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ABSTRACT
It was recently discovered that SWAP, a Monte Carlo algorithm that involves the exchange of pairs of particles of differing
diameters, can dramatically accelerate the equilibration of simulated supercooled liquids in regimes where the normal dynam-
ics is glassy. This spectacular effect was subsequently interpreted as direct evidence against a static, cooperative explanation
of the glass transition such as the one offered by the random first-order transition (RFOT) theory. We explain the speedup
induced by SWAP within the framework of the RFOT theory. We suggest that the efficiency of SWAP stems from a postponed
onset of glassy dynamics. We describe this effect in terms of “crumbling metastability” and use the example of nucleation to
illustrate the possibility of circumventing free-energy barriers of thermodynamic origin by a change in the local dynamical
rules.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5086509

I. INTRODUCTION

What is the physical mechanism explaining the dramatic
slowing down of glass-forming liquids as the temperature is
decreased? This question has motivated a vast amount of work
since the late 1950s.1,2 The seminal intuition of Adam and
Gibbs is that atoms must move more and more collectively in
order to flow,3 leading to an increase in the activation bar-
rier as the glass transition temperature Tg is approached. The
idea of an underlying “amorphous order” that sets in over
larger lengthscales has progressively been confirmed, as a
result of intense theoretical,4–6 experimental,7,8 and numeri-
cal efforts9–15 in the last 20 years. It is now well-accepted that
a static length grows, albeit modestly, in supercooled liquids
approaching the glass transition. In particular, cavities of size
smaller than this so-called “point-to-set” length `ps are in a
frozen glass state.5,6

However, the physical relevance of these thermodynamic
correlations for the abrupt dynamical slowdown of super-
cooled liquids is still actively debated. The “elastic picture,” for

instance, proposes that the chief physical ingredient driving
the glass transition is the growth of the plateau shear mod-
ulus, Gpl, which makes even local moves progressively more
difficult.16 The growth of the activation barrier to flow would
then simply mirror the growth of Gpl, without having to invoke
any growing lengthscale. This purely elastic point of view was
developed by Dyre16,17 and further advocated by Wyart and
Cates (WC),18 who took stock of the recent numerical results
on the influence of particle swaps on the dynamics of polydis-
perse mixtures.19–24 The swap Monte Carlo algorithm (simply
denoted here by SWAP) allows permutations of pairs of parti-
cles with different diameters.25–28 SWAP can be thought of as
the introduction of an additional fluctuating degree of free-
dom attached to each particle—its diameter.20 The physical
dynamics is recovered when diameters are no longer allowed
to fluctuate and only displacements of the particles are per-
mitted. For well-chosen models, such a change in the local
dynamical rules leads to a spectacular acceleration of the
equilibration, reducing the relaxation time by several orders
of magnitude.19,20
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In a nutshell, the WC argument is that if local kinetic
rules are so important for the dynamics, then static correla-
tions, while indisputably present, can only play a minor role in
the 1015-fold increase in the relaxation time occurring when a
liquid freezes into a glass. WC further argue that the thermo-
dynamic barriers over the scale `ps can only play a role if all
processes on scales below `ps equilibrate on a timescale less
than the relaxation time of the supercooled liquid. In particu-
lar, local permutations must have had time to take place many
times over, leading to a fast diffusion of the particles while the
local structure is fixed. This observation suggests that the vio-
lation of the Stokes-Einstein (SE) relation between viscosity
and diffusion29 should be very large. Since the violation fac-
tor at Tg is about 103 for fragile liquids—compared to the 1015

increase in the relaxation time—WC argue that at most 1/5 of
the slowing down in log-scale can be attributed to thermody-
namical effects, thus disputing the experimental relevance of
a static correlation length for glass formation.

Three more papers have successively appeared on the
same topic. First, Ikeda et al.30 used a mean-field glass model
introduced earlier by Mari and Kurchan31 to propose a the-
oretical description of SWAP. In this model, SWAP acceler-
ation can be explained by a downward shift, computed by
means of a static replica calculation, of the critical tem-
perature of the mode-coupling transition (MCT) once swap
moves are allowed. Second, Brito et al.32 used computer sim-
ulations and heuristic stability arguments to suggest that
SWAP delays the onset of activated dynamics to lower tem-
peratures compared to physical dynamics. Third, a dynamic
mode-coupling calculation was performed,33 which shows
that coupling diameters and density fluctuations can shift the
location of the mode-coupling singularity to a lower tem-
perature (or a higher density), while of course maintain-
ing all static observables unaffected. Overall, we basically
agree with these scenarios, which we rephrase below within
the context of the Random First-Order Transition (RFOT)
theory.

The main objective of this paper is to understand whether,
as argued by WC, the SWAP-induced acceleration generates
an inescapable paradox within all thermodynamic theories of
the glass transition, which allows one to rule them out. In the
following, we argue that this is not the case and also explain
how SWAP-induced acceleration can be understood within
the RFOT theory.4,34–36

We now provide a short summary of our counter-
arguments to WC, which we expand in the rest of the article:

1. We argue that the RFOT scenario is subtle and not
only based on thermodynamics. Before thermodynam-
ics becomes relevant for determining relaxation events,
some local metastability (and hence local rigidity) must
first emerge. This takes place around a temperature
T∗ that does depend on local dynamical rules, except
in the mean-field limit. T∗ can in principle increase or
decrease depending on kinetic constraints. If some con-
straints are removed so that T∗ decreases, metastability
“crumbles” and energy barriers—even thermodynamical—
are wiped out. We provide a concrete illustration of this

phenomenon in the case of crystal nucleation. In the case
of the RFOT theory, the “frozen cavity” argument needs to
be made self-consistent; this provides a scenario in which
the activated regime can indeed be completely killed and
postponed to lower temperatures by swaps. Hence, the
barriers of thermodynamic origin can be strongly affected
by SWAP.

2. We argue that the energy barrier for an event hap-
pening on scale `ps is well-defined even in a context
where events on smaller scales have not necessarily fully
equilibrated. (The cooperative relaxation does not pro-
ceed as in standard nucleation.) Some motions on scale
` < `ps are fast but revert to the dominant configura-
tion, and so cannot relax the structure. But other motions
on these small scales, including permutations, are heavily
suppressed. Beyond `ps, the number of accessible config-
urations is so large that the system never falls back to the
initial state and relaxation takes place. Since short-length
scale motions such as permutations are suppressed, both
diffusion and relaxation take place through cooperative
motion over the length `ps so that the Stokes-Einstein
decoupling can remain mild in the experimentally acces-
sible region.

This paper is organised as follows: In Sec. II, we pro-
vide a short recap of the RFOT theory of glass formation,
revisiting, in particular, the “cavity” argument. In Sec. III, we
discuss metastability in finite dimensions and show that a
change in local dynamical rules can allow a supercooled liq-
uid to get around a barrier of thermodynamic origin and lose
its metastability. In Sec. IV, we discuss how to best interpret
SWAP efficiency within the RFOT framework. Section V pro-
vides several further considerations, in particular, concern-
ing the Stokes-Einstein decoupling. We conclude our paper
in Sec. VI. We also discuss kinetically constrained models
(KCMs) and the Mari-Kurchan (MK) model in Appendix A and
present a simple bootstrap approach to emerging rigidity in
Appendix B.

