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We propose a computational method to measure the configurational entropy in generic polydisperse
glass-formers. In particular, our method resolves issues related to the diverging mixing entropy
term due to a continuous polydispersity. The configurational entropy is measured as the differ-
ence between the well-defined fluid entropy and a more problematic glass entropy. We show that
the glass entropy can be computed by a simple generalisation of the Frenkel-Ladd thermodynamic
integration method, which takes into account permutations of the particle diameters. This approach
automatically provides a physically meaningful mixing entropy for the glass entropy and includes
contributions that are not purely vibrational. The proposed configurational entropy is thus devoid
of conceptual and technical difficulties due to continuous polydispersity, while being conceptually
closer, but technically simpler, than alternative free energy approaches. Published by AIP Publishing.
https://doi.org/10.1063/1.5040975

I. INTRODUCTION

Polydispersity is an essential ingredient to study super-
cooled liquids and glasses because mono-component glass-
forming systems with spherical particles quickly crystallize
and do not easily form amorphous states. For example, it is
well-known that multi-component metallic glasses with suf-
ficiently large size polydispersity show better glass-forming
ability,1 and size polydispersity is unavoidable in colloidal
glasses.2 Continuously polydisperse glass-forming models are
also getting increasing attention because they maximise the
efficiency of the swap Monte Carlo (MC) algorithm.3–5 As
a result, they can be equilibrated down to extremely low-
temperatures or large densities.6,7 This recent computational
development enables numerical studies that can be directly
compared to experimental work and opens several possibili-
ties to explore a wide range of physical phenomena occurring
in amorphous materials.8–10

A central issue for supercooled liquids is the determi-
nation of their configurational entropy and of its evolution
when approaching the glass transition.11 However, the statisti-
cal mechanics of continuously polydisperse systems involves
some controversial issues such as particle distinguishability
and the associated divergent mixing entropy.12–18 These issues
also influence the statistical mechanics description of polydis-
perse glass-formers.19 The configurational entropy Sconf can
be defined by the difference between the total entropy, Stot,
and a glass entropy, Sglass,

Sconf = Stot − Sglass, (1)

so that Sconf enumerates the number of glass states. The tech-
nical problem with Eq. (1) is evident as we need to take
the difference between two entropies evaluated separately in
phases that are not connected by any equilibrium thermody-
namic path. The unwanted byproduct is that the absolute values

of both entropies are needed. This is particularly problem-
atic for continuously polydisperse models, since the entropy
Stot then contains a mixing entropy contribution that is for-
mally divergent, while conventional methods to determine
Sglass do not. As a result, widely used methods to deter-
mine Sconf in systems with continuous polydispersity provide
an infinite value, which is unphysical. Similar problems are
encountered by discrete mixtures with infinitesimal size dif-
ferences, where the mixing entropy contribution to glass and
fluid entropies is again a problematic issue.19 It is therefore
important to develop methods to properly deal with the mix-
ing entropy contribution to Sglass in Eq. (1) so that meaningful
configurational entropy measurements can be generically per-
formed for any type of particle size distributions with no
ad hoc manipulations of mixing entropy contributions. The
main goal of the present paper is to provide such a computa-
tional method.

For ordinary phase transitions, only entropy differences
are physically relevant and can be measured by following an
equilibrium thermodynamic path between two state points.
This is how experiments get around the absolute value prob-
lem for glasses, but as a result only an approximate estimate of
the configurational entropy can be measured.20–22 In Ref. 19,
we provided a resolution to the problem of the infinite mix-
ing entropy contribution to Eq. (1). The key physical idea is
that glass configurations that only differ by the exchange of
particles with very similar sizes should be considered as part
of the same glass “state” and must be grouped together when
estimating Sglass. This suggests that a glass state is associated
with an infinitely large number of configurations, and thus
Sglass contains a divergent mixing entropy contribution term
which cancels the one in Stot, to eventually make Sconf finite.
In Ref. 19, we provided an approximate method to evaluate
a finite Sconf, which amounts to describing a continuously
polydisperse system as an effective discrete mixture with
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a finite number of species, M∗. We proposed an empirical
method to estimate M∗ directly in the simulations for each
state point and applied this approach to a number of glass-
formers.8,19 However, a general and precise treatment of the
mixing entropy is desired which does not rely on approxima-
tions and can also be applied to an arbitrary functional form of
the particle size distribution. This is becoming a particularly
pressing issue as computer simulations are now getting closer
to a putative thermodynamic transition, which is defined by a
vanishing configurational entropy. Thus, it is no longer possi-
ble to work with empirical, approximate methods to address
the nature of the glass transition. As argued in Ref. 19, the mix-
ing entropy of the glass state needs to be included in Eq. (1),
since failure to do so leads to the incorrect conclusion23 that the
configurational entropy is bounded from below by the mixing
entropy.

The goal of this paper is to provide a proper statistical
mechanics description and a generic computational scheme
to obtain the configurational entropy of continuously polydis-
perse systems. We thus transform the empirical method and
the physical ideas proposed in Ref. 19 into a mathematically
consistent computational scheme applicable to any type of
particle size distribution. The computational method that we
establish in this work relies again on Eq. (1), but we use a sta-
tistical mechanics description of Sglass that includes particle
permutation and thus automatically produces the correct mix-
ing entropy. Whereas the evaluation of Stot remains unchanged,
Sglass is now computed by a Frenkel-Ladd thermodynamic inte-
gration24 that we generalize to deal with the mixing entropy.
To demonstrate that our method provides physically mean-
ingful results, we perform molecular dynamics simulations
of three glass-forming models, using continuously polydis-
perse soft spheres (SSs) and hard spheres (HSs),6,7 and a
binary Lennard-Jones mixture.25 Remarkably the obtained
Sconf for the polydisperse hard spheres takes values com-
parable to the Landau free energy approach26 based on the
Franz-Parisi (FP) potential.27 This suggests that our scheme
provides a cheaper computational alternative to free energy
measurements.

This paper is organised as follows. In Sec. II, we describe
the general framework leading to our computational method.
Its numerical implementation for three representative glass-
formers is presented in Sec. III. Finally, we conclude and
discuss our work in Sec. IV.

