owing to disorder, the potential barrier heights V 
and the asymmetries  are distributed according to 
a probability P(∆,V) whose integral is the density of 
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defects. On the average, the defect population is in 
equilibrium according to detailed balance: an equal 
number of defects jumps from 1 to 2 and from 2 to 1 
within a given time. The thermal rate of jumping for 
a given defect is easily calculated to be(19) 

t t- -= - - + - +Ê
ËÁ

ˆ
¯̃

1
0

11
2

2 2
exp

/
exp

/V
T

V
T

D D 	 (4)

where the energies V and Δ are in temperature units, 
and τ0

−1 is an attempt frequency. The inverse rate, τ, 
is the relaxation time of the defect.

Similarly to the description of anharmonicity in 
Section 2.1, the sound wave couples to the defects, 
here by a deformation potential γ=½∂∆/∂e, modifying 
their equilibrium population.(19–21) The defects relax 
towards equilibrium, each with its relaxation time. 
This leads to an expression very similar to Equation 
(1), for each single defect, and integrating over the 
distribution one obtains
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(5)

The sech2Δ/2T factor essentially has a similar origin as 
CV in Equation (2). Details are found in Refs 16, 19.

Of course, owing to the Kramers–Kronig relation 
examplified by Equations (1) and (3), the velocity 
changes (δv/v)TAR are expressed by an integral similar 
to Equation (5), in which the last factor within pa-
rentheses is replaced by −1/[2(1+Ω2τ2)]. Similarly to 
the discussion at the end of Section 2.1, one should 
remark that QTAR

−1 is mostly sensitive to those defects 
for which τ=Ω−1, whereas (δv/v)TAR feels all defects 
with τ<Ω−1. Hence, while QTAR

−1 is more sensitive to 
a restricted part of the distribution P(Δ,V), (δv/v)TAR 

largely integrates over it.
An example of this property is illustrated in Figure 

5 which shows sonic and ultrasonic acoustic results 
on vitreous silica, v-SiO2. To adjust the experimental 
data to the above expression one needs a form for 
P(Δ,V). We have used(16) a product of two distribu-
tion functions, a gaussian in Δ, f(Δ) µ exp(−½2Δ2/Δc

2), 
of width Δc, times a modified gaussian,(22) g(V) µ 
(V/V0)−1/4exp(−½V2/V0

2), of width V0. The set of param-
eters (∆c,V0, τ0) cannot be determined on the basis 
of QTAR

−1 alone. However, if one attempts adjusting 
simultaneously Q−1 and the low-T region of δv/v 
using TAR, one is then forced to restrict the spread 
in Δ much more than that in V. We found for silica  
V0/Δc=8·2±0·6, with V0=659±19 K and log10τ0=−12·2±0·18. 
This produces the lines through the data points in 
Figure 5(a). In Figure 5(b), it gives the two lines 
marked (δv/v)TAR, which can be subtracted from the 
experimental δv/v, showing that TAR effectively 
accounts for the dip below ~100 K. The remaining 
velocity changes will be explained in Section 4.

One important result of the above analysis is that 
while V0≈660 K, ∆c is only ≈80 K. This is an interesting 
structural property. Consider fairly local defects like 
A or B in Figure 4(a). V0 is mainly a property of near-
est neighbors, and it can be quite large, up to values 
that are of an order similar to the glass transition 
temperature Tg. On the other hand, the asymmetry is 
a more extended structural property, which depends 
on the relative difference of environments in the two 
wells of Figure 4(b). These environments will tend to 
arrange themselves so as to minimise the energy. For 
this reason, it is reasonable to find that the values of 
Δc are rather small compared to V0 in such a strong 
network glass.
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From Section 2, one should expect that at frequen-
cies Ω well above ultrasonic ones, anharmonicity 
might start playing a role. Indeed, from Equation 
(5), QTAR

−1 near the maximum of its peak is nearly 
independent of Ω since the last factor within paren-
theses just equals then ≈½. In contrast, in the same 
T-region, anharmonicity still is in the regime Ωτth<<1, 
so that the corresponding Q−1 µ Ω. This is illustrated 
for v-SiO2 in Figure 6. The data is the Q−1 measured 
in BLS at 35 GHz.(16,19,23) It is compared to the QTAR

−1 
calculated with the above parameters, and to which 
a small contribution from two level systems(16) was 
added giving the total contribution of relaxing 

defects, Qdefects
−1. The difference, also shown, is the 

anharmonic contribution, labelled QANH
−1, so that Q−1= 

Qdefects
−1+ QANH

−1. Clearly, at sufficiently high Ω and T, 
QANH

−1 dominates over QTAR
−1. 