II. RFOT THEORY: A SHORT RECAP
A. Metastability and the mode-coupling transition

The RFOT theory of glasses4,34–36 is inspired by mean-
field spin-glass models in which the analogue of the liq-
uid state becomes rigid in a two-step process as the tem-
perature is lowered.37–39 At a first temperature T∗, some
incipient local rigidity, absent for T > T∗, allows metastable
states to appear and “trap” the system for some amount
of time. These metastable states are exponentially numer-
ous, with an associated positive configurational entropy, Σ(T).
The mere existence of such a large number of metastable
states allows the system to decorrelate with time: It is still
a liquid, albeit one with some transient rigidity described
by a nonzero shear modulus Gpl. At a lower temperature
TK < T∗, the configurational entropy vanishes and the system
undergoes a phase transition to an ideal glass phase. These
statements can be made rigorous in mean-field situations.
However, their interpretation for realistic finite-dimensional
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systems is delicate and, although enticing, is still under
construction.

The temperature T∗ separating an essentially free-flow,
liquid regime from an activated regime, whose existence was
conjectured long ago by Goldstein,40 corresponds to the mod-
ern interpretation of the Mode-Coupling Transition (MCT)
temperature.41 In mean-field theory, this is a genuine dynam-
ical phase transition which is accompanied by the divergence
of a dynamical correlation length ξdyn

42 and of thermody-
namic barriers between metastable states. However, it is not
clear what remains of this transition in finite dimensions as
fluctuations appear to play a major role.36 Similarly, below
T∗ when the configurational entropy is presumably nonzero,
metastability cannot be consistently defined beyond some
finite “point-to-set” thermodynamic length scale `ps (which
diverges when Σ(T) → 0).5 Since `ps is expected to be small
close to T∗, the divergence of ξdyn is presumably cut off pre-
maturely,43 leading to a mere crossover to a locally rigid state
for T < T∗, characterized by a plateau in the relaxation func-
tion. This two-step relaxation is one of the landmarks of the
MCT phenomenology.41

The mode-coupling crossover at T∗ plays a crucial role in
the understanding of how SWAP may speed up the thermal-
ization of supercooled liquids. In fact, all recent explanations
put forward in the literature,30,32,33 including WC’s original
one, rely on a shift of T∗ to a lower temperature T∗swap due to
SWAP dynamics. Within mean-field theory, the temperature
T∗ can be detected by analyzing a replicated system in the for-
malism of Franz and Parisi.44 Interestingly, it is numerically
found that the emergence of a nontrivial Franz-Parisi poten-
tial in three-dimensional glass-formers takes place close to or
above the MCT transition.15,45,46 Physically, this also signals
the emergence of nontrivial static properties, which in mean-
field theory corresponds to the appearance of metastable
states.44,47

B. Dynamics: The cavity argument
When T is further reduced below T∗, one enters the so-

called mosaic state,4 where locally rigid, frozen regions of size
`ps have to relax collectively for the system to flow. More pre-
cisely, consider the situation of particles confined in a cavity
with frozen amorphous boundary conditions. When the cav-
ity radius is less than `ps, the liquid inside the cavity can-
not explore configurations typical of the bulk—i.e., it is frozen
too, in the sense that only a small subset of configurations
has a significant weight in the Boltzmann measure.5 When
` & `ps, on the other hand, the number of metastable con-
figurations becomes so large that even when most of them
are incongruous with the boundary conditions, their weight
become so overwhelming that the cavity is now in a liquid
state. In other words, relaxation of the density field cannot
occur unless the radius of the cavity is of the order of, or
larger than `ps. Note that this statement is independent of the
dynamics.

Within the RFOT scenario, the associated energy bar-
rier Bcoll to rearrangements on scale `ps is argued to grow
as

Bcoll(T) = ∆(T)
[
`ps(T)

]ψ
, (1)

where ∆(T) is an energy scale and ψ is a certain exponent.
Associating the relaxation time τα of the liquid with this
barrier, i.e.,

log
(
τα(T)
τ0

)
=

Bcoll(T)
T

, (2)

leads, very much in the spirit of the classical Adam-Gibbs
mechanism, to a strongly non-Arrhenius, Vogel-Fulcher-type
increase of τα in fragile liquids.

Although plausible, this description involves an important
subtlety, on which we further expand in Sec. IV C. Thermody-
namic barriers are well-defined by using the cavity setup (with
frozen amorphous boundary conditions), which allows one to
show that the relaxation time inside the cavity becomes enor-
mous when the radius of the cavity approaches the thermo-
dynamic length `ps. However, in a bulk liquid, boundary con-
ditions acting on this gedanken cavity are evolving on the very
same timescale τα and are therefore not frozen. This boot-
strap effect is presumably responsible for (a) some accelera-
tion of the dynamics compared to the case of frozen bound-
ary conditions and (b) some dynamical correlations between
nearby regions of size `ps.

As a matter of fact, it is important to stress that in the
cavity setup, thermodynamic barriers are not affected by a
change in local dynamics. This is supported by numerical
experiments in which SWAP dynamics, although more effi-
cient than the normal one, dramatically slows down as the
cavity size approaches `ps.15 As we shall discuss in Sec. V C,
explaining this effect poses a serious challenge for all sce-
narios that explain SWAP-acceleration in terms of a purely
kinetic effect. Within the RFOT approach, this is instead quite
natural.

Let us now further discuss the dynamics on scales ` < `ps,
since this is core to the argument of WC. In Ref. 5, two of us
argued that some collective events are still governed by the
same barrier law as in Eq. (2), Bcoll(`) = ∆`ψ , and hence hap-
pen much faster than τα . Such events quickly revert back and
are unable to fully equilibrate the cavity. But note that for very
small `’s and for most rearrangements (such as, for example,
the permutation of two nearby particles), the effective bar-
rier Bcoll(`) is expected to depart from the scaling law and
to instead grow again with decreasing ` due to kinetic con-
straints. As a result, such small-scale rearrangements do not
occur at all before τα . Contrary to WC’s claim, however, we do
not believe that full equilibrium on scales ` < `ps is needed to
define and give a meaning to Bcoll(`ps).

We end this section with the following three important
remarks:

• It is important to emphasize that the barrier scale ∆(T)
is nonzero only when the system is locally rigid, i.e.,
when Gpl(T) > 0, which occurs below T∗: Local stability
is clearly a prerequisite to activation.

• Whereas the equilibrium point-to-set length `ps is
defined without any reference to the dynamics, it
generically plays a crucial role in determining the
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relaxation time of the system. As indicated above, only
when ` & `ps, there is an exponential (in `) number
of escape paths available to the system, which allow
decorrelation. Of course, when kinetic constraints are
dominant, like in kinetically constrained models,48 all
paths available on scale `ps are in effect blocked, and
the system has to use even larger collective rearrange-
ments, unrelated to thermodynamics. In this case, `ps
becomes irrelevant for the dynamics. This appears to
be the scenario that WC have in mind: In their pic-
ture, the lengthscale below which kinetic constraints
are dominant is significantly larger than `ps.

• The RFOT picture summarized above postulates the
existence of collective rearrangements on scale `, but
we are still short of a detailed picture of what these
events are and, in particular, how the value of ψ can be
rationalized (see Ref. 4).

III. CRUMBLING METASTABILITY
A. Metastability in finite dimensions

All of the above theoretical constructs rely on a liberally
used but rather elusive concept, that of “metastable states.”
In fact, the main theoretical difficulty posed by the glass
transition precisely lies in correctly handling this concept in
non-mean-field situations.

Metastability is intrinsically a dynamical property. The
fact that a collection of micro-states forms a bona fide
metastable state depends both on the dynamical rules and
on a timescale. This timescale should allow the system to
evolve among the given set of micro-states (which define
the metastable state) and yet be short enough for not
allowing escape from the latter.49–51 Such a separation of
timescales can hold for one set of dynamical rules and not for
another.

In many physical systems, the mechanism leading to the
existence of metastable states is of thermodynamic origin, as,
e.g., for supercooled liquids which are metastable with respect
to the crystal and superheated liquids which are metastable
with respect to the gas.52,53 In the case of glass-forming liq-
uids, the situation is more intricate since the role of thermody-
namics is still hotly debated. Purely kinetic effects (i.e., dynam-
ical rules) may play a dominant role in inducing metastability,
even when the thermodynamic landscape is trivial. This is the
idea put forward by theories of the glass transition based on
kinetically constrained models.48,54,55 One then expects that
if changing the local dynamical rules removes some of the
constraints, this type of metastability will be destroyed (see
also Appendix A 1). This is the core of the argument used by
WC (and in fact also of Ikeda et al.30) to explain the accel-
eration generated by the SWAP, in which the strict enforce-
ment of fixed particle diameters in a polydisperse mixture is
waived.

The main point we want to emphasize is that even in
cases where metastability is of thermodynamic origin, the
temperature (or density) at which metastable states emerge
and govern the physics of the system may depend on the

local dynamics. Thus, by changing the local dynamical rules,
the onset of activated glassy dynamics can be postponed to
a lower temperature or higher pressure, even when kinetic
constraints are not the dominant cause for the slowing
down.

B. Thermodynamic barriers vs. local dynamics
While it is clear that a change in the local dynamical

rules can allow the system to navigate in the configuration
space by avoiding some barriers, the question of whether
such a change lowers or circumvents thermodynamic bar-
riers is more subtle. By thermodynamic barriers, we mean
free-energy barriers resulting from a thermodynamic drive
involving collective behavior over a typical lengthscale that
is definable through static observables only; the considered
change in dynamics is “local” in that the allowed elementary
moves always involve a limited number of atoms that does not
grow as one changes the control parameter(s), unlike the static
length.

WC’s main point is that thermodynamic barriers cannot
be altered by a change in local dynamics and, hence, observing
such a change necessarily invalidates to a large extent a ther-
modynamic description. While this is likely true for asymptoti-
cally large barriers, such a general statement has limited scope
in practice, as we now show in the well-understood case of
crystal nucleation.

Below the melting temperature, a supercooled liquid is
metastable with respect to the crystal. It is known that the
possibility to avoid crystallization and subsequently to form
a glass involves kinetic effects, as illustrated by the form of
the so-called TTT (Time Temperature Transformation) dia-
grams.52 However, in this case, the kinetic part is usually asso-
ciated with the growth process and is a priori unrelated to
the thermodynamic component of the time for crystallization
given by the rate of nucleation rnucl. One can express the time
to crystallization as the product

τxtal ∝ τkin r−1
nucl . (3)

It is well established that (1) τkin is slaved to the typical relax-
ation time in the liquid;90 (2) the nucleation rate, rnucl, is
of thermodynamic origin and goes as exp(−∆F/kBT), with ∆F
being the free-energy of the critical nucleation droplet; ∆F
remains finite in the thermodynamic limit.52

To demonstrate that a change in the local dynami-
cal rules can in some cases alter the thermodynamic bar-
rier ∆F to crystallization, and not only the kinetic contribu-
tion, we have studied crystal formation in one of the three-
dimensional supercooled polydisperse mixtures for which
SWAP has proven to be very efficient.15,20 We compare the
results obtained with the standard Monte Carlo dynamics
and with those in which SWAP moves are allowed. Our first
observation is that SWAP is often so efficient that many puta-
tive polydisperse glass-forming liquid models crystallize even
before being able to thermalize in the metastable supercooled
liquid phase.20 This, in itself, is already an indication that
metastability and nucleation phenomena can be circumvented
by a change in the local dynamics.
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In order to study the effect in more detail, we have chosen
a 10% polydisperse mixture of hard spheres in the moderately
supercooled (or rather supercompressed) phase, at pressures
that are just above the melting one, and followed the time
evolution of several samples with N = 1000 particles by con-
stant pressure Monte Carlo simulation with and without swap
moves. The complex crystalline structures formed by a system
very similar to the present one were recently analyzed, thanks
to SWAP.23,56,57

The most interesting outcome of our computer study is
displayed in Fig. 1 where we show the packing fraction after
a quench as a function of time measured relative to the α-
relaxation time of the liquid, as obtained from the appropriate
dynamics with or without swap. We observe that over the time
span that we have been able to cover (which is of the order
of 1000τα at P = 16.2), all of the samples when evolved with
the ordinary dynamics have remained in the metastable liq-
uid phase, whereas the same samples evolved with SWAP have
all crystallized very rapidly. Since according to Eq. (3) the crys-
tallization time divided by τα is directly related to the thermo-
dynamic barrier encountered by the system, our results show
that the finite nucleation barrier thwarting crystallization in
the ordinary dynamics is reduced or bypassed by introduc-
ing swap moves, which leads to a greatly accelerated nucle-
ation process (on top of the expected effect on the kinetic
term τkin).58,91

In fact, it is even difficult to get an accurate measure of
τα using SWAP, since the system crystallizes over a timescale
comparable to the equilibration time (i.e., before the correla-
tion function approaches zero). Repeating this measurement
in slightly larger systems with N = 8000 is even impossible as
the systems crystallize before thermalizing in the liquid phase.
By contrast, we have not been able to crystallize the system

FIG. 1. Time evolution of the packing fraction ϕ for a three-dimensional polydis-
perse hard-sphere model following a pressure quench from P = 14 (where ϕeq
≈ 0.568) to P = 16.2 (where ϕeq ≈ 0.586). Ten independent samples of N =
1000 particles are studied by SWAP and ordinary Monte Carlo simulations. The
time t is measured relative to τα extracted separately for the two algorithms.
For all samples, the system evolved under the ordinary dynamics remains in the
metastable liquid phase up to the longest simulated time of 1000τα . On the other
hand, the same samples evolved with SWAP started to crystallize within 10-70τα
and metastability can barely be defined operationally.

without SWAP at any pressure, even when using many inde-
pendent samples that were run over extremely large times
(in units of τα ). This directly shows that a well-established
metastability for crystal nucleation—which is of thermody-
namic origin—can totally “crumble” as a result of purely local
changes in the dynamics. The observed speedup might be due
to a reduction of the standard nucleation barrier with a criti-
cal nucleus similar to the non-SWAP case or to the opening of
a completely different channel bypassing this barrier. Deter-
mining which is the right explanation is in itself an interest-
ing question that requires further investigations, both in the
crystallisation case and in the more complex glassy relaxation
case.

The phenomenon, whereby metastable states are desta-
bilized by a change in the local dynamics, can therefore take
place whether barriers are of thermodynamic origin or not
(provided that they are not too large, see Subsection III C).
We expect this crumbling metastability to be rather dra-
matic when considering the complex free-energy landscape
of glass-forming liquids. Before building on this aspect to dis-
cuss the SWAP efficiency within the context of the RFOT the-
ory in Sec. IV, it is useful to discuss in more detail different
crossover temperatures relevant for nucleation, which have
counterparts in the case of glassy dynamics as well—although
a strict analogy with nucleation can be misleading in this
case.

C. Two characteristic temperatures
For the sake of concreteness, we henceforth consider

temperature as the control parameter, but depending on the
system and physical conditions, the control parameter may
instead be pressure, applied magnetic field or chemical poten-
tial, and density. Although our discussion applies to all cases
in which metastability is of thermodynamic origin, it is conve-
nient to keep the example of nucleation associated with a con-
ventional first-order transition, as the above crystallization
case or the Ising model in dimension d ≥ 2.

Metastability requires the existence of different thermo-
dynamic states that can be envisaged as coexisting under
some conditions. In finite-dimensional systems, nucleation is a
mechanism through which, when changing the control param-
eter(s), the less stable states disappear and transform into the
most stable one, and this activated process is driven by a ther-
modynamic force. All of this can only exist below a certain
temperature Tonset, which in the Ising model or the liquid-gas
transition of a fluid is the critical temperature Tc. However, the
temperature T∗ below which one can indeed observe metasta-
bility is generically lower than this upper limit of metastability.
In the example of the Ising model, the metastability of a nega-
tively magnetized state in the presence of a positive magnetic
field H appears at a temperature T∗ strictly below Tonset = Tc,
and it depends on the magnetic field: T∗(H) < Tonset. Whereas
the temperature Tonset is only determined by the thermody-
namics of the system, T∗(H), which signals a crossover at which
the effect of metastability can be observed (i.e., when the rate
rnucl becomes small), depends on the local dynamics and on
the observation timescale.
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Purely kinetic effects can only alter thermodynamic
metastability under some conditions, and it is expected that
one such condition is that the lengthscale characterizing the
nucleation process and the resulting escape from a metastable
state is not too large. As a matter of fact, in the case of the
Ising model, it can be proven that for small magnetic fields,
when the nucleation size is very large, the nucleation bar-
rier is independent of local dynamics and given by the ther-
modynamic nucleation argument.59 Yet, when characteris-
tic lengthscales are not large, as expected to be the case in
glasses, a change in the local kinetic rules can have a dramatic
effect and destroy metastability, as we have illustrated above
in the case of crystallization.

IV. SWAP EFFICIENCY WITHIN RFOT THEORY
A. Characteristic temperatures/densities

As recalled above, a major tenet of the RFOT theory is that
activated dynamics in supercooled liquids is due to the emer-
gence of amorphous order and cooperative rearrangements
over a lengthscale `ps. Within mean-field theory (more pre-
cisely within Kac models60), this happens below a well-defined
temperature T∗ corresponding to the point at which the equi-
librium thermodynamic measure is fractured into many differ-
ent basins. In this limit, the thermodynamic barriers between
these basins (or metastable states) diverge with the system
size. As a consequence, T∗ is indeed independent of the local
dynamical rules and can be computed by a thermodynamic
analysis without any reference to the implemented dynam-
ics.61,62 The mean-field treatment of SWAP dynamics devel-
oped by Ikeda et al.30 is a smart approximation that accounts
for kinetic effects within a purely thermodynamic computa-
tion but that is not a representative of the standard behavior of
finite-connectivity mean-field models with nonsingular inter-
actions on which the RFOT theory is based and for which T∗

is unique (see Appendix A 2 for an extended discussion of this
important point).

Within mean-field theory, there also exists an onset tem-
perature Tonset, higher than T∗, which corresponds to the
point at which the Franz-Parisi potential becomes noncon-
vex. In Kac models and in finite-dimensional glass-formers,
Tonset can be identified with the temperature below which
there exists a thermodynamic drive to metastability. It is
located where the point-to-set correlation length `ps starts to
grow, i.e., when amorphous boundary conditions can stabilize
metastable states in cavities of size `ps. Around a temperature
T∗ ≤ Tonset, free-energy barriers are large enough to stabi-
lize these metastable states for the considered dynamics. The
temperature T∗ can be operationally defined as the empirical
MCT temperature—obtained, for instance, through a power-
law fit of the relaxation-time data, or when the high-frequency
shear modulus is seen to undergo a steep increase.

As already pointed out, Tonset is independent of the micro-
scopic dynamics, whereas T∗ a priori depends on it. We will
keep the notation T∗ for ordinary dynamics and call T∗swap the
corresponding temperature for SWAP and use similar defi-
nitions for the characteristic densities ϕonset, ϕ∗, and ϕ∗swap.

As shown in Sec. III, SWAP allows a much faster equilibra-
tion in the example of the nucleation of the crystal phase in a
metastable supercooled liquid, where barriers are of thermo-
dynamic origin. Similarly, in glass-forming liquids around and
below T∗ (or ϕ∗), SWAP is expected to wash out the metastabil-
ity associated with the incipient amorphous order and to have
dramatic consequences on the relaxation time in the range
T∗swap < T < T∗ (respectively, ϕ∗swap > ϕ > ϕ∗), as also sug-
gested in Refs. 30, 32, and 33. We illustrate this point below in
the case of polydisperse hard-sphere systems.

B. SWAP and effective landscape
In equilibrium, the typical configurations visited by the

system do not depend on the dynamical rules, provided
detailed balance is satisfied. However, the “effective land-
scape” seen by the system, or more precisely by its repre-
sentative point in configurational space, depends on the local
dynamical rules: Some channels allowing it to go from one
configuration to another may be open for one type of dynam-
ics and closed for another type. This is clearly true when
one allows swap moves between particles of different diam-
eters in a Monte Carlo algorithm. These moves correspond
to displacements in real space that are at least of the order
of one particle diameter. (They also correspond to large dis-
placements in the configurational space associated with fixed-
diameter particles.) Introducing swaps is equivalent to pro-
viding an extra dimension in which exchange of particles is
much easier, while still fulfilling detailed balance. The land-
scape may also depend on the probability p controlling the
frequency of the swap moves in the Monte Carlo simula-
tion. One can alternatively think of these moves as allow-
ing each particle to change its diameter, which then adds
one degree of freedom to each particle, with the constraint
that the distribution of diameters is conserved at each step.92

This additional degree of freedom can be discrete or con-
tinuous depending on the exact nature of the polydisperse
mixture.

Opening new dynamical paths, as SWAP does, can only
increase the number of unstable modes around station-
ary points and potentially destabilize states that would be
metastable with the conventional dynamics. The effective
landscape of the SWAP, which is a representation of config-
urations grouped into basins considered as metastable states
over a given timescale and of the set of paths that connect
one to another, must therefore be different from that in the
absence of swap moves.93

As a case in point, we show in Fig. 2 the time depen-
dence of the self-intermediate scattering function for the
same three-dimensional hard-sphere model as studied in Refs.
15, 19, and 20. (The polydispersity here is 23 % and is thus
larger than the one used in Fig. 1.) We choose a volume fraction
that is intermediate between ϕ∗ and ϕ∗swap. Strikingly, whereas
the familiar two-step relaxation process is observed in the
standard case, there is no longer any hint of an inflexion point
in the swap case. Configurations that were metastable in the
former case are completely unstable in the latter case: Locally
rigid systems are fluidized by SWAP, i.e., glassy metastability
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FIG. 2. Dynamics of a three-dimensional hard-sphere polydisperse model with
and without SWAP. Top: Self-intermediate scattering function at a packing frac-
tion intermediate between ϕ∗ and ϕ∗swap, which illustrates the idea of crumbling
metastability: The plateau corresponding to local metastability has completely dis-
appeared with SWAP. ϕ∗ and ϕ∗swap are empirically evaluated through an MCT
power-law fit to the relaxation time data. Bottom: Evolution of the equilibration time
τα with packing fraction ϕ in SWAP Monte Carlo simulations where the fraction of
swap moves, p, is varied between p = 0 (ordinary dynamics) and p = 0.8 (full swap
dynamics). For intermediate p values, the dynamics smoothly interpolates between
these two limits. SWAP relaxation for p ≥ 0.2 appears more fragile than the nor-
mal Monte Carlo dynamics at p = 0 (note the increased slope of the rightmost data
points).

has crumbled. A similar point was made in Ref. 32 and is further
discussed in Appendix B.

The effective landscape being of dynamical nature
depends in principle on the probability p controlling the fre-
quency of the swap moves compared to the translational ones
in the simulation. This raises the possibility to explore a con-
tinuous range of effective landscapes, obtained by a contin-
uous change in the probability p. We illustrate in Fig. 2 the
effect of changing p on the slowdown of relaxation of the
same three-dimensional hard-sphere model as above. For this
model, the empirically determined mode-coupling crossover
occurs at packing fraction ϕ∗ ≈ 0.6 and one can barely go
beyond it for p = 0. SWAP is most efficient with p ≈ 0.215,19,20

because the dynamical speedup obtained by increasing p fur-
ther is not enough to compensate the increasing computa-
tional cost of the swap moves. This, then, corresponds to
the optimal combined annealing of the diameter changes and
particle displacements.

For very small values of p, one observes a crossover from
the normal dynamics at moderate ϕ to the optimal swap
dynamics at large ϕ, suggesting that all these dynamics in fact
smoothly interpolate between only two extreme cases.63 This
implies that as soon as p > 0, the system will ultimately explore
the effective landscape where particle diameters are allowed
to fluctuate. It is therefore convenient to focus only on the
two extreme dynamics: the conventional one with p = 0 and
the one with the optimal choice of p corresponding to the best
joint annealing of all degrees of freedom (note that throughout
this paper the term SWAP refers to the latter).

C. Self-consistent description of activated dynamics
As recalled in Sec. II B, the mechanism envisioned by the

RFOT approach to describe relaxation in the bulk is a self-
consistent version of the cavity argument. In a bulk super-
cooled liquid, the boundary of any subsystem of size `ps is
only frozen on the timescale needed for a cavity of size `ps
to relax. This picture only makes sense if this timescale is
itself large, which is the case for the normal dynamics when
T < T∗, since a positive free-energy barrier Bcoll(T), given by
Eq. (1), must be overcome. However, SWAP dynamics leads
to larger dynamical fluctuations that may effectively abolish
Bcoll(T) in a temperature range T∗swap < T < T∗.

Let us illustrate the above self-consistent argument by
a simple model which suggests that metastability can indeed
“crumble,” i.e., vanish abruptly. When the environment of a
typical subsystem of size `ps itself evolves with time, i.e., when
it is not frozen forever, the barrier preventing the subsys-
tem to relax is on average lowered (since the system will
preferably relax when this barrier is exceptionally low). A toy
phenomenological description of this effect is provided by

Bcoll(τ) = B∞(T)
[
1 − A

(
τ0

τ

)a]
, (4)

where τ is the relaxation time of the surrounding, τ0 is a
microscopic time, a > 0 is a phenomenological exponent, and
A is a coefficient that depends on the microscopic dynamics
and is larger in the presence of swap moves; B∞ ∝ `

ψ
ps corre-

sponds to the free-energy barrier when the outside of the sub-
system is frozen, as in Ref. 5. The precise form of the function
describing the reduction of the barrier when A increases or τ
decreases is unimportant [the choice in Eq. (4) is for illustrative
purpose only].

Now, the relaxation time of the typical subsystem of size
`ps is self-consistently determined through the equation

log
(
τα
τ0

)
=

Bcoll(τα)
T

. (5)

It is easy to see graphically that this equation has an activated
solution when A is small enough, as we envisage for the nor-
mal dynamics (see Fig. 3). The relaxation time τα decreases
when A increases, i.e., as the local dynamical fluctuations are
increased, but for a range of values of A, relaxation is still
governed by the thermodynamic barrier B∞ ∝ `

ψ
ps, albeit with

a dynamically renormalized prefactor. The activated solution
then abruptly disappears for some value of A. This is our
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FIG. 3. Graphical representation of Eq. (5). We plot as a function of x = τ/τ0:
T log x (thick plain line) and B∞(1 − Ax−a) for 3 values of A (thin solid and dashed
lines). For small values of A, there is one intersection point corresponding to the
standard activated-time solution (with a barrier that scales as B∞ ∝ `

ψ
ps , yet with

a dynamically renormalized prefactor). For large values of A, no intersection exists
anymore, corresponding to crumbling metastability. The dashed line corresponds
to the largest value, A = Ac , such that an intersection point exists. Note that Ac
increases when B∞/T increases.

crumbling metastability scenario: Faster motion of the sur-
roundings prevents the freezing of the inside of the cavity.
Conversely, for a given A, an activated solution always appears
as the temperature decreases below a characteristic temper-
ature which corresponds to the temperature T∗ discussed
above and which depends on A (with T∗(A) being a decreasing
function of A).

The main effect of SWAP compared to the normal dynam-
ics is therefore to delay the emergence of metastable states
(and therefore of super-Arrheniusly activated dynamics) from
the temperature T∗ down to a lower temperature T∗swap, as
also argued in Ref. 30. Within the RFOT approach, the SWAP
dynamics should slow down significantly near T∗swap, just as
happens for the ordinary dynamics near and below T∗. In this
regime, the SWAP dynamics should become super-Arrhenius
activated, and one expects that asymptotically close to TK
where `ps diverges, the (very large) barriers to overcome for
relaxing the liquid should be the same with or without swap
moves, as argued in Sec. III C.

Finally, since the temperature dependence of the relax-
ation time with SWAP is much weaker down to T∗swap (and its
accessible vicinity) and since the relaxation times for SWAP
and ordinary dynamics must diverge in the same manner close
to TK, our picture suggests an extremely steep increase in the
logarithm of the SWAP relaxation time in a narrower range of
temperature TK < T < T∗swap than for the normal dynamics.
This would correspond to an unusually “fragile” behavior. It
is likely that this takes place in a range which is difficult to
equilibrate for SWAP itself and that the convergence of the
SWAP and non-SWAP relaxation times only occurs at astro-
nomically long times. Still, the available data such as the one
shown in Fig. 2 are not incompatible with this view. Indeed,
the density dependence of the normal Monte Carlo dynamics
appears less sharp than the one of the swap dynamics with a
large frequency of swap moves.