II. STATISTICAL MECHANICS FRAMEWORK
A. Setting

We consider an M-component polydisperse system in
the canonical ensemble in d-dimensions such that N, V, and
T = 1/β are the number of particles, volume, and temper-
ature, respectively. We fix the Boltzmann constant to unity,
and ρ = N /V is the number density. The case M = N corre-
sponds to a continuously polydisperse system. The concen-
tration of the m-th species is Xm = Nm/N, where Nm is the
number of particles of the m-th species (N =

∑M
m=1 Nm). A

point in position space is denoted as rN = (r1, r2, . . ., rN ).
For simplicity, we consider equal masses, irrespective of the
species.

1. Partition functions

For M-component polydisperse systems, the following
partition function in the canonical ensemble is conventionally
used:15

Z =
1

ΠM
m=1Nm!ΛNd

∫
V

drN e−βU(rN ), (2)

where Λ =
√

2π β~2/m and U(rN ) are the de Broglie thermal
wavelength and the potential energy, respectively. We set the
mass m = 1 and the Planck constant ~ = 1. Note that in Eq. (2),
the position rN is the only pertinent degree of freedom left
after tracing out the momentum.

For polydisperse systems, it is however useful to consider
the permutation of the particle diameters as additional degrees
of freedom. We define a set of diameter ΣN as ΣN = {σ1, σ2,
. . ., σN}. We introduce a permutation π to the set ΣN , and
ΣN
π represents a specific sequence of the diameters, e.g., ΣN

π

= (σ3,σ8,σ5, . . .). In total, there exists N! such permutations.
We define a reference sequence ΣN

π∗ = (σ1,σ2,σ3, . . . ,σN ).
Now the potential energy also depends on the permutation
π as denoted by U(ΣN

π , rN ). For simplicity, we write U(rN )
= U(ΣN

π∗ , rN ) only for the reference ΣN
π∗ and drop off ΣN

π∗ from
the argument.

Because we include the permutations as additional
degrees of freedom, we sum up all the possible permutations
in the partition function as

Z = 1
N!

∑
π

1

ΠM
m=1Nm!ΛNd

∫
V

drN e−βU(ΣN
π ,rN ). (3)

This generalised partition function in Eq. (3) is the correct
starting point to compute the total and glass entropies.

2. Frenkel-Ladd Hamiltonian

We denote the potential energy of the target system by
βU0(ΣN

π , rN ). To evaluate the entropy of the glass state by a
Frenkel-Ladd thermodynamic integration,24,28–30 we need to
impose a harmonic constraint with the spring constant α on
the target system βU0(ΣN

π , rN ) as described by

βUα(ΣN
π , rN , rN

0 ) = βU0(ΣN
π , rN ) + α

N∑
i=1

|ri − r0i |
2, (4)

where rN
0 is the reference equilibrium configuration drawn

from the Boltzmann distribution of the target system. We will
use βU0(ΣN

π , rN ) and βUα(ΣN
π , rN , rN

0 ) (with α > 0) to access
the total entropy and the glass entropy, respectively.

Note that in this approach, rN
0 is a randomly chosen equi-

librium configuration of the fluid28,30,31 so that the Frenkel-
Ladd method implicitly assumes that the vibrational entropy
associated with any reference configuration belonging to a
given metabasin is the same for all configurations of that
metabasin, and inherent structures play no specific role in that
scheme.

B. Computing the total entropy Stot

In this section, we explain how to compute the total
entropy Stot, starting from the partition function in Eq. (3).
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1. A trivial identity

The partition function in Eq. (3) of the target system
defined by βU0(ΣN

π , rN ) reduces to the conventional parti-
tion function in Eq. (2) because permutations of diameters
are always compensated by permutations of the positions if
there is no constraint, namely,

Z0 =
1

N!

∑
π

1

ΠM
m=1Nm!ΛNd

∫
V

drN e−βU0(ΣN
π ,rN )

=
1

ΠM
m=1Nm!ΛNd

∫
V

drN e−βU0(rN ) = Z0. (5)

Therefore, the computation of Stot is not altered by the newly
introduced summation associated with the permutations in
Eq. (3).

2. Thermodynamic integration from the ideal gas

Following the convention,29,30,32,33 we perform a ther-
modynamic integration from the ideal gas state to the tar-
get state. The thermodynamic integration for Stot depends
on the type of interaction potentials, and we need to distin-
guish between continuous potentials (“Soft”) and hard sphere
potentials (“Hard”). The resulting expressions are

Stot = Sid + βEpot(β) −
∫ β

0
dβ′Epot(β

′) (Soft), (6)

Stot = Sid − N
∫ φ

0
dφ′

(p(φ′) − 1)
φ′

(Hard), (7)

where Sid, Epot, φ, and p are the ideal gas entropy, the averaged
potential energy, the volume fraction, and the reduced pressure,
respectively. For the ideal gas, Sid can be written as

Sid = N
(d + 2)

2
− N ln ρ − N lnΛd + S(M)

mix , (8)

where S(M)
mix is the mixing entropy of the ideal gas expressed as

S(M)
mix = ln*

,

N!

ΠM
m=1Nm!

+
-
. (9)

When M is finite and Nm � 1, we can apply Stirling’s
approximation, ln Nm! ' Nm ln Nm − Nm, and then Eq. (9)
reduces to the standard form of the mixing entropy, S(M)

mix/N
= −

∑M
m=1 Xm ln Xm.

One can see that in a continuous polydisperse limit (where
M = N and hence Nm = 1), S(M)

mix diverges in the thermodynamic

limit,15,34 S(M=N)
mix /N = (ln N!)/N ' ln N −1→ ∞. This diver-

gence is the root of a paradoxical situation in the context of
the glass physics as the divergence of S(M)

mix would cause the
divergence of Stot and hence Sconf, suggesting that the glass
transition may not happen.19,35

C. Computing the glass entropy Sglass

We compute the entropy of the glass state, Sglass, by a
Frenkel-Ladd construction,24,28–30 starting from Eq. (3) with
βUα(ΣN

π , rN , rN
0 ) (α > 0) in Eq. (4). The central idea of

the Frenkel-Ladd construction is to perform a thermody-
namic integration from a well-known limit, the Einstein solid

when α is very large and particles perform small vibrations
around the positions dictated by the reference configuration to
small α where the vibrations resemble the ones of the glass.
This thermodynamic path involves an integration of the mean
squared displacement from large to small α-values. We now
explain this process.

1. Partition function in glass state

For the glass state α defined by the vicinity of the
reference configuration, the partition function in Eq. (3)
becomes

Zα =
1

N!

∑
π

N!

ΠM
m=1Nm!ΛNd

∫
V

drN e−βUα (ΣN
π ,rN ,rN

0 ). (10)

We add a factor N! in the numerator of Eq. (10) because for a
given reference configuration rN

0 , there exist N! exactly identi-
cal configurations defined by the corresponding permutations
of the particle identities, which we must take into account (see
Ref. 28 for a related argument). Note that due to the presence
of the reference configuration rN

0 , the identity shown in Eq. (5)
does not hold in the glass state.

We can then compute the entropy Sα by Sα = βEα − βFα,
where Eα and Fα = −β−1 lnZα are the total energy and free
energy of the state α, respectively.

2. Definition of glass entropy

We define the glass entropy of the target system as
follows:

Sglass = lim
αmin→0

Sαmin , (11)

where (· · · ) represents a (disorder) average over the reference
configuration rN

0 defined in Eq. (15).
The limit operation, limαmin→0, is crucial both conceptu-

ally and practically. Although the naive limit leads back to the
fluid state, here we wish to compute the entropy of a metastable
glassy state characterised by a finite lifetime. To this end, we
need to keep αmin finite, to prevent the exploration of a differ-
ent glass state during the thermodynamic integration, and we
instead make a simple extrapolation of αmin from a finite αmin

value, where a metastable glass state is well-defined, down
to zero. This kind of extrapolation is inevitable in handling
metastable states in finite dimensions, which all have a finite
lifetime. Our practical solution to accurately perform the limit
is explained in Sec. III.

We pick up the reference configuration rN
0 from equilib-

rium configurations drawn from the Boltzmann distribution
of the target system. This choice makes our scheme concep-
tually closer to the Franz-Parisi free energy approach in that
the overlap function is computed using equilibrium reference
configurations.26,27 One might intuitively think that configu-
rations at the inherent structure would be natural candidates
for rN

0 . However, the present choice produces quantitatively
consistent results with a vibrational description around inher-
ent structures as confirmed in the Kob-Andresen model36

and polydisperse soft spheres [Fig. 1(b)]. Thus, we expect
that equilibrium reference configurations rN

0 inside a basin of
attraction produce essentially the same result as its inherent
structure.
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3. Statistical averages

For convenience, we define the following notations of the
various statistical averages needed in the different computa-
tions:

〈(· · · )〉T, S
α =

1
N!

∑
π ∫V drN (· · · )e−βUα (ΣN

π ,rN ,rN
0 )

1
N!

∑
π ∫V drN e−βUα (ΣN

π ,rN ,rN
0 )

, (12)

〈(· · · )〉Tα =
∫V drN (· · · )e−βUα (rN ,rN

0 )

∫V drN e−βUα (rN ,rN
0 )

, (13)

〈(· · · )〉Sβ =
1

N!

∑
π(· · · )e−βU0(ΣN

π ,rN
0 )

1
N!

∑
π e−βU0(ΣN

π ,rN
0 )

, (14)

(· · · ) =
∫V drN

0 (· · · )e−βU0(rN
0 )

∫V drN
0 e−βU0(rN

0 )
, (15)

where the superscripts T and S represent the statistical average
over positions (T) and permutations (S), respectively. Numeri-
cally, these statistical averages can be easily evaluated through
Monte Carlo simulations using standard translational displace-
ment (T) and particle swaps (S).37 Note that any permutation
π of the particle diameters can be expressed as a product
of two-particle diameter swaps, and thus the permutation-
phase space can be properly sampled using swap Monte Carlo
simulations.

4. Large α-regime: Einstein solid

In the Frenkel-Ladd construction, the Einstein solid is cho-
sen as the reference state.24 When αmax is very large, the sys-
tem is constrained near the reference configuration rN

0 , thus we
get βUαmax (ΣN

π , rN , rN
0 ) ' βU0(ΣN

π , rN
0 )+αmax

∑N
i=1 |ri−r0i |

2.
Therefore, using Eq. (10), the system is described by the
Einstein solid whose free energy is given by

βFαmax = N lnΛd + W (rN
0 , β) +

Nd
2

ln
(
αmax

π

)
− S(M)

mix , (16)

where W (rN
0 , β) is an effective potential defined by

W (rN
0 , β) = − ln*

,

1
N!

∑
π

e−βU0(ΣN
π ,rN

0 )+
-
. (17)

This term, which originates from the effect of the permutation,
plays an important role in the evaluation of the mixing entropy
of the glass state. This is discussed further below.

5. Small α-regime

We compute Sαmin in Eq. (11) using Sαmin = βEαmin

− βFαmin , where βEαmin and βFαmin are, respectively, given by

βEαmin =
Nd
2 + β

〈
Uαmin (ΣN

π , rN , rN
0 )

〉T,S

αmin
and a thermodynamic

integration of the mean-squared displacement over α,

βFαmin = βFαmax −

∫ αmax

αmin

dα

〈 N∑
i=1

|ri − r0i |
2
〉T,S

α

. (18)

Therefore, together with Eq. (16), we can express Sαmin as

Sαmin =
Nd
2
− N lnΛd −

Nd
2

ln
(
αmax

π

)
+ S(M)

mix

−W (rN
0 , β) + β

〈
Uαmin (ΣN

π , rN , rN
0 )

〉T,S

αmin

+
∫ αmax

αmin

dα

〈 N∑
i=1

|ri − r0i |
2
〉T,S

α

. (19)

6. Final expression of the glass entropy

Finally, by combining Eqs. (11) and (19), we get the
expression of Sglass as

Sglass =
Nd
2
− N lnΛd −

Nd
2

ln
(
αmax

π

)
+ N lim

αmin→0

∫ αmax

αmin

dα∆T,S
α + S(M)

mix − Smix(rN
0 , β),

(20)

where ∆T, S
α is the mean-squared displacement defined by

∆
T, S
α =

1
N

〈 N∑
i=1

|ri − r0i |
2

〉T,S

α

(21)

and Smix(rN
0 , β) is a mixing entropy contribution defined

by

Smix(rN
0 , β) = W (rN

0 , β) − βU0(rN
0 )

= − ln*
,

1
N!

∑
π

e−β(U0(ΣN
π ,rN

0 )−U0(rN
0 ))+

-
. (22)

In the derivation of Eq. (20), we also used the

following relation: limαmin→0 β
〈
Uαmin (ΣN

π , rN , rN
0 )

〉T,S

αmin

= β
〈
U0(ΣN

π , rN )
〉T,S

0
= β

〈
U0(rN )

〉T

0
= βU0(rN

0 ).
In Eq. (20), one can find two features that make our method

distinct from the conventional Frenkel-Ladd method.24,28–30

The first one is that the mean-squared displacement ∆T,S
α has

to be evaluated by Monte Carlo simulations that sample both
translational displacements and diameter swaps (as denoted
by T, S). This should be distinguished from the normal mean-
squared displacement ∆T

α defined by using the average in
Eq. (13) instead of the one in Eq. (12). Due to the addi-
tional diameter swap moves, one expects that ∆T,S

α ≥ ∆T
α in

general. The second novel feature in Eq. (20) is the fact that
Sglass contains a non-trivial mixing entropy term, S(M)

mix − Smix.
For monodisperse particles or discrete mixtures where the
swap of the diameters with different species have a high
energy cost, the equalities ∆T,S

α = ∆
T
α and Smix = S(M)

mix would
hold, as we numerically confirm for a binary Lennard-Jones
mixture. In this case, Eq. (20) reduces to the conventional
Frenkel-Ladd method. On the other hand, for continuously
polydisperse systems, one would expect ∆T,S

α > ∆T
α and

Smix/N < S(M=N)
mix /N → ∞. Therefore Eq. (20) is a straightfor-

ward generalization of the conventional Frenkel-Ladd method
for systems with continuous polydispersity, and the thermody-
namic integration automatically takes into account the correct
number of permutations allowed by thermal fluctuations in
equilibrium.
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The fact that ∆T,S
α > ∆T

α also implies that ∆T,S
α takes into

account non-vibrational contributions due to the permutations
of the diameters in addition to purely vibrational contributions
measured by using ∆T

α (see the related argument in Refs. 36
and 38). Hence it is expected that the resulting Sglass more
correctly deals with the non-vibrational contributions to the
glass entropy as well.

D. Computing the configurational entropy

We summarize our computational scheme for the con-
figurational entropy Sconf = Stot − Sglass. The entropies Stot

and Sglass are computed independently by two independent
thermodynamic integrations. The entropy of the fluid Stot is
obtained by the thermodynamic integration from the ideal
gas, as described by Eqs. (6) and (7), depending on the
interaction potential. The glass entropy Sglass is obtained by
a Frenkel-Ladd thermodynamic integration, summarized in
Eq. (20).

It should be obvious, then, that the present scheme
resolves the problem of an infinite mixing entropy for con-
tinuous polydispersity.19,35 The diverging mixing entropy is
the term S(M)

mix in Stot [through Eq. (8)] which also appears

in Sglass in Eq. (20). Instead Smix in Eq. (20) remains as a
finite mixing entropy contribution to Sconf. As we numerically
confirm in Sec. III, Smix takes a finite value for continu-
ously polydisperse systems, whereas it recovers the appro-
priate limit for discrete mixtures (see Appendix A) and
vanishes for monodisperse systems. Thus, the configurational
entropy automatically incorporates the correct information
about size polydispersity. Whereas the physical idea is the
same as in Ref. 19, the present method is technically more
elegant and does not require the approximate determination of
a crossover in the evolution of the potential energy landscape
(PEL).

III. NUMERICAL IMPLEMENTATION
FOR THREE GLASS-FORMERS

In this section, we numerically implement the method
exposed in Sec. II for continuous polydisperse systems with
soft and hard interactions and for a standard binary Lennard-
Jones mixture. Since the results for Stot can be found in the
literature,8,29 we focus more specifically on the numerical
determination of Sglass. As seen in Eq. (20), the main com-
putational tasks are the determination of the integral of ∆T, S

α

and the separate measurement ofSmix. We illustrate these tasks
separately for a single model, before presenting the final results
for the three of them.

A. Models and simulation details

We study three dimensional soft and hard sphere poten-
tial models using a continuous size polydispersity,6,7 where
the particle diameter σ of each particle is distributed from
the following particle size distribution: f (σ) = Aσ−3, for
σ ∈ [σmin, σmax], choosing σmin/σmax = 0.45, where A
is the normalization constant. We use the averaged diame-
ter as the unit length. We simulate systems composed of N

particles in a cubic cell of volume V with periodic boundary
conditions.39

We use the following pairwise potential for a polydisperse
soft sphere (SS) model:6

vij(r) = v0

(σij

r

)12
+ c0 + c1

(
r
σij

)2

+ c2

(
r
σij

)4

, (23)

σij =
(σi + σj)

2
(1 − ε |σi − σj |), (24)

where v0 is the unit of energy and ε quantifies the degree of
non-additivity of the particle diameters. We set ε = 0.2. The
constants c0, c1, and c2 are chosen so that the first and second
derivatives of v ij(r) become zero at the cutoff rcut = 1.25σij.
We set the number density ρ = N /V = 1.0186 with N = 1500
for the soft sphere model.

For the polydisperse hard sphere (HS) model,7 we use
the pair interaction which is zero for non-overlapping par-
ticles and infinite otherwise with the additive condition
(ε = 0). However, we use a finite potential modeling of the
hard sphere potential for Smix (see Appendix B for the details).
We perform the simulations for N = 1000 and 8000 to analyse
finite-size effects. The hard sphere simulations are presented
as a function of the reduced pressure p = P/(ρkBT ), where P
is the measured pressure and kBT is set to unity. Thus, 1/p
plays a role which is similar to the one of temperature for soft
potentials.