This is not unique to v-SiO2. Figure 7 illustrates the 
case of vitreous germania, v-GeO2.(24) In Figure 7(a) 
the internal friction, including the BLS data, was ad-
justed to TAR alone. This can approximately be done, 
as shown by the lines, but it grossely overestimates 
the TAR contribution to the velocity, as noticed by 
the authors themselves. This is shown in Figure 7(b), 
where the points are the measured BLS data, while 
the line is calculated from TAR alone using the fit 
parameters derived from the adjustments in Figure 
7(a). Clearly, the BLS data in Figure 7(a) must contain 
an appreciable contribution from anharmonicity. For 
that reason, TAR has been overestimated, leading 
to the disagreement in Figure 7(b). Unfortunately, 
the restricted number of experimental results on 
germania does not allow producing yet a detailed 
analysis similar to the one that could be performed 
on v-SiO2.(16)

Finally, we point out that there are glasses in which 
TAR is very small. One case is densified silica glass, 
d-SiO2. This material is obtained by a treatment at 
elevated hydrostatic pressure and temperature.(25) The 
resulting glass reaches the density of crystal quartz, 
q-SiO2, and it remains metastable for extremely long 
times at ambient pressure and temperatures up to 
several hundred degrees C. Figure 8 illustrates the 
hypersonic properties of d-SiO2 obtained by BLS.(26) 
The internal friction in Figure 8(a) is strongly reduced 
compared to that of v-SiO2. As shown in Figure 8(b), 
the sound velocity increases compared to that of 
v-SiO2. The T-dependence reveals that the dip in the 
low-T region of the velocity, which is characteristic 
of TAR, disappeared from the d-SiO2 data. Hence, d-
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SiO2 is an exceptional glass in which the contribution 
of anharmonicity alone can be investigated. Adjusting 
Q−1 with Equation (1) leads to the solid line in Figure 
8(a). The strong reduction of TAR can be intuitively 
understood in terms of the model pictured in Figure 
4(a). Densification eliminates to a large extent the 
free volume, preventing the formation of many deep 
double well potentials. This result is also confirmed 
by independent sonic measurements.(27)

4. Further understanding of silica and other 
strong glasses

4.1 Temperature hardening of vitreous silica
As described above, there are two main dynamical 
origins for sound velocity changes in glasses. Using 
the parameters of silica, these two contributions can 
be calculated in function of Ω and T, as shown in 
Figure 9(a).(16) Subtracting δv from v, one obtains the 
”unrelaxed” velocity v∞. The result is illustrated in 
Figure 9(b), both for v-SiO2 and d-SiO2.(16) A remark-
able property is that v∞ is a growing function of T, 
having quantitatively similar shapes in both glasses. 
The only reasonable explanation for this behaviour 
is that there is a progressive structural change that 
occurs in silica as the temperature is raised. Contrary 
to TAR, this change is insensitive to densification. 
A similar behaviour is also found in other tetrahe-
drally coordinated glasses, including the non-oxide 
BeF2.(18)

A possible explanation is related to the α ́  β 
transformation of cristobalite, another cristalline 
form of silica. The transformation is due to coopera-
tive rotations of Si–O–Si bridges.(28) The α-phase has 
a smaller density but a larger bulk modulus than 
the β-phase, as shown in Figure 10. This is a size-
able effect. Should something of this type occur as 
function of T in the glasses, it can well account for 

Proc. Eighth Eur. Soc. Glass Sci. Technol. Conf., Sunderland, UK, 10–14 September 2006

0 50 100 150 200 250 300
Temperature T (K)

5860

5880

5900

5920

6840

6860

6880

6900

V
el

oc
iti

es
 (

m
/s

)

10 100 1000
Temperature T (K)

0

0.5

1
In

te
rn

al
 f

ri
ct

io
n 

10
3 Q

-1 d-SiO
2

v-SiO
2

d-SiO
2
 , 2.60 g/cm

3

41 GHz
≈ ≈

(a) (b)