Although the interpretation put forward above uses simi-
lar ideas as in Wyart and Cates18 and Brito et al.32 concern-
ing the different effective landscapes for SWAP and normal
dynamics, it differs completely on the conclusions one should
infer about the physical dynamics. In particular, we disagree
with the claim that the SWAP efficiency disproves the rele-
vance of activated processes over free-energy barriers con-
trolled by thermodynamic properties for the normal dynamics
near Tg, a claim that we find unsubstantiated.

V. FURTHER INSIGHTS FROM EXPERIMENTS
A. Stokes-Einstein decoupling

Core to the argument of WC that the point-to-set length
plays a minor role in the slowing down of relaxation leading
to glass formation is the value of the Stokes-Einstein prod-
uct between the self-diffusion constant and the viscosity esti-
mated at Tg: Sg ≡ D(Tg)η(Tg). It is of order Sg ∼ 103 in fragile
liquids. According to WC, Sg should be much larger within
the RFOT theory because local permutations contributing to
self-diffusion should be much faster than the typical time to
fully rearrange the system on the scale of the point-to-set
length.

This argument is certainly correct in the asymptotic limit
`ps → ∞, when barriers to local permutations, even very high,
must become smaller than Bcoll(`ps). However, for small to
moderate values of `ps relevant for real glasses, we believe
that the barriers to local permutations of particles are sim-
ply far too high to provide a competitive channel when T & Tg
(recall that we are now discussing the normal dynamics with-
out SWAP). For lower temperatures, we concur with the claim
of WC that the Stokes-Einstein decoupling should become
dramatic if the RFOT picture is correct.

The physical picture we envision for the dynamics in
the regime T & Tg is that each particle keeps more or less
the same neighborhood, which rearranges as a whole when a
collective event takes place. As discussed in Sec. II B, some
collective events happening on scales ` < `ps are fast, but
those corresponding to very small `, for example, those cor-
responding to a single swap move, need times much larger
than τα to take place. There are several experimental and
numerical facts confirming that single-particle dynamics and
collective-density relaxation use the same collective mecha-
nism when T & Tg, and this also applies to diffusion.67,68,94 For
example:

1. The same amount of decoupling between diffusion and
structural relaxation is observed when considering exclu-
sively single-particle dynamics (but over a range of
wavevectors).64

2. The dynamical susceptibilities (four-point correlation
functions) for collective and self-density relaxation both
show similar peaks for the same α-relaxation time of the
system,65 thus suggesting that the very same collective
phenomenon is responsible for both.

WC argue that kinetic constraints are so strong that rear-
rangements on the scale of `ps are in fact not allowed, and
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relaxation only occurs on an even larger lengthscale ξdyn
> `ps, whose growth is aborted when T . T∗. In this picture,
the Stokes-Einstein product Sg remains moderate because no
rearrangements are allowed on scales ` < ξdyn. However, WC,
as well as Brito et al.,32 remain vague about the relaxation
mechanisms around and below T∗ within their scenario, which
(at least to our understanding) does not easily account for the
well-established monotonous growth of multi-point correla-
tion functions below T∗. Indeed, in their view, spatial corre-
lations in the dynamics should only be present near T∗, i.e.,
at the onset of rigidity where the soft modes associated with
marginal stability become delocalized.66

Below T∗, the system departs from marginality and
becomes increasingly more stable. This increased stability
should naturally imply that the lengthscale related to the
relaxation process decreases, in contradiction with the exper-
imental and numerical results which show instead that this
length continues to grow.7,8,69 The possibility, invoked by WC
and Brito et al., that the dynamics below T∗ is thermally acti-
vated along some soft dynamical modes spanning a length ξdyn
that continues to increase (when temperature is decreased
or when the age of the system increases) is intriguing, but it
lacks at present a substantial explanation, precise quantitative
calculations, and explicit numerical support.

B. Shortcomings of the elastic scenario
Following elastic models of viscous liquids such as the

shoving model put forward by Dyre,16,17 and also quoted by
WC as a viable explanation of the dynamical slowing down, the
energy barrier to relaxation is given by

Eel(T) = Gpl(T)Vc, (6)

where Vc is roughly constant below T∗ and Gpl(T) is the plateau
shear modulus. While the relaxation barrier seems to correlate
well with Gpl(T) in many glassy systems, at least close to Tg,17

a first issue with Eq. (6) is that the value of Vc extracted from
experimental data16 is of the order of one atomic volume, in
contradiction with the claim by WC that Vc ∼ ξ3

dyn with ξdyn

larger than `ps.
Another necessary input in a scenario based on Eq. (6)

is the emergence of a nonzero plateau shear modulus Gpl(T)
and its sizable increase as one cools the system. Even if it
is not precisely described in Refs. 18 and 32, the emergence
of rigidity associated with the disappearance of soft marginal
modes near T∗ appears akin to the MCT/RFOT scenario. As
recalled in Appendix B, a nonzero plateau shear modulus Gpl(T)
indeed appears rather abruptly and grows as T is decreased
below T∗, with a concave temperature dependence.70 There-
fore, even with a nondecreasing Vc, Eq. (6) would predict a
concave (downward) temperature dependence of the activa-
tion barrier. This qualitatively disagrees with the empirical
observation of a convex (upward) growth close to T∗ (see Refs.
71 and 72), except if the experimental Gpl(T) has itself a con-
vex behavior, which would be at odds with most studies of the
Debye-Waller factor (proportional to T/Gpl, see Appendix B)
in the vicinity of T∗.

Finally, Larini et al.73 have shown that for many glassy
systems, one can find a master curve that collapses the depen-
dence of the logarithm of the relaxation time logτα as a func-
tion of the ratio 〈u2〉g/〈u2〉, where 〈u2〉 is the Debye-Waller
amplitude of displacements in the plateau regime. According
to Dyre17 and WC, this relation should be linear, while the
master curve of Larini et al. reveals a large nonlinear com-
ponent. Taking their functional fit seriously suggests that the
nonlinear contribution to the increase in logτ is 6 times larger
than that of the linear contribution. This is qualitatively similar
to the results of Buchenau et al.,74 who conclude that the col-
lective barrier contribution to fragility at Tg is between 1 and
6 times that of the local barrier contribution, with a ratio that
increases with fragility itself.

C. Insights from amorphous confinement
All explanations of the dynamic acceleration due to SWAP

make an assumption about the mechanism responsible for the
dynamical slowdown in the absence of SWAP. These theoret-
ical explanations must be consistent with the experimental
and numerical results obtained so far for supercooled liquids.
Important physical facts are provided by numerical results on
confined liquids with amorphous boundary conditions. Cav-
ity measurements with frozen amorphous boundary condi-
tions are performed in the first place to determine the static
point-to-set correlation length `ps. However, what is of fur-
ther interest for the present discussion is the outcome of
these studies for the equilibration dynamics. Two different
timescales can be used: the relaxation time, i.e., the time it
takes for the equilibrium correlation function inside the cavity
to decorrelate, and the equilibration time, i.e., the time it takes
for the system to reach equilibrium inside the cavity starting
from a random initial condition. [The equivalence of the two
times was called the BIC (Beta Initial Condition) test and used
to check that simulations are indeed equilibrated in measure-
ments of `ps.28] Below we focus on the latter timescale.