Finally, we study the standard Kob-Andersen (KA) binary
Lennard-Jones model.25 Both species A and B have the same
mass, and the concentration of each species are XA = 0.8 and
XB = 0.2, respectively. The interaction potential between two
particles is given by vαβ(r) = 4εαβ {(r/σαβ)12 − (r/σαβ)6},
where α, β ∈ {A, B}. We set εAA = 1.0, εAB = 1.5, εBB

= 0.5, σAA = 1.0, σAB = 0.8, and σBB = 0.88. The poten-
tial vαβ(r) is truncated and shifted at rcut = 2.5σαβ . We
show energy in units of εAA, with the Boltzmann constant
kB = 1, and length in units of σAA. Simulations are per-
formed at constant density ρ = 1.2. The number of particles is
N = 1200.

We prepare equilibrium configurations for continuously
polydisperse systems using swap Monte Carlo simulations.6,7

With probability Pswap = 0.2, we perform a swap move where
we pick two particles at random and attempt to exchange their
diameters, and with probability 1 − Pswap = 0.8, we perform
conventional Monte Carlo translational moves. Equilibrium
configurations for the KA model are prepared using standard
Monte Carlo simulations40 (i.e., without swap moves, Pswap

= 0). Lower temperature configurations of the KA model
are prepared by using the parallel tempering algorithm41,42

from Ref. 43. The statistical averages shown in Eqs. (12)–
(14) are performed by using Pswap = 0.2, 0.0, and 1.0 for
Eqs. (12)–(14), respectively. The statistical average in Eq. (15)
is performed by averaging over 5-20 independent reference
configurations.

To present the results for the three models coherently,
we use a temperature T ∗ normalized by the mode coupling
crossover. We define T ∗ = T /Tmct for the polydisperse soft
spheres (Tmct = 0.104)6 and the Kob-Andersen model (Tmct

= 0.435).25 For the polydisperse hard spheres, we define
T ∗ = pmct/p with pmct = 23.5.8
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B. Constrained mean-squared displacements

In this section, we illustrate the numerical determination
of the integral of∆T, S

α which appears in Eq. (20). Starting from
α = αmax = 3.0 × 106 − 1.01 × 107 (see below), we perform
MC simulations with decreasingα in steps of δ(log10 α)' 0.18
−0.4. For each data point, we perform τ = 2×104 −2×106 MC
steps, measuring∆T, S

α only in the second half of the simulation.
In Fig. 1(a), we show the evolution of ∆T, S

α with the strength
of the harmonic coupling α, for polydisperse soft spheres at
several temperatures. As expected, ∆T, S

α is very small at large
α and increases as α decreases. When obtaining the data at var-
ious values of α, we have to make sure that the mean-squared
displacements have converged to the correct equilibrium value.
We have performed detailed numerical tests for this conver-
gence. We have measured ∆T, S

α by changing the time scale τ
over whichα is varied and confirmed that∆T, S

α does not depend
on τ down to αmin chosen in this study (see below). We also
applied tests where ∆T, S

α is measured starting both from the
reference configuration and from an annealed configuration

FIG. 1. (a) Mean-squared displacement in the Frenkel-Ladd construction
with normal (∆T

α : dashed line) and diameter swap (∆T, S
α : solid line) Monte

Carlo simulations for polydisperse soft spheres. The shaded region corre-
sponds to αmin ∈ [6.1, 20.2] and the arrow indicates αmin = 10.1. (b) Glass
entropy Sglass/N obtained by using Eq. (20) using either∆T, S

α and∆T
α forαmin

= 10.1. The mixing entropy terms S(M)
mix −Smix are subtracted from Sglass. The

error bars correspond to Sglass/N computed in the region αmin ∈ [6.1, 20.2].
The full blue line is the vibrational entropy Svib/N = (Sharm + Sanh)/N, where
Sharm and Sanh are obtained by diagonalization of the Hessian matrix in the
inherent structure and its anharmonic correction, respectively.8

produced by the swap MC simulation at higher temperature.
The two simulations provide consistent results, ensuring the
equilibration. These tests show that it is much easier to con-
verge constrained simulations in the Frenkel-Ladd setup than
in any other scheme (such as cavity measurements44). This is
consistent with the results of Ref. 45, which already showed
that cavity measurements were the most difficult constrained
scheme to obtain equilibrium measurements. A possible expla-
nation of this qualitative difference is that a (soft) constraint
is locally applied to each particle in the Frenkel-Ladd method,
whereas a (hard) global constraint is applied from the boundary
in cavity measurements.

To understand the effect of the particle diameter permuta-
tions on the measured cage, we also show the evolution of ∆T

α

for the same temperatures with dashed lines. The two mean-
squared displacements then only differ by the introduction in
∆

T, S
α of particle diameter permutations.

For strong α, both∆T, S
α and∆T

α precisely obey the Einstein
solid prediction, ∆T, S

α ≈ ∆T
α ≈ 3/(2α). With decreasing α,

∆
T, S
α and∆T

α enter a plateau region shown by the shaded region.
In this region, the system is trapped by its own cage. We find
that ∆T, S

α > ∆T
α, which means that ∆T, S

α samples a larger phase
space within the glass state than ∆T

α. Decreasing α further, the
harmonic constraint for ∆T, S

α is too weak and the metastability
of the glass state is not strong enough to prevent the system
from diffusing, which translates into an upturn of ∆T, S

α for
higher temperature at small α. The effect is also visible for∆T

α,
but it is much less pronounced since the structural relaxation
without swap moves is considerably slower,6 and metastability
is therefore stronger.

To perform the integration and to take the αmin → 0 limit
in Eq. (20), we use the following manipulation:

lim
αmin→0

∫ αmax

αmin

dα∆T,S
α ' αmin∆

T,S
αmin

+
∫ αmax

αmin

dα∆T,S
α . (25)

The practical choice for αmax is simple, as it is sufficient
that it lies deep inside the Einstein solid regime. We choose
αmax = 3.0 × 106 − 1.01 × 107 for all systems. We set αmin

= 10.1 for the polydisperse soft spheres within the plateau
region indicated in the arrow in Fig. 1(a), where the equilibra-
tion is ensured.

We show the resulting glass entropy minus the mixing
entropy contribution, (Sglass−S(M)

mix +Smix)/N , in Fig. 1(b). (The
mixing entropy terms are considered in Subsection III C.) We
also present the results obtained by substituting∆T,S

α by∆T
α into

Eq. (25) to get some feeling about the quantitative importance
of particle diameter permutations in this measurement. We
also compare the value of the same glass entropy contribution
obtained by following the potential energy landscape recipe,46

where a vibrational entropy Svib is computed as Svib = Sharm

+ Sanh, where Sharm and Sanh are the entropies obtained by
diagonalization of the Hessian matrix at the inherent structure
and its anharmonic correction, respectively.8

Strikingly, we find that the glass entropy obtained by
the ordinary Frenkel-Ladd approach with no diameter per-
mutation takes values very similar to the vibrational entropy
Svib computed by the potential energy landscape approach.
This trend suggests that ∆T

α accounts for purely vibrational
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motion inside a single inherent structure.36 We also find
the same trend in the KA model (not shown). On the other
hand, the glass entropy Sglass obtained with diameter permuta-
tion using ∆T, S

α takes larger values because ∆T, S
α > ∆T

α. In
other words, Sglass takes into account non-vibrational con-
tributions, which should be associated with the presence of
many inherent structures within a single glass state.19,36,47 The
association of many inherent structures within a single glass
state is impossible within the potential energy landscape and
ordinary Frenkel-Ladd approaches but arises naturally within
both the present scheme and the Franz-Parisi free-energy
measurement.26

Note that the specific choice of the value of αmin mostly
affects the determination of Sglass at higher temperature, where
the plateau is not well formed. To estimate this effect, we
draw error bars whose range corresponds to Sglass/N obtained
from the edges of the shaded region, αmin ∈ [6.1, 20.2], in
Fig. 1(b). We find that the size of the error bars progressively
becomes smaller as the temperature decreases, in agreement
with the clear plateau formation at the lower temperature
in Fig. 1(a). This trend justifies our choice of αmin at low
temperatures.

We find qualitatively similar behavior for the polydis-
perse hard sphere model and the KA model (not shown).
However, whereas the inequality ∆T, S

α > ∆T
α holds for the

polydisperse hard sphere model similar to the soft sphere
model, the KA model shows ∆T, S

α ≈ ∆T
α due to the fact that

diameter permutations are hardly accepted in this bidisperse
model.48

C. Mixing entropy

To measure Smix(rN
0 , β) numerically, we perform a ther-

modynamic integration over a temperature β′ from the target
temperature β′ = β with a given reference configuration rN

0
to the high temperature limit, β′ → 0. The high tempera-
ture limit of Eq. (22) is trivially Smix(rN

0 , β′ → 0) → 0.
The derivative of Smix(rN

0 , β′) with respect to β′ becomes

a potential energy difference,
∂Smix(rN

0 ,β′)
∂β′ =

〈
U0(ΣN

π , rN
0 )

〉S

β′

− U0(rN
0 ) ≡ ∆Umix(rN

0 , β′). In this last expression, ∆Umix

quantifies the potential energy increment due to the exploration
of the permutation phase space by heating the system at tem-
perature T ′ = 1/β′ > T. Therefore, we get, by thermodynamic
integration,

Smix(rN
0 , β) =

∫ β

0
dβ′∆Umix(rN

0 , β′). (26)

To measure ∆Umix(rN
0 , β′) in practice, the system is gradually

heated from the target temperature β′= β to the infinite temper-
ature β′ → 0 by performing Monte Carlo simulations where
only particle diameter permutations are attempted [denoted
by the superscript “S” in Eq. (14)] while keeping fixed the
particle positions of the reference configuration rN

0 generated
at β.

As shown in Fig. 2(a) for polydisperse soft spheres,
∆Umix/N takes a very small value at large β′ and sharply
increases approaching β′→ 0. This is observed for all temper-
atures T = 1/β, with a relatively weak temperature dependence.

FIG. 2. (a) Evolution of∆Umix(rN
0 , β′) during the thermodynamic integration

over β′ for several reference temperatures β. Inset: the same data in log-log
representation. (b) Mixing entropy Smix/N obtained by Eq. (26) as a function
of the normalized temperature T∗ = T /Tmct for the three studied models. Filled
and empty circles for HS correspond to N = 1000 and 8000, respectively.
The dashed line corresponds to the combinatorial mixing entropy for the KA
mixture.

Note that ∆Umix/N remains finite as β′ → 0, as shown in the
inset. This guarantees a finite mixing entropy Smix/N as well.
A qualitatively similar behavior is found for polydisperse hard
spheres and for the KA model, except that the KA model shows
fully temperature-independent results. To compute ∆Umix for
the hard spheres, we use a soft potential modeling, as described
in Appendix B. We also perform a cooling path from β′ = 0 to
β′ = β for polydisperse soft spheres, which coincides perfectly
with the heating path described above. Therefore, we conclude
that one can easily achieve an equilibrium path for the thermo-
dynamic integration and sample the permutation-phase space
properly.

In Fig. 2(b), we show the resulting Smix/N as a func-
tion of the normalized temperature T ∗ for the three studied
systems. For the KA model, Smix/N precisely recovers the
standard combinatorial mixing entropy S(M=2)

mix /N = −XA ln XA

− XB ln XB ' 0.5 (with XA = 0.8 and XB = 0.2) for a wide
range of temperatures. This means that Smix = S(M=2)

mix holds
and that the mixing entropy terms in Eq. (20) exactly can-
cel each other, directly justifying previous treatments of the
mixing entropy for this model.29,32 We find that this treatment
holds in binary hard sphere mixtures with sufficiently large
size ratio as well, as demonstrated in Appendix A. We also find
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that Smix/N smoothly connects the monodisperse limit where
Smix/N = 0 to the large size ratio regime whereSmix = S(M=2)

mix ,
as shown in Appendix A. These results mean that we do not
need to decide how to treat the system (as being monodis-
perse or polydisperse28) since our method directly measures
the correct value of the mixing entropy. This is conceptu-
ally analogous to a recent analytic computation,49 although
our approach can deal with a continuous polydispersity more
straightforwardly.

The important result is of course that for the continuously
polydisperse systems, Smix/N takes slightly larger values,
but it remains finite. The obtained values are comparable to
our previous estimates through an effective M∗-component
approximation.19 In this description, M∗ was obtained by
dividing the particle diameter distribution f (σ) into a series
of M∗ finite intervals of the same width, ∆σ = (σmax

− σmin)/M∗. Interestingly, however, we find that Smix slightly
increases with decreasing temperature or increasing pressure,
an effect that was not captured by the previous estimation.
To obtain a more quantitative comparison with our previous
work, we may consider the quantity M† = exp[Smix/N] which
can be seen as an effective number of components for the
system using the assumption of equal concentrations, i.e., Xm

= 1/M† (m = 1, 2, . . ., M†). As a consequence of the slight
increase in Smix, M† also increases steadily with decreasing
temperature or increasing pressure, which means that a smaller
∆σ is effectively needed to properly represent the continu-
ous mixture with an increase in the degree of supercooling.
The range of M† in Fig. 2(b) is M† ' 5 − 6 for polydis-
perse soft spheres and M† ' 10 − 13 for polydisperse hard
spheres. These results suggest that the hard sphere potential
is more sensitive to small diameter differences than the soft
potential.

Note finally that our measurement ofSmix is not influenced
by finite size effects, as can be seen by comparing N = 1000
and N = 8000 data for hard spheres in Fig. 2(b).

D. Configurational entropy for three glass-formers

Finally, we compile the configurational entropy, Sconf/N
= (Stot − Sglass)/N, of three systems as a function of the nor-
malized temperature T ∗ in Fig. 3. Since Sconf depends on the
chosen αmin in the determination of Sglass, we display the error
bars corresponding to Sconf from αmin-values chosen inside
the plateau region, in the same way as in Fig. 1(b). The size of
the error bars decreases with decreasing T ∗ for all systems,
showing a systematic improvement of the accuracy of our
measurement towards lower temperature. The range of cho-
sen αmin are αmin = 10.1, αmin ∈ [6.1, 20.2] for polydisperse
soft spheres, αmin = 15.1, αmin ∈ [7.5, 30.1] for polydisperse
hard spheres, and αmin = 10.0, αmin ∈ [4.0, 20.0] for the
Kob-Andersen model, respectively. We also find that our mea-
surements of Sconf do not involve finite size effects, as shown
by the comparison between N = 1000 and N = 8000 for hard
spheres.

To extrapolate Sconf down to lower temperatures, we use
an empirical relation, Sconf/N = A(1 − T ∗K/T

∗), where A and
T ∗K are the fitting parameters.20,50 The numerical results of
all models suggest that Sconf/N vanishes at a finite T ∗K > 0,

FIG. 3. (a) Configurational entropy Sconf/N obtained for three glass-formers
with error bars reflecting the chosen range of αmin. Filled and empty circles
for hard spheres (HSs) correspond to N = 1000 and 8000, respectively. Sconf/N
based on the potential energy landscape (PEL) approach for soft spheres (SSs)
and HSs in Ref. 8 are plotted using gray symbols. The Franz-Parisi (FP)
potential approach for HS is also shown. Extrapolations are performed by
fitting data to Sconf/N = A(1 − T∗K/T

∗) or using the curves in Ref. 8. (b)
Zoomed-in view of the low temperature data for HS.

which consolidates the previous findings.8 Specifically, we
find T ∗K = 0.355, 0.567, and 0.571 for soft spheres, hard
spheres, and the KA model, respectively. However, it is clear
from the data shown in Fig. 3 that the possibility that a sharp
Kauzmann transition is eventually avoided is also compatible
with our data, if some presently inaccessible crossover tem-
perature exists below which the temperature evolution of the
configurational entropy changes qualitatively, as envisioned in
several analytical models.51–53

We plot other estimates of Sconf/N obtained in Ref. 8,
shown as squares (polydisperse soft spheres) and circles (poly-
disperse hard spheres). These estimates are based on the poten-
tial energy landscape description of Sglass

46 together with a
combinatorial approximation of the mixing entropy using the
effective M∗-components approximation.19 We also plot Sconf

obtained by the Franz-Parisi free energy26,27 for polydisperse
hard spheres. We find that Sconf/N by our scheme for the
polydisperse systems take smaller values than those of the
PEL approach, mainly due to the fact that non-vibrational
contributions are more correctly taken into account.36 How-
ever, overall, the estimated Kauzmann temperatures T ∗K
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are quite consistent among the different measurements
of Sconf.

Remarkably, our new scheme produces values that are
comparable to Sconf obtained from the Franz-Parisi free
energy26 for polydisperse hard spheres, as highlighted in
Fig. 3(b). Our numerical results imply that these two meth-
ods seemingly sample similar regions of the free-energy
landscape. We find however a slight difference of the func-
tional form and the resulting location of T ∗K. We note that
choosing a state point dependent αmin for our scheme might
slightly change the functional form inside the range of the
error bar. Similarly, the definition of the overlap function in
the Franz-Parisi potential and the choice of a coarse-graining
length would also affect the detailed functional form of these
results.

We emphasize that the main difference between these
two estimates does not simply originate from computational
details, since the physical construction is qualitatively differ-
ent between the two approaches. In the present scheme, we use
Eq. (1) to separately compute the fluid entropy Stot (by thermo-
dynamic integration from the ideal gas) and the glass entropy
Sglass (from thermodynamic integration from an “ideal” Ein-
stein solid). Each integration is relatively straightforward as
it does not involve crossing any equilibrium phase transition
since the fluid and solid phases are treated separately. Instead,
the Franz-Parisi free energy provides Sconf in a single measure-
ment, by following an equilibrium path from the equilibrated
fluid up to the glass state confined in a configuration space. This
path however involves crossing an equilibrium phase transi-
tion,26,54,55 and it is therefore computationally more costly. Of
course, ideally these two methods should be able to produce
consistent results.