Figure 8. Internal friction (a) and sound velocity (b) of densified silica measured by Brillouin scattering, after Ref. 26. 
In (b), the velocity of normal vitreous silica is also shown for comparison

the experimental magnitudes in Figure 9(b). Such 
spontaneous modifications have been observed in 
numerical simulations of silica. The authors call it a 
”local progressive polyamorphic transition”.(28)
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Figure 10. Simulation results on the bulk modulus and 
density of cristobalite obtained by variation of the hydro-
static pressure. The less compact α phase has also a much 
higher modulus and therefore a higher sound velocity. 
After Ref. 28

Figure 11.  IXS results on the linewidth of the longitu-
dinal acoustic modes in d-SiO2, showing the region of  
Ω4 broadening below ΩIR, from Ref. 30. These points lie 
well above the extrapolated anharmonic contribution, as 
emphasised on the linear scale of the inset which also shows 
the experimental error bars on the data points. The lines 
are explained in the text

4.2 Thermal conductivity and the Ioffe–Regel 
crossover
For reasons explained in Section 2.3, it is of interest 
to study sound waves up to very high Ω. For several 
processes, such as anharmonicity, the linewidth Γ 
increases faster than Ω. One might thus expect that 
at some stage, as Ω increases, one could reach a point 
where the sound wavelength λs becomes equal to the 
mean free path for the sound amplitude, which equals 
2l. This is called the Ioffe–Regel (IR) limit(29) beyond 
which the wavevector q has lost its meaning. At and 
above this Ioffe–Regel frequency ΩIR, plane waves 
do not exist anymore and sound becomes a diffuse 
excitation. With l=λs/2, and since λs=2πv/Ω and Γ=v/l, 
one finds for the IR-limit the relation ΓIR=ΩIR/π.

In two favourable cases it was possible to study 
the approach of ΩIR from below using Brillouin 
scattering of x-rays with IXS. Results obtained on 
d-SiO2

(30) are illustrated in Figure 11. The dashed line 
is the law Γ µ Ω2 extrapolated from the BLS meas-
urement shown in Figure 8. The dotted line is the 
anharmonic contribution calculated from Equation 
(1). In the region of the IXS measurement, the simple 
Ω2 extrapolation starts slowly breaking down. On 
the other hand, the observed linewidths are much 
larger than just the anharmonic contribution. In fact 
Γ in this region shows a dramatic increase, Γ µ~  Ω4, 
which indicates a new mechanism, different from 
TAR and anharmonicity. This rapidly produces the IR 
crossover at the place indicated by the arrow. Such a 
rapid increase in Γ(Ω) is precisely what is required(31) 
to produce the plateau in κ(T) at kBTp≈ħΩIR/5. With 
ΩIR/2π=1·7 THz in d-SiO2, this gives Tp≈17 K, in agree-
ment with an independent measurement of κ.(32)

The second example for which a law Γ µ~  Ω4 could 
be observed with IXS is a lithium borate glass, 
Li2O–2B2O3,(33) as shown in Figure 12. In that case, 
contrary to d-SiO2, TAR continues to be an important 
mechanism in optical BLS. It produces the depend-
ence Γ µ~  Ω shown by the dashed line. The line labelled 
ΓANH is a rough estimate of the anharmonic linewidth 
contribution. The rapid increase, measured with 
IXS, is shown by the line Γ µ~  Ω4. The IR-crossover, at 
ΩIR/2π=2·1 THz, is shown by the arrow. This would 
predict Tp≈20 K for this glass. The corresponding data 
on κ are not yet available.

It is of course of immediate interest to understand 
the origin of the rapid increase ΓµΩ4 leading to 
ΩIR. There exist in glasses vibrational modes of low 
frequency that are in excess over the acoustic modes. 
These show up in plots of g(ω)/ω2, where g(ω) is the 
vibrational density of states (DOS). Acoustic modes 
contribute a “Debye density of states”, gD(ω)/ω2, 
which is the one observed up to fairly high frequen-
cies in crystals.(12) In most glasses, the reduced DOS, 
g(ω)/ω2, exhibits a peak above the horizontal line 
gD(ω)/ω2 calculated from the velocities of the sound 
waves. This excess, located at ΩBP, is called the boson 
peak (BP). It also produces in the specific heat an 
excess over the Debye value.(34) The BP appears in 
various spectroscopies, Raman, hyper-Raman, neu-
tron, and x-ray scatterings. Of course, the observed 
BP in these spectroscopies might vary, depending on 
the coupling of the DOS with the particular probe. It 
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Figure  13. The relation between  IR and  BP for various 
glasses. The points are: (1) lithium diborate, Li2O–2B2O3 
at 573 K; (2) lithium tetraborate, Li2O–4B2O3; (3) densi-
fied silica, d-SiO2 at 565 K; (4) vitreous silica, v-SiO2 at 
~1050 K; (5) glycerol at 175 K; (6) ethanol at 86 K; (7) 
selenium at 295 K; (8) polybutadiene at 140 K; (9) pro-
pylene carbonate at 167 K (Tg+7 K); (10) orthoterphenyl 
(OTP) at 156 K. The line  ΩIR=ΩBP is a guide to the eye. 
The error bars on ΩIR are explained in Ref. 37, those on  
ΩBP in Ref. 38