The normal dynamics is highly sensitive to confinement
and starts to slow down for cavity sizes that are significantly
larger than `ps,12,28 presumably as large as the dynamic cor-
relation length ξdyn. The equilibration time increases dra-
matically as the cavity size is reduced further, to the point
that measuring `ps is actually a prohibitively difficult prob-
lem.12,13 SWAP dynamics is much more efficient than the
normal dynamics in a frozen cavity as well, but SWAP itself
dramatically slows down as the cavity size approaches `ps.15

This effect, in itself, confirms the role of `ps in the relaxation
dynamics.95

This dynamical phenomenon, which becomes more
prominent as the point-to-set length increases, emerges
below T∗ and above T∗swap. In this temperature regime, the
bulk normal dynamics is deep into the (inaccessible) super-
Arrhenius activated regime and the bulk SWAP dynamics is
still very fast and characterized by a small dynamic correlation
length ξdyn,swap.

These facts have important implications. First, as already
discussed, in the frozen boundary cavity set-up where
“crumbling metastability” does not play any role, the

J. Chem. Phys. 150, 094501 (2019); doi: 10.1063/1.5086509 150, 094501-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

thermodynamic barriers are not affected by SWAP, as
expected from thermodynamic theories of the glass transi-
tion. On the contrary, if the physical relaxation process were
only governed by a local energy barrier, SWAP would fully
bypass the glassy slowdown and would be completely insen-
sitive to a confinement over a length controlled by `ps, in
contradiction with the numerical findings. In the scenario put
forward by WC and Brito et al.,32 one should envision that
the slowing down due to confinement has actually nothing
to do with point-to-set correlations and rather takes place
at the dynamical correlation length ξdyn,swap associated with
T∗swap. However, from the simulation results, this would mean
that the dramatic effect of confinement on the dynamics kicks
in when χ

swap
4 is still very small, a fact that is hardly justifi-

able especially in comparison with what happens for the usual
dynamics.

As a final comment, which echoes those made at the end
of Sec. II B, we stress that the behavior of the equilibration
time inside a cavity as a function of ` is a proxy for the relax-
ation time of the bulk dynamics of a liquid on scale `. The
facts discussed above show that in the studied temperature
domain, this time is a strongly decreasing function of ` both
for SWAP and normal dynamics. This provides further support
to the idea that local equilibration in supercooled liquids is not
achieved before the collective one, but at the same time (see
Sec. V A). As previously discussed, the role of the point-to-set
length on the `-dependence of the relaxation time, which dif-
fers depending on the dynamics, can be rationalized in terms
of the explosion of the number of available escape paths at `ps.
Clearly, a detailed microscopic understanding of this behav-
ior is crucial and future theoretical investigations should be
devoted to it.

In summary, and reiterating some of the points made
above: for T close to TK, the relaxation time τ(`) for processes
on a lengthscale ` is expected to decrease for ` below `ps
since thermodynamic barriers, which are dominant over any
kinetic effect for large `, decrease at small scales. However,
in real systems for which `ps is rather small, this behavior is
likely masked by kinetic effects that play a role on very short
lengthscales and make τ(`) shoot up again. Since the relax-
ation timescale of realistic supercooled liquids is controlled
by the processes having the smallest characteristic time, this
implies that (i) the relevant relaxation processes are those tak-
ing place on scales ∼`ps; (ii) the degrees of freedom on scales
smaller than `ps are not relaxed before τα , but instead relax via
the same rearrangements leading to global relaxation at the
time τα .

VI. CONCLUSION
We have argued that the observations recently put for-

ward to dismiss the role of a thermodynamic lengthscale in the
dynamical slowing down of glass-forming liquids—namely, the
efficiency of the SWAP Monte Carlo algorithm to thermalize
polydisperse glass-formers below Tg and the Stokes-Einstein
decoupling at Tg—can actually be fully accounted for within
the RFOT approach where this lengthscale plays a crucial
role.

Our main point is that introducing swap moves can
wash out metastability and allow the system to bypass free-
energy barriers, even of thermodynamic origin. This crum-
bling metastability postpones the temperature at which col-
lective activated processes are required and therefore dra-
matically accelerates the dynamics of the system—at least
when the cooperatively rearranging regions are not too large.
We have shown numerically that this is the case for stan-
dard nucleation. We have argued that, within this scenario,
swapped systems should become anomalously fragile as the
Kauzmann temperature (or density) is approached.

All these being said, one should keep in mind that the
point-to-set length `ps is never very large in real systems,96

which is of course a consequence of the prediction of an acti-
vated dynamical scaling such as in Eq. (1), but also opens the
possibility that theories that seem at odds with the existence
of a growing amorphous order could actually be somehow
combined with it in a broader theoretical scheme. In fact, local
elastic models and RFOT theory are more similar than what
appears at first sight.75 It is not clear to us whether, ulti-
mately, the picture introduced by Wyart and collaborators will
or will not require the introduction of a growing point-to-set
length.

Our general conclusion is that the success of SWAP,
while generating a genuinely useful debate about the valid-
ity of thermodynamics-based theories, does not directly favor
one view of the glass transition nor disproves any. However,
since it allows the exploration of new and unexplored territory
in glass physics,76–81 we may expect some progress towards
discriminating the relevance of various approaches, when
their predictions are pushed and tested over an unprece-
dentedly wide range of temperatures and studied as a func-
tion of dimension d as well.82,97 Among the most pressing
issues is a comprehensive geometric and energetic charac-
terisation of the relaxation processes in glass forming liq-
uids. We hope that progress along these lines will be available
soon.
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APPENDIX A: OTHER SCENARIOS
FOR SWAP EFFICIENCY
1. Kinetically constrained models

The dynamic facilitation approach to the glass transi-
tion54 mostly relies on the idea that dynamics slows down
because of kinetic constraints which forbid some pathways.55

Barriers thus have a purely kinetic origin and are totally unre-
lated to the thermodynamic properties of the system. The
approach is illustrated by simple noninteracting spin models
known as kinetically constrained models (KCMs).48 Although
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swap moves per se may not be relevant for such models,
the success of a change in local dynamical rules seems eas-
ily explained conceptually, since the kinetic constraints are
purely local and can thus, in principle, be extremely sensi-
tive to the microscopic dynamics (see below). In a sense, it
is an implicit prediction of this approach (although it was
never truly put forward or explored) that certain types of
local algorithms should be able to considerably accelerate
the thermalization of these systems. Indeed in KCMs, ther-
malization of initial conditions is not a difficult issue at all,
and only the dynamical relaxation processes are of physical
interest.

On the other hand, this issue might be more subtle than
it seems at first sight. In fact, in the only microscopic mod-
els where kinetic constraints were derived from first princi-
ples, the so-called plaquette models,83 any local change in the
spin-flip dynamics would not be able to fully accelerate the
dynamics. In these systems, dynamics is glassy at low temper-
atures and there is a diverging static correlation length with
a thermodynamic singularity at zero temperature. The origin
of glassiness is the existence of dilute defects at low temper-
atures. Local changes in the dynamics can only speed up the
dynamics of defects by increasing their diffusion coefficient
but not reducing their dilution.

