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A B S T R A C T

Particle interactions play a fundamental role in condensed matter physics because they determine both the
dynamical behavior and the equilibrium physical properties of a given system at temperature 𝑇 and density 𝜌.
However, these interactions are not always precisely known in experiments, or in simulations of coarse-grained
systems. A direct determination of the pair interaction potential in a given system could help understand
observed behaviors and make further predictions. Given a number of equilibrium configurations of a system,
it would be desirable to find a method to directly determine the pair potential by only using these snapshots.
We propose two simple methods towards this goal for the specific case of the systems in 3 dimensional space
with the Mie potential, which includes two exponents as 𝑚 and 𝑠. Well-equilibrated system configurations are
produced by molecular dynamical simulations using the Mie potential with different exponent combinations
(𝑚, 𝑠). In the first method, we construct a correspondence between the value and location of the first peak of the
radial distribution function and the couple (𝑚, 𝑠), which allows us to determine the potential with an accuracy
of 100% when given a set of equilibrium configurations for an unknown potential. In the second method,
we train an artificial neural network to learn this correspondence. We find that all (𝑚, 𝑠) combinations are
correctly predicted. Both methods support the idea that the pairwise interaction can often easily be inferred
by using equilibrium snapshots.
Introduction

Our world is colorful due to the existence of interactions among
particles. Particle–particle interactions are of paramount importance
in many-body systems as they determine the collective behavior and
coupling strength [1]. For instance, in the simple case of the hard
sphere interaction model, systems made of hard spheres display gas [2–
4], fluid [3–8], crystals [9–14], disordered glasses [12,15] as well as
hyperuniform structures [16]. For any model system, one can obtain all
of its physical properties, including its phase diagram and microstruc-
ture, when the interactions among particles are fixed. In other words,
interactions play a fundamental role in physics.

Often, particle–particle interactions are too complex to be obtained
accurately in real physical systems. Very complicated expressions de-
scribing such interactions can be found in material science and chemi-
cal physics, obtained by different types of experimental and numerical
methods [17–20]. In experiments, the particle–particle interactions can
be completely unknown, while a determination of effective pairwise
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interactions can be useful to describe complex systems at a more coarse-
grained level in computer simulations [21], and can also be useful
for determining experimental parameters such as particle charge or
screening length in colloidal systems, assuming the interaction is the
Yukawa potential. Another potential application is the determination
of the optimal pair potential to be used in order to produce a desired
targeted structure, as in self-assembly [22].

In practice, one has instead access to some dynamical behavior or to
some physical structural properties at equilibrium at the corresponding
experimental conditions. Only when the particle–particle interactions
in a system are well-characterized can one understand better its ob-
served behaviors and even make predictions about unknown behaviors
in different conditions. Thus, it is of great importance to find ways to
determine particle–particle interactions directly from observations [23,
24].

Conceptually, the pairwise interaction for a specific physical system
can be determined by analyzing the statistics of a system comprised of
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only two particles [25]. Although direct and simple, this method is not
always accessible (for instance in experimental work or when a coarse-
grained potential is sought) and it is desirable to devise methods that
extract the pair interaction directly from the many-body interacting
system at the desired thermodynamic conditions. In this context, this
amounts to solving the inverse problem of extracting the pair potential
from a given set of produced data. It is well known that, given the pair
correlation function 𝑔(𝑟) there exists a one-to-one correspondence to
the pair interaction potential 𝑢(𝑟) in virtue of the theorem derived by
Henserson [26]. In practice however, there exists no analytic solution
to this problem which must be tackled numerically. The most common
method is perhaps the iterative Boltzmann inversion [27] where a
candidate pair potential is proposed, and a computer simulation is
used to measure its corresponding 𝑔(𝑟). The distance to the target pair
correlation is used to improve the candidate potential in an iterative
manner, in a way which can be refined [28]. Because an entire simu-
lation is needed at each step the method is rather costly, and simpler
methods would be welcome. Recently, an iterative method which does
not require multiple simulations has been devised based in the particle
insertion method [29]. This is an interesting step, but it only works
for system that are dilute enough that particles can be inserted, which
limits its applicability to dense liquids or solid phases.