Figure 12. IXS and Brillouin light scattering linewidths of 
the longitudinal acoustic mode of lithium diborate showing 
the rapid onset of the broadening in the THz region, from 
Ref. 33. The lines are explained in the text

is remarkable that for the above two examples, one 
finds ΩIR≈ΩBP. This strongly suggests that the rapid 
increase of Γ and the location of the BP are related. 
In fact, one should expect a hybridisation between 
the sound wave modes and the excess modes, which 
reconstructs the DOS, as explained in Refs 35, 36. This 
appears today as the most reasonable explanation for 
the remarkable coincidence of the IR-crossover, the 
boson peak, and the thermal conductivity plateau.

It is thus of interest to check whether ΩIR≈ΩBP 
occurs in other cases. Although the region below 
ΩIR could only be investigated so far for the above 
two examples, there is sufficient data in the recent 
literature to estimate IR for a collection of glasses. The 
procedure has been explained elsewhere.(37) It leads to 
the coincidence shown in Figure 13. The large error 
bars on ΩBP result from the uncertainty in the exact 
position of the peak in the reduced DOS. Ideally, the 
ΩBP for this comparison should probably be derived 
from low T specific heats,(38) but the needed data are 
mostly not available. Figure 13 shows, beyond doubts, 
that ΩIR and ΩBP are related. The figure includes four 
network glasses for which one nearly finds ΩIR=ΩBP. 
These are all strong glasses in the sense of Angell(39) 
which are known to have relatively large excesses of 
modes.(40) There is also data for two associated glass 
formers, glycerol and ethanol. Glycerol is a strongly 
associated liquid and the corresponding data point 
in Figure 13 nearly reaches the region of the network 
glasses. Ethanol is also an associated glass former, 
but it only forms chains.(41) This is similar for the 
two polymeric glasses for which we have data, the 
inorganic polymer selenium, and the organic one, 

polybutadiene. These are not rigid glasses in the 
sense of Thorpe.(42) Their data points in Figure 13 fall 
in the same region as for the two molecular glasses. 
The latter are fragile systems in the sense of Angell.(39) 
In the latter five cases it seems that ΩIR is somewhat 
larger than ΩBP, although the two frequencies still ap-
pear to be related. A similar observation of a relation 
between ΩIR and ΩBP was already presented in Ref. 43, 
not based on measured values of ΩIR but on calculated 
ones using the soft potential model.(44)

5. Conclusions

In this review, it is shown that there are major dif-
ferences between the acoustical properties of crystals 
and glasses. In the case of glasses, we identified three 
mechanisms that contribute to sound attenuation. In 
order of increasing frequency, these are the thermal 
relaxation of local defects, the relaxation via anhar-
monic interactions with the thermal bath, and the 
hybridisation with excess low frequency optic like 
vibrations. This allows describing the sound damping 
over more than nine orders of magnitude in frequen-
cies, from the kHz to the THz. These mechanisms, 
which are frequency and temperature dependent, 
contribute not only to sound damping but also to 
velocity changes. The information derived from the 
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latter is particularly valuable as it integrates differ-
ently over the distribution of relaxations. In addition, 
measurements of velocity changes in function of 
temperature reveal that in tetrahedrally coordinated 
glasses there occurs progressive structural changes 
which produce hardening as the temperature is 
raised.

At very high frequencies, in the THz range, sound 
changes its nature, becoming diffusive rather than 
wavelike. This Ioffe–Regel crossover nearly coincides 
with the excess of vibrational modes manifested 
by the boson peak. This strongly suggests that the 
Ioffe–Regel crossover is produced by the hybridisa-
tion of acoustic and optic modes. The crossover also 
accounts for the existence and location of a plateau in 
the temperature dependence of the low temperature 
thermal conductivity.
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