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ABSTRACT
Despite the diversity of materials designated as active matter, virtually all active systems undergo a form of dynamic arrest when crowding
and activity compete, reminiscent of the dynamic arrest observed in colloidal and molecular fluids undergoing a glass transition. We present
a short perspective on recent and ongoing efforts to understand how activity competes with other physical interactions in dense systems.
We review recent experimental work on active materials that uncovered both classic signatures of glassy dynamics and intriguing novel
phenomena at large density. We discuss a minimal model of self-propelled particles where the competition between interparticle interactions,
crowding, and self-propulsion can be studied in great detail. We present more complex models that include some additional, material-specific
ingredients. We provide some general perspectives on dense active materials, suggesting directions for future research, in particular, for
theoretical work.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5093240

I. INTRODUCTION
A. Fluid-to-solid transitions

The topic of this perspective is a widