
Poroelastic Theory Applied to the Adsorption-Induced Deformation of 
Amorphous Silica 

Coralie Weigel1; Alain Polian2; Mathieu Kint3; Jerome Rouquette4; Julien Haines5; Marie Foret6; 
René Vacher7; Benoit Rufflé8; and Benoit Coasne9 

 

1Laboratoire Charles Coulomb, Université Montpellier and CNRS, Montpellier, France. 2Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, UMR CNRS 7590, 
Sorbonne Universités, Paris, France. 
3Laboratoire Charles Coulomb, Université Montpellier and CNRS, Montpellier, France. 
4Institut Charles Gerhardt Montpellier, Université Montpellier and CNRS, Montpellier, France. 
5Institut Charles Gerhardt Montpellier, Université Montpellier and CNRS, Montpellier, France. 
6Laboratoire Charles Coulomb, Université Montpellier and CNRS, Montpellier, France. 
7Laboratoire Charles Coulomb, Université Montpellier and CNRS, Montpellier, France. 
8Laboratoire Charles Coulomb, Université Montpellier and CNRS, Montpellier, France. 
9Laboratoire Interdisciplinaire de Physique, Université Grenoble Alpes and CNRS, Grenoble, 
France. E-mail: benoit.coasne@univ-grenoble-alpes.fr 
 
Abstract 
Under a high pressure of helium, the volume change of amorphous silica is much smaller than 
expected from its elastic properties. This is due to helium insertion in the free volume of the 
glass network. Here, we report spectroscopic experiments using either helium or neon as 
penetrating pressurizing media and molecular simulation that indicate a relationship between the 
amount of gas adsorbed and the strain of the network. A generalized poromechanical approach, 
describing the elastic properties of microporous materials upon adsorption, is shown to 
successfully describe the physics of deformation of such silica glasses in which the free volume 
exists only at the sub-nanometer scale. 
 
INTRODUCTION 
 
Recent high pressure studies provide new important results to the field of mechanical properties 
of amorphous silica (Sato et al. 2011, Shen et al. 2011, Weigel et al. 2012, Coasne et al. 2014). 
Below 10 GPa, hydrostatic pressures P are obtained in diamond-anvil cells using a liquid 
pressure transmitting medium such as a methanol-ethanol mixture (ME4:1) (Klotz et al. 2009). 
When such experiments are performed in the GPa pressure range for amorphous silica, the 
volume change of the sample is close to that expected from its bulk modulus K ~ 35-40 Gpa 
(Kondo et al. 1981, Schroeder et al. 1990, Zhang et al. 1994, Meade et al. 1987, Tsiok et al. 
1998, Weigel et al. 2012). The latter can be obtained by measuring the velocity of both 

longitudinal, vL, and transverse, vT, acoustic waves, K = ρ (vL
2 – 4/3vT

2), where ρ is the mass 
density of the sample. On the other hand, the compressibility of vitreous silica inferred from the 
volumetric strain is strongly reduced when He is used as pressurizing medium (Sato et al. 2011, 
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the non-penetrating fluid ME4:1 (more details can be found in Weigel et al. 2012 and Coasne et 
al. 2014).  
 

 

Figure 2. Volumetric strain ε of vitreous SiO2 as a function of the pressure P exerted by 
an adsorbing fluid, Ne (red squares), He (blue squares) (Sato et al. 2011), and by the non-

penetrating fluid ME4:1 (black squares) (Weigel et al. 2012). The dotted lines show the 
theoretical predictions as discussed in the text for He and Ne, respectively, and in the 

absence of adsorption. 
 
 
Grand Canonical Monte Carlo simulations in the framework of the generalized poromechanics 
developed by Brochard et al. (Brochard et al. 2012) were performed to probe at the microscopic 

scale the deformation of vitreous silica upon adsorption. One first determines the number n(ε,P) 
of Ne or He atoms per unit volume of solid penetrating a realistic model of silica as a function of 

the volumetric strain and bulk fluid pressure, ε and P being taken as independent external 
variables (Coasne et al. 2011, Coasne et al. 2014). For both fluids, the adsorbed amount increases 
monotonically with increasing volumetric strain and bulk fluid pressure. Given that the 
molecular density of the model silica is ~21.8 mol/nm3, the simulated adsorption isotherms show 

that relatively high He and Ne solubilities can be reached. At given ε and P, the number of He 
atoms adsorbed in the silica network is about 1.5 times that of Ne atoms, consistent with the 
larger size of Ne. 
 

We now turn to the predictions of the generalized poromechanical theory for εu(P) and nu(P) (the 
superscript u denotes that the system is considered upon unjacketed conditions as the fluid is 

allowed to exchange with the external phase). Using the simulated adsorption isotherms n(ε,P),  

the unique solution for εu(P) is found by solving iteratively the following equation:  
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CONCLUSION 
 
The present study shows that the small apparent compressibility of silica under high He or Ne 
pressure is due to an adsorption-induced expansion. It further demonstrates that the elasticity of 
vitreous silica subjected to noble gas adsorption can be described by generalized poromechanics. 
This theory for the mechanical properties of microporous solids upon adsorption, is applied here 
to an amorphous solid exhibiting only interstitial voids, opening the way to a broad range of 
applications. We anticipate that similar conclusions will be reached for other glasses exhibiting a 
significant amount of interstitial free volume as in the case of GeO2 or B2O3. The combined use 
of Monte Carlo simulations and poromechanics provides an efficient alternative to other 
theoretical approaches (Coudert et al. 2008, Gor et al. 2010, Guillot et al. 2012, Sarda et al. 
2005) describing the complete system equilibrated in isothermal-isobaric or osmotic ensembles 
but inherently limited to short time scales and by possible equilibration issues. Poromechanics 
associated with Monte Carlo simulations thus might give the opportunity to extend this study to 
dense materials, where the equilibration time is long, such as glasses and melts of geological 
interest, actinide oxide fuels or irradiated metallic alloys. 
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