Ideally, one would like to know better how kinetic con-
straints emerge in the dynamics of realistic supercooled liq-
uids, in order to invent smart Monte Carlo moves that at once
preserve the equilibrium properties and bypass the kinetic
constraints. For now, it is unclear why SWAP would achieve
precisely this nontrivial goal. Similarly, it appears difficult to
predict, in this view, what is the temperature dependence of
the SWAP dynamics and what are its characteristics. Such an
understanding would be useful, as it could allow the potential
determination of even better algorithms to achieve thermal-
ization at lower temperatures.

2. The Mari-Kurchan model
In their analysis of the Mari-Kurchan (MK) model,31

Ikeda et al.30 discuss the emergence of two distinct mode-
coupling temperatures. Their main conclusion is that the nor-
mal dynamics essentially freezes at some temperature T∗,
whereas the SWAP dynamics does at a lower temperature,
T∗swap < T∗. Although this is along similar lines to ours and WC’s
discussion, the interpretation of some of these results and
their meaning for finite-dimensional systems is quite different,
as we now explain.

Let us first address a crucial point. The MK model is a
“mean-field” description of a finite-dimensional system but
a very special one, where neither the MCT dynamical transi-
tion nor the thermodynamic glass transition is truly realized.
Indeed, the genuine thermodynamic equilibrium of the model
is attained when including all local moves, which comprise
changes in particle diameters (the equivalent of the swaps) and
individual particle hopping. Consequently, the emergence of
a “high” transition temperature T∗ when arbitrarily prevent-
ing diameter changes results from a purely kinetic constraint.
If instead one allows by fiat changes in diameters without

changing the positions of the particles, freezing and lack of
diffusion take place at a lower temperature, identified as T∗swap.
If one allows all local moves, including diameter change and
particle hopping, then no freezing takes place at any finite
temperature.

This situation is very different from generic finite-
connectivity mean-field models. Indeed, for mean-field mod-
els on Bethe lattices where locality has a well-defined mean-
ing, it is conjectured and to a large extent proven6 that any
local change in the dynamics cannot generically alter the value
of T∗. This statement is related to the general idea that infi-
nite thermodynamic barriers, such as those emerging at T∗ in
mean-field models, cannot be destroyed by any local change
in the dynamics. For example, consider a finite temperature
lattice-glass binary mixture on a Bethe lattice.84 Such a model
has a unique MCT transition, irrespective of the local dynam-
ics (as long as it is an irreducible Markov chain), at which
the Boltzmann measure breaks up into many thermodynamic
states separated by infinite barriers. Certainly, the grand-
canonical dynamics, which resembles the SWAP one, is faster
than the canonical one, but they both have the same T∗. This
is the usual mean-field scenario on which the RFOT theory is
based. In the zero-temperature limit, where the Markov chain
becomes reducible since hard kinetic effects intervene, an
MCT transition which is similar to those of KCM’s on Bethe lat-
tices84 can preempt the thermodynamic MCT transition. It is
the counterpart of the former kind of transition that has been
investigated by Ikeda et al. and that, arguably, can take place
in other mean-field models as well, due to kinetic constraints
in the dynamics.98

In short, the work of Ikeda et al. introduces a clever
approximation to take into account kinetic effects within a
static replica computation. We agree that it provides a possi-
ble explanation of the difference between T∗ and T∗swap, which
is of kinetic origin. Overall, it reiterates from a mean-field per-
spective the dynamic-facilitation view that kinetic constraints
are the main cause of slow dynamics in supercooled liquids.
Although this is certainly possible, and realized in some mod-
els endowed with specific dynamical rules, we think that the
experimental and simulation results for supercooled liquids
with (standard) dynamics rather point toward an explanation
in which a growing static length plays a key role.

One of the main points of Ikeda et al. is that, depending
on the local dynamics, one has to consider different kinds of
overlap in the replica computation, which leads to a dynamical
transition taking place at different temperatures. (As recalled
above, it even disappears if all local dynamical moves are
allowed.) If one combines this result with the usual definition
of the point-to-set length, which is thermodynamical and thus
includes all local dynamical moves inside a cavity, then the
point-to-set length should start to increase only below T∗swap
in finite-dimensional systems. This is precisely where we dis-
agree. As discussed in the main text, our view is that within the
RFOT theory Tonset is the temperature at which there starts to
be a thermodynamic drive toward metastability and at which,
accordingly, the point-to-set length starts to grow. Numerical
evidence suggests that this is indeed the case: The growth of
`ps, together with the emergence of a nontrivial Franz-Parisi
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free energy, becomes observable in three-dimensional glass-
formers between Tonset and the physical (i.e., without swaps)
MCT crossover T∗ and not at the much lower temperature
T∗swap.

In summary, our disagreement stems from the inter-
pretation of the MK results and their implications to finite-
dimensional supercooled liquids, not from the analytical
results of Ikeda et al. which, we believe, are correct.

APPENDIX B: A BOOTSTRAP THEORY
FOR EMERGING RIGIDITY

Clearly, the appearance of local rigidity must itself be a
collective, bootstrap phenomenon. This idea permeates many
approaches to the glass transition, from the “cage” picture
advocated in the context of MCT to the isostatic theories of
jamming. For a particle not to move easily, its neighbours
must themselves be blocked, and so on. One can formalize
this scenario by using the recent replica theory of Yoshino
and Mézard70,85 that allows one to estimate the plateau shear
modulus Gpl from first principles. The physical idea is to write
Gpl as a difference of two contributions

Gpl = Gborn −Gfluc, (B1)

where Gborn is the so-called Born term resulting from the con-
tribution of affine displacements under shear, and Gfluc is a
contribution induced by thermal fluctuations. In an ergodic
(liquid) phase, translation invariance imposes that Gfluc = Gborn
and, thus, that the shear modulus is zero, as expected.
At smaller temperatures, Gfluc decreases, allowing for the
possibility of rigidity, at least on intermediate timescales.
The detailed replica calculations are quite intricate,70,85 but
one can grasp the correct scenario by approximating Gfluc
as

Gfluc = b
T

Gpl
, (B2)

where b is a coefficient that depends on the microscopic
details of the model. This equation states that local fluctua-
tions in a solid are proportional to temperature and inversely
proportional to the shear modulus (which assumes that the
latter is small compared to the bulk modulus). Inserting
Eq. (B2) back into Eq. (B1) leads to a second-order equation
for Gpl, whose solution is

Gpl =
1
2

[
Gborn +

√
Gborn − 4bT

]
; T < T∗ ≡

Gborn

4b
. (B3)

This simple description predicts that the plateau modulus
jumps from 0 to a finite value at T = T∗, with a singular
square-root contribution when T < T∗, exactly as predicted by
standard MCT. Intuitively, MCT captures the self-consistent
appearance of local rigidity, which can only exist if the rest
of the system is itself rigid enough. By the same token, if the
local dynamical rules (like SWAP) lead to an increase in local
fluctuations (i.e., an increase in b), one expects T∗ to decrease.

Note that one can rephrase the above argument in terms of
bootstrap percolation with the effect of swaps modelled as an
increased number of neighbors required to stabilize each par-
ticle.86,87 This latter formulation is conceptually very close to
the framework proposed by Brito et al.32

In real three-dimensional systems, the above rigidity
transition is replaced by a continuous crossover, with a
plateau shear modulus that appears smoothly below T∗, but
with a concave, square-root like dependence on temper-
ature, qualitatively similar to that predicted by MCT. This
was actually considered as one of the early successes of
MCT.88,89
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