In this paper, we focus on the systems interacting with the Mie
potential in 3 dimensional space and devise a very simple idea to
determine the two exponents of the Mie potential by only using an
ensemble of equilibrium configurations obtained at thermal equilib-
rium. Although this problem is simpler than a full inversion problem
to determine a completely unknown potential, it remains non-trivial
and impossible to tackle analytically. Proposing a simple solution to
the inverse problem in that narrower case is therefore a valuable
contribution.

The manuscript is organized as follows. In Section ‘‘Theoretical ba-
sis’’, we explain the theoretical basis for the idea. In Section ‘‘Molecular
dynamics simulations and numerical computations by Method 1’’, we
provide details of our molecular dynamical simulations and the method
of fitting correlations to check whether the idea well stands or not. In
Section ‘‘Numerical computations by Method 2: artificial neural net-
work (ANN)’’, we provide the second method of the artificial neural
network model underneath the Machine Learning to check whether
the idea well stands or not. In Section ‘‘Results and discussion’’, we
demonstrate the validity of the predicted potentials under these two
methods. In Section ‘‘Conclusion’’, we make a short conclusion.

Theoretical basis

As is well-known, a pairwise additive interaction potential is defined
as a mathematical function of the distance between the two particles
considered. Many different kinds of pairwise potential functions are
being used in the literature, such as the hard sphere potential [23],
the Lennard-Jones potential [30] which is a special case of the more
general Mie potential [31], or the Yukawa potential with or without
hard core [29]. The Mie potential reads [31]

𝑢
(

𝑟𝑖𝑗
)

= 𝜖
[(

𝜎
𝑟𝑖𝑗

)𝑚
−
(

𝜎
𝑟𝑖𝑗

)𝑠]

. (1)

When 𝑚 = 12 and 𝑠 = 6, Eq. (1) reduces to the Lennard-Jones
potential [31]. In this paper, we consider equilibrated systems char-
acterized by the Mie potential with 51 different (𝑚, 𝑠) combinations in
3 dimensional space.

The radial distribution function (RDF) (also called pair correlation
function) reads [32]

𝑔2
(

𝒓1, 𝒓2
)

= 𝑉 2𝑁!
𝑁2 (𝑁 − 2)!

1
𝑍𝑁 ∫ ⋯∫ 𝑒−𝛽𝑈𝑁 𝑑𝒓3 ⋯ 𝑑𝒓𝑁 . (2)

ere {𝒓𝑖} are the particle coordinates, 𝑈𝑁
(

𝒓1,… , 𝒓𝑁
)

is the potential
2

nergy of the system due to the interactions between particles, 𝑍𝑁 =
⋯ ∫ 𝑒−𝛽𝑈𝑁 𝑑𝒓1 ⋯ 𝑑𝒓𝑁 is the configurational integral taken over all
ossible combinations of particle positions in the canonical ensemble.
t is related to the canonical partition function 𝑍 as

𝑁 = 𝑍 ⋅𝑁!𝜆3𝑁 , (3)

here 𝜆 = ℎ
(

𝛽
2𝜋𝑚

)1∕2
is the de Broglie thermal wavelength.