IV. DISCUSSION AND CONCLUSION

We have developed a computational scheme to mea-
sure the configurational entropy for generic polydisperse sys-
tems, which is a straightforward generalization of the con-
ventional Frenkel-Ladd approach. The key idea is the intro-
duction of diameter permutations as additional degrees of
freedom for the glass entropy, which is implemented by a
simple swap Monte Carlo algorithm. Our scheme automati-
cally takes into account the mixing entropy contribution for
any particle size distribution as well as non-vibrational con-
tributions to the glass entropy. This provides an accurate
configurational entropy determination which seems compa-
rable to the free energy approach based on the Franz-Parisi
potential. This is quite remarkable because the physical con-
struction in the two approaches is qualitatively different. A
practical merit of our method is a relatively low computa-
tional cost, which allows us to study more deeply supercooled
and larger systems. There is still a slight discrepancy of the
functional forms between our scheme and the Franz-Parisi
free energy, which might be cured by more precise choices
for αmin and for the definition of the overlap function. Fur-
thermore, the distinction between the two methods is still
quite large in the Kob-Andersen model.32,55 Consolidating the
mutual consistency among different configurational entropy
measurements would be an important step for the complete

thermodynamic characterization of the nature of the glass
transition.56

It has been argued that the entropy of colloidal poly-
disperse systems involves a subjective measurement because
particle distinguishability depends on the resolution chosen
by the observer.15,17 This argument seems to prohibit a well-
defined and quantitative value of the configurational entropy
for colloidal glasses. However, our proposed scheme is free
from any conceptual and technical difficulties due to contin-
uous polydispersity, thanks to a proper statistical mechanics
description of the glass state. Thus, the observer subjectivity
plays no role in our measurement. Note that outside the realm
of the configurational entropy measurement discussed here, the
entropy of colloidal systems in the fluid still remains plagued
with potential infinity problems, which should be managed
for each case separately.12–18 Among them, our scheme might
be also useful for phase equilibria problems in the canoni-
cal ensemble57,58 or accurate determination of the entropy of
granular materials.59,60
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APPENDIX A: Smix FOR SIMPLE MIXTURES

We demonstrate that Smix reduces to the standard combi-
natorial mixing entropy S(M)

mix for simple mixtures.

1. Monodisperse and binary mixtures

First, it is instructive to verify that Smix vanishes in the
monodisperse limit. In this limit, since U0(ΣN

π , rN
0 ) = U0(rN

0 )
for any permutation ΣN

π , we immediately get from Eq. (22)
Smix(rN

0 , β) = 0.
Next, we consider the case of M = 2 binary mixtures com-

posed of species A and B with concentrations XA = NA/N
and XB = NB/N (0 < XA, XB < 1). Starting from a ref-
erence equilibrium configuration rN

0 with a potential energy
U0(rN

0 ) = U0(ΣN
π∗ , rN

0 ), the system may explore different per-
mutations ΣN

π . Permutations associated with the exchange of
diameters within the same species (denoted by A ↔ A or
B↔ B) have a strictly zero energy cost. There exist NA!NB!
such permutations. On the other hand, at sufficiently low
temperature or high density, permutations associated with an
exchange of the diameters between different species (denoted
by A↔B) may produce a high energy cost. Therefore, we can
evaluate the Boltzmann factor in this case as

e−β(U0(ΣN
π ,rN

0 )−U0(rN
0 )) '




1 (ΣN
π with A ↔ A or B↔ B),

0 (ΣN
π with A ↔ B).

(A1)

Consequently, we get Smix(rN
0 , β) ' − ln

(
1

N! NA!NB!
)

= −N(XA ln XA +XB ln XB) = S(M=2)
mix . We numerically confirm

this argument for binary hard sphere mixtures below.
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FIG. 4. Mixing entropy Smix for three-
dimensional binary hard sphere mix-
tures at φ = 0.45. (a) Evolution as a
function of R = σB/σA for XA = XB =
0.5. The black straight line corresponds
to S(M=2)

mix /N = −XA ln XA −XB ln XB =

ln 2. (b) Evolution as a function of XA
for R = 1.4. The black curve corre-
sponds to S(M=2)

mix /N = −XA ln XA− (1−
XA) ln(1 − XA).

The above argument can easily be generalised to a finite
M-components systems.

2. Numerical test

We test the above argument numerically for N = 1000
binary hard spheres in three dimensions by changing the con-
centration of the species A, XA, and the size ratio R = σB/σA.
We measure Smix by the method explained in Sec. III.

Figure 4(a) shows Smix/N for equimolar mixtures (XA

= XB = 0.5) at φ = 0.45 as a function of R. As expected,
Smix/N vanishes in the monodisperse limit, R → 1. On the
other hand, for R & 1.3, Smix/N converges to S(M=2)

mix /N
= −XA ln XA − XB ln XB = ln 2 indicated by the horizontal
straight line. Thus, we numerically confirm Smix = S(M=2)

mix
for binary mixtures with sufficiently large size ratio and the
monodisperse limit discussed in the above. Furthermore, our
numerical measurement smoothly connects the two cases
around 1 . R . 1.3. Thus we no longer need to take any arbi-
trary decision about the mixing entropy28 of any given physical
system.

We find the above trend (Smix/N → 0 at R → 1 and
Smix = S(M=2)

mix for larger R) for larger volume fraction,
φ & 0.45. Since the R ' 1 region is difficult to study for
φ & 0.5 due to crystallization, we show the data at φ = 0.45. It is
likely that the crossover between monodisperse and bidisperse
limits occurs at a smaller R value when φ increases.

We also measure the XA-dependence of Smix for R = 1.4
in Fig. 4(b). We thus confirm that Smix precisely follows
the expected expression, S(M=2)

mix /N = −XA ln XA − (1 − XA)
ln(1 − XA), when changing XA systematically.

APPENDIX B: Smix FOR HARD SPHERE POTENTIAL

For hard sphere potentials, the potential energy for the
thermodynamic integration in Eq. (26) is not a suitable observ-
able. Thus, we use the following numerical technique for
this specific case. Conventionally, hard sphere systems are
described by using the following pair potential vij between
particles i and j,

vij(rij) =



∞ (rij ≤ σij),

0 (rij > σij),

β = 1,

(B1)

where rij = |ri − rj |, σij = (σi + σj)/2.
Equivalently, we can adopt the following modeling by

using a finite potential ṽij but fixing instead β =∞:

ṽij(rij) =



1 (rij ≤ σij),

0 (rij > σij),

β = ∞.

(B2)

Thus, we perform the thermodynamic integration of
Eq. (26) using ∆Umix from β = 0 to β =∞ for the hard sphere
systems described by Eq. (B2).
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