If the fluid system consists of spherically symmetric particles and
the potential is fixed, 𝑔2

(

𝒓1, 𝒓2
)

depends only on the relative distance
between particles 1 and 2, 𝑟12 = |𝒓2 − 𝒓1|, so that

𝑔2
(

𝒓1, 𝒓2
)

= 𝑔2
(

𝑟12
)

. (4)

The canonical partition function for the fluid system composed of
spherically symmetric particles with the Mie potential can be obtained
using mean-field methods [33]

𝑍 = 𝑉 𝑁

𝑁!𝜆3𝑁
exp

(

−𝐴𝜌
𝑚
3 −1 +𝑊 𝜌

𝑠
3−1

)

, (5)

with 𝐴 = 2𝜋𝜖𝜎𝑚
𝑚−3

(

3
4𝜋

)1−𝑚∕3
, 𝑊 = 2𝜋𝜖𝜎𝑠

𝑠−3

(

3
4𝜋

)1−𝑠∕3
and 𝜌 = 𝑁∕𝑉 . As a

result, we have that,

𝑍 = 𝑍 (𝜌, 𝛽, 𝑚, 𝑠) . (6)

Combining Eqs. (2), (4), (6), the radial distribution function can be
written as

𝑔2 = 𝑔2
(

𝑟12, 𝜌, 𝛽, 𝑚, 𝑠
)

(7)

Eq. (7) is reasonable as when the Mie potential is fixed (and so (𝑚, 𝑠)
are fixed) and the system is equilibrated at constant density 𝜌 and
temperature 𝑇 = 1∕𝛽, we get that 𝑔2 is a unique function of 𝑟12. For
a system with fixed density and temperature,

𝑔2 = 𝑔2
(

𝑟12, 𝑚, 𝑠
)

= 𝑔2 (𝑟, 𝑚, 𝑠) . (8)

As is also well-known, for a fluid system at equilibrium, the radial
distribution function exhibits several peaks. We characterize the first
peak by its location and amplitude

(

𝑟1𝑠𝑡, 𝑔1𝑠𝑡
)

. By solving

⎧

⎪

⎨

⎪

⎩

𝑔1𝑠𝑡 = 𝑔2
(

𝑟1𝑠𝑡, 𝑚, 𝑠
)

𝜕𝑔2
𝜕𝑟

|

|

|

|𝑟=𝑟1𝑠𝑡
= 0 (9)

ne can then obtain m and s because 𝑟1𝑠𝑡 and 𝑔1𝑠𝑡 are unique functions
f (𝑚, 𝑠).

The above reasoning proposes an explicit demonstration, within a
ean-field approach, that the exponents 𝑚 and 𝑠 can be determined di-

ectly from the pair correlation function. Given its approximate nature,
e cannot use these expressions to perform the inversion in Eq. (9)
nalytically and we must thus resort to computer simulations. If the
alues of 𝑟1𝑠𝑡 and 𝑔1𝑠𝑡 are measured accurately, one can obtain the
alues of 𝑚 and 𝑠 by inverting the expressions for 𝑟1𝑠𝑡 and 𝑔1𝑠𝑡. It

is interesting to discuss the physical meaning of some special points
of the RDF, for instance, the peaks. Peaks in the RDF reflect some
important physical microscopic structures. As qualitatively deduced
by Liu et al. [34], a structure with higher symmetry will produce a
lower density of RDF peaks. One can capture at least three independent
pieces of information in a peak of the RDF peak [35]: its position gives
the average separation of the pair of atoms in question; its integrated
intensity yields the coordination number of that pair of atoms; and the
width and shape of the peak gives the underlying atomic probability
distribution.

In the following, we use the distance histogram (DH) method to
measure the values of 𝑟1𝑠𝑡 and 𝑔1𝑠𝑡 from a given set of data. The
DH method is the most widely used method to measure the radial
distribution function as a function of the distance between the two
particles [36,37]. This is the basis for the numerical analysis proposed
in the following sections.
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Molecular dynamics simulations and numerical computations by
Method 1

We define the reduced distances 𝑟∗ = 𝑟∕𝜎, density 𝜌∗ = 𝜌𝜎3, and
temperature 𝑇 ∗ = 𝑘𝐵𝑇 ∕𝜖. In Section ‘‘Theoretical basis’’, we described
the theoretical basis to obtain the two unknown exponents (𝑚, 𝑠) from
the value and location of the first peak of the RDF of equilibrated
system configurations obtained with the Mie potential.

To test this idea, we perform computer simulations. We simulate
Mie potential systems composed of 𝑁 = 2048 particles at six different
reduced densities of 𝜌∗ = 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3 and three
reduced temperature of 𝑇 ∗ = 1∕1.30, 1∕1.35, 1∕1.40 using conventional
molecular dynamics simulations in 3 dimensional space. Temperature
is imposed using a Nose–Hoover thermostat. Periodic boundary condi-
tions are used. Specially, the reduced time step reads 𝛥𝑡∗ = 0.005(𝑡∗ =
𝑡
√

𝜖∕𝑚∕𝜎), the reduced maximal time reads 𝑡∗𝑚𝑎𝑥 = 500, and the inertia
parameter reads 10. The analysis and discussion in the present work
are based on the converged results after 105 time steps using a cutoff
radius of 𝑟𝑐𝑢𝑡 = 𝐿∕2 with 𝐿 being the linear size of the simulated
box to guarantee that all systems are equilibrated. The core Fortran
codes are from Frenkel and Smith [24] and available on request. The
exponents of the Mie potential chosen in the interval 𝑚 ∈ [8, 13] and
𝑠 ∈ [2, 𝑚 − 1]. All systems were found to be thermodynamically stable.
Note that the global stability of the considered cases of 𝑠 = 2 and 𝑠 = 3
confirmed numerically is presumably an artifact resulting from the
chosen 𝑟𝑐𝑢𝑡 value, and that these systems would be thermodynamically
unstable when considering infinite-range interactions. In total, we have
studied 51 (𝑚, 𝑠) combinations. For each equilibrated Mie system with
fixed (𝑚, 𝑠), 104 statistically independent configurations are stored to
compute the radial distribution function using the DH method using
a regular grid with discretization 𝛥𝑟 = 0.01𝜎. From these numerical
results, we obtain 𝑔2(𝑟), and we can extract the value and location of its
first peak (𝑟1𝑠𝑡, 𝑔1𝑠𝑡) for each (𝑚, 𝑠) combination. A detailed description
of the DH method can be found elsewhere [33]. Numerically, we fit
a short interval around the first peak using a third-order polynomial
function to get a smooth curve and extract the value and location of its
first peak from the corresponding polynomial function.

The measured values for the combinations (𝑚 = 8, 𝑠 = 2, 3, 4, 5, 6, 7),
(𝑚 = 10, 𝑠 = 2, 3, 4, 5, 6, 7, 8, 9) (𝑚 = 12, 𝑠 = 2, 4, 6, 7, 8, 10) and (𝑚 =
13, 𝑠 = 2, 4, 6, 8, 10, 12) provide a total of 26 data points which are used
to obtain empirical expressions for (𝑟1𝑠𝑡, 𝑔1𝑠𝑡). For instance, in the case
of 𝜌∗ = 0.8 and 𝑇 ∗ = 1∕1.35 the fitting forms read:

𝑟f it (𝑚, 𝑠) =0.7044 + 0.06615𝑚 + 0.1906𝑠 − 0.003014𝑚2 − 0.03709𝑚𝑠

− 0.03859𝑠2 + 0.001775𝑚2𝑠 + 0.007326𝑚𝑠2 + 0.001251𝑠3

− 0.0003539𝑚2𝑠2 − 0.0002707𝑚𝑠3 − 1.944 × 10−6𝑠4

+ 1.45 × 10−5𝑚2𝑠3 + 9.892 × 10−7𝑚𝑠4 − 1.103 × 10−6𝑠5,

(10)

𝑔f it (𝑚, 𝑠) =0.6661 + 0.2141𝑚 + 0.08667𝑠 − 0.00694𝑚2 − 0.04018𝑚𝑠

− 0.01882𝑠2 + 0.002458𝑚2𝑠 + 0.008879𝑚𝑠2 − 0.003937𝑠3

− 0.0005022𝑚2𝑠2 − 4.325 × 10−5𝑚𝑠3 + 0.0001732𝑠4

+ 7.691 × 10−6𝑚2𝑠3 + 1.102 × 10−5𝑚𝑠4 − 1.2 × 10−5𝑠5.

(11)

Equivalent expressions for the other five densities are enclosed for the
case of 𝑇 ∗ = 1∕1.35 in the Supporting Material (SM). Other expressions
for other two cases of 𝑇 ∗ = 1∕1.30, 1∕1.40 have also been obtained,
see SM. For each density, we simulate a total of 51 combinations of
exponents. We checked that the quality of the predictions became less
if we only use lower-order polynomial in Eqs. (10), (11).

To check the accuracy of a given prediction for (𝑟f it , 𝑔f it ), we intro-
duce an error function between the prediction and the measured values
defined as

𝜒2 =
(

𝑔f it − 𝑔1𝑠𝑡
)2

+
(

𝑟f it − 𝑟1𝑠𝑡
)2

. (12)
3

𝑔1𝑠𝑡 𝑟1𝑠𝑡
Fig. 1. Schematic structure of the artificial neural network. The inputs are (𝑟1𝑠𝑡 , 𝑔1𝑠𝑡)
and the outputs are (𝑚, 𝑠).

With these definitions, our procedure to determine the unknown
exponents (𝑚, 𝑠) from a given set of equilibrium configurations is as
follows:

(a) For a set of 104 configurations for which we wish to infer the
exponents (𝑚, 𝑠) we measure numerically 𝑔2(𝑟) by the DH method;

(b) We fit the region of the first peak using a polynomial function
and extract the value and the location of the first peak (𝑟1𝑠𝑡, 𝑔1𝑠𝑡);

(c) For all possible pair (𝑚, 𝑠) with integer values we use Eqs.(10),
(11) to calculate (𝑟f it , 𝑔f it );

(d) For each pair (𝑚, 𝑠) we estimate the error 𝜒2 in Eq. (12) between
the fitted and measured values;

(e) The (𝑚, 𝑠) combination with the lowest 𝜒2 is selected as the best
candidate for the two exponents of the Mie potential corresponding to
the numerical data.

Numerical computations by Method 2: artificial neural network
(ANN)

The spirit of machine learning (ML) is to automatically learn a set
of rules from a set of data using an appropriate algorithm, to be able
to make predictions for a new set of data. Artificial neural network
(ANN) models act as a nonlinear data modeling device in ML [38–41].
We propose to use a very simple ANN model to determine the two
exponents (𝑚, 𝑠) of the Mie potential by using the value and location
of the first peak of the RDF as inputs.

The structure of our ANN model is displayed in Fig. 1. The Matlab
software is used to build the model. The ANN model is composed of the
input layer, the hidden layer, and the output layer while the neurons
exist in the layers. In the input layer, the input information is received,
and each neuron represents an input variable and directly transmits the
information to the neurons in the hidden layer without processing. In
the hidden and output layers, each output receives a weighted sum of
the inputs plus a bias, and then transmits the sum through an activation
function to generate an output. We use a feed-forward neural network.
The input variables are (𝑟1𝑠𝑡, 𝑔1𝑠𝑡) and the output variables are the two
exponents (𝑚, 𝑠). Because the two exponents (𝑚, 𝑠) to be determined are
integers, we need to transform the real numbers obtained in output
back into integers. We consider the case of 𝑇 ∗ = 1∕1.35 as an example to
illustrate the details. For each density, the 51 (𝑚, 𝑠) samples are divided
into two disjoint sets of data. The numerical values of (𝑚 = 8, 𝑠 =
2, 3, 4, 5, 6, 7), (𝑚 = 10, 𝑠 = 2, 3, 4, 5, 6, 7, 8, 9), (𝑚 = 12, 𝑠 = 2, 4, 6, 7, 8, 10),
(𝑚 = 13, 𝑠 = 2, 4, 6, 8, 10, 12), provide a total of 26 samples which form
the part I (PI). The other 25 samples form the part II (PII). In PI, 80%
of the 26 samples (20 samples) are used for training, 10% (3 samples)
are used for validation, and 10% (3 samples) are used to perform the
testing. These three databases are randomly assembled. Both ‘tansig’
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Fig. 2. (a) Mean-squared error of the artificial neural network for different numbers of
neurons in the hidden layer. (b) Evolution of the mean-squared error with the number
of epochs for 𝑇 ∗ = 1∕1.35 and 𝜌∗ = 0.8 during the training of the artificial neural
network.

and ‘purelin’ functions in Matlab software are selected as the activa-
tion functions in the hidden layer and output layer, respectively. The
training accuracy of the ANN model is measured by the mean-squared
error (MSE) defined as

MSE =
∑

(𝑚𝑝 − 𝑚𝑒)2 +
∑

(𝑠𝑝 − 𝑠𝑒)2

2𝑁𝑠
(13)

where (𝑚𝑝, 𝑠𝑝) and (𝑚𝑒, 𝑠𝑒) are respectively the predicted and exact
values, and 𝑁𝑠 is the number of samples. Using trial and error, we
determined the optimal number of the neurons of the hidden layer with
the mean square error (MSE), as is illustrated in Fig. 2(a). It is easy to
see that the MSE is equal to 0.0004695 for PI, 0.002162 for PII, and
0.001316 for the mean MSE for 8 neurons.

The trained ANN model will be used for the prediction of the other
25 samples in part II (PII) which were not used in the model training
stage. The other two temperature cases of 𝑇 ∗ = 1∕1.30 and 𝑇 ∗ = 1∕1.40
follow the same scheme but require different (𝑚, 𝑠) combinations for PI
and are available on request.

Results and discussion

Stability of the first peak of the RDF from the DH method

For a homogeneous system, the radial distribution function can be
defined as [29] 𝑔 (𝒓) = 𝜌∗(𝒓)∕𝜌. It is given by the ratio of the local
number density measured from a reference particle 𝜌∗(𝒓) over the bulk
number density 𝜌. According to this definition, the RDF is typically
measured using the distance histogram (DH) method [42].

We have followed the behavior of the measured value and location
of the first peak of the RDF of the Lennard-Jones fluids at 𝜌∗ = 0.8 and
𝑇 ∗ = 1∕1.35. For a small number of configurations (a few hundreds),
the measured values appear to fluctuate due to statistical uncertainties.
Only when the number of configurations is large enough the measured
values become stable. We find that 𝑟1𝑠𝑡 and 𝑔1𝑠𝑡 become statistically
reliable when the number of configurations becomes larger than ≈ 103.
We conclude that the measured 𝑔1𝑠𝑡 will not take a constant value
unless the number of configurations is quite large. In this work, the
number of configurations (NC) is taken to be 104 for each (𝑚, 𝑠) com-
bination, which provides a compromise between numerical precision
and computational load. According to the above discussion, NC = 104

is large enough to obtain a reasonable stability of both the value and
4

Fig. 3. Evolution of 𝑟1𝑠𝑡 with 𝑚 and 𝑠 for 𝑇 ∗ = 1∕1.35 and 𝜌∗ = 0.8. The surface
represents Eq. (10). The dotted green symbols are the values used to fit Eq. (10).
The dotted purple symbols are used for prediction. Similar curves for the other two
temperature cases of 𝑇 ∗ = 1∕1.30 and 𝑇 ∗ = 1∕1.40 are shown in the Supporting
Materials. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 4. Evolution of 𝑔1𝑠𝑡 with 𝑚 and 𝑠 for 𝑇 ∗ = 1∕1.35 and 𝜌∗ = 0.8. The surface
represents Eq. (11). The dotted green symbols are used to fit Eq. (11). The dotted
purple symbols are used for prediction. Similar curves for the other two temperature
cases of 𝑇 ∗ = 1∕1.30 and 𝑇 ∗ = 1∕1.40 are shown in the Supporting Materials. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the location of the first peak of the RDF. It is observed that both the
obtained 𝑟1𝑠𝑡 and 𝑔1𝑠𝑡 by the DH method are completely stable with
NC = 104 for all the (𝑚, 𝑠) combinations we considered as follows. In the
following, we show and analyze the results for the case of 𝑇 ∗ = 1∕1.35.
Similar results hold for the other two temperature cases, as shown in
Supporting Materials.

Numerical results for Method 1: Empirical fits

Equilibrated Mie systems with 51 different (𝑚, 𝑠) combinations at
𝜌∗ = 0.8, 0.9, 1.0, 1.1, 1.2, 1.3 and 𝑇 ∗ = 1∕1.35 are produced by MD
simulations. The numerical results for the evolution of 𝑟1𝑠𝑡 and 𝑔1𝑠𝑡 with
(𝑚, 𝑠) are displayed in Figs. 3, 4. The curved surface in Fig. 3 represents
Eq. (10), and the curved surface in Fig. 4 represents Eq. (11) while the
symbols correspond to the measurements.

From Fig. 3, we see that the location of the first peak of the RDF
decreases with 𝑠 when 𝑚 is fixed. Recall that 𝑚 is the exponent of
the repulsive part of the Mie potential and 𝑠 is the exponent of the
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Fig. 5. Percentage deviation of the predictions made by the artificial neural network for each sample when 𝜌∗ = 0.8 and 𝑇 ∗ = 1∕1.35 for decimal output. Panels show results for
(a) 𝑚 and (b) 𝑠 predictions, respectively. When transformed into integer values, 100% of the predicted (𝑚, 𝑠) values are correct.
Table 1
Number of (𝑚, 𝑠) combinations in different 𝑅 ranges. Here 𝑅 is defined as 𝑅 = 𝜒2

2 ∕𝜒
2
1

with 𝜒1 the error for the 1st best candidate, 𝜒2 for the 2nd best candidate, and the error
𝜒 is defined in Eq. (12). Results for the other two temperature cases of 𝑇 ∗ = 1∕1.30
and 𝑇 ∗ = 1∕1.40 are shown in the Supporting Materials.
𝜌∗ 𝑅 > 2 𝑅 > 4 All

0.8 51 51 51
0.9 51 51 51
1.0 51 51 51
1.1 51 50 51
1.2 51 48 51
1.3 50 47 51

attractive part. Physically, increasing s at fixed 𝑚 implies the increasing
of attraction in large 𝑟 and the decreasing of repulsion in small 𝑟, which
enhances the first peak of the RDF and shifts its position to smaller 𝑟
values.

We have a total of 51 different (𝑚, 𝑠) combinations at each ther-
modynamic condition (𝜌∗, 𝑇 ∗). We use 26 of them to obtain Eqs. (10),
(11) and the other 25 are used to check the accuracy of the method
proposed in Section ‘‘Molecular dynamics simulations and numerical
computations by Method 1’’.

We find that all of the 25 (𝑚, 𝑠) combinations that are not used
to construct the fits at each thermodynamic condition (𝜌∗, 𝑇 ∗) can be
correctly predicted with no exception. We check that the 26 (𝑚, 𝑠)
combinations used for fitting can also be correctly predicted in the same
manner.

In order to clearly show the difference between the 1st best candi-
date and the 2nd best candidate in each case, we have presented the
results in Table 1, in which the number of combinations in different
𝑅 = 𝜒2

2∕𝜒
2
1 ranges are established, where 𝜒1 is the error obtained for the

1st best candidate and 𝜒2 the one for the 2nd best candidate, with the
definition of 𝜒 in Eq. (12). For each density, 𝑅 > 2 holds for more than
50 (𝑚, 𝑠) combinations, and 𝑅 > 4 for more than 47 combinations. Thus,
the 1st candidate can be easily distinguished from the 2nd candidate.

In short, the correct (𝑚, 𝑠) combination can be easily obtained
by simply fitting two main characteristic values of the RDF with an
accuracy of 100%.

Numerical results for Method 2: Artificial neural network

We choose the case 𝜌∗ = 0.8 and 𝑇 ∗ = 1∕1.35 to present numerical
results from the ANN model. The 51 (𝑚, 𝑠) samples are divided into
the PI and PII sets described in ‘‘Numerical computations by Method
2: artificial neural network (ANN)’’. It is worth noting that the MSE
in Eq. (13) decreases and reaches a nearly constant value during the
training. If the above condition is met, the ANN model can be expected
to make good predictions.
5

Fig. 2(b) shows the trend of MSE with the number of epochs. The
best validation performance is 0.0013635 at epoch 70 where the train-
ing performance is 0.0011548 and the test performance is 0.0002326.
The three curves show a trend towards a nearly steady-state value.

Compared with the MSE, the percentage deviation can better reflect
the prediction ability of ANN for individual combinations. Fig. 5 shows
the percentage deviation (PD) achieved by the ANN model for all com-
binations of exponents when we let the outputs take decimal values. For
𝑚 predictions shown in the panel (a), the absolute percentage deviation
of all data points is less than ≈ 1%. The purple dot represents the
maximal absolute percentage deviation value 1.07% at (𝑚 = 9, 𝑠 = 8).
For the 𝑠 predictions shown in the panel (b), the absolute percentage
deviation of all data points is less than 5%. The yellow dot represents
the maximal absolute percentage deviation value 4.35% at (𝑚 = 9, 𝑠 =
2). When we transform the outputs into integer numbers, 100% of the
predictions are correct.

In other words, all 51 combinations in the case 𝜌∗ = 0.8, 𝑇 ∗ = 1∕1.35
can be obtained by the ANN model. We add that the predictions are
100% correct without exceptions for the other five densities when
we transform the outputs into integer numbers. The results for other
densities are enclosed in the Supporting Material.

In summary, by using half of the data to train the ANN model, the
two exponents of the Mie potential for all newly produced data can be
correctly determined by simply analyzing the first peak of the radial
distribution function.

Conclusion

In this paper, we established a simple connection between the
characteristics of the first peak of the radial distribution function and
the exponents of the Mie potential interaction for well-equilibrated
configurations. Given a number of snapshots taken from an equilibrated
ensemble created via the Mie potential with unknown exponents, we
can directly determine the values of the exponents (𝑚, 𝑠) with excel-
lent accuracy. This work offers two simple ways to determine the
pairwise interaction by only using configuration snapshots, which are
easily obtained in numerical simulations or experiments. Therefore, our
strategy considerably simplifies the general inverse problem where a
determination of the pair potential from simulation data is needed,
although it of course does not offer a complete general solution.

In conclusion, we have validated a simple idea to measure pairwise
potentials. This idea can be implemented with high accuracy by either
using both the simple method based on empirical fitting or using
the artificial neural network method. In Method 1, we construct a
correspondence between the value and location of the first peak of the
radial distribution function with the couple (𝑚, 𝑠), which allows us to
then determine the potential with an accuracy of 100% when given
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a set of equilibrium configurations for a new system with unknown
potential. In Method 2, an artificial neural network is trained at each
density by using half of the samples, and the remaining samples are
correctly predicted with an accuracy of 100% by the model, when the
predicted (𝑚, 𝑠) are transformed into integer values.

Both methods support the idea that easy and directly determinations
of the pairwise interaction can be obtained by only using equilibrium
snapshots. This idea can be readily extended to multicomponent sys-
tems, and will be valuable in both fundamental and applied research.
This idea can also be applied to fundamental investigations of many-
body interactions, such as coarse-grained pair potentials [27,43,44] in
multiscale simulations of complex fluids and biological systems and
polymer systems. The extension to any possible pairwise potential
interaction such as the Yukawa potential are in progress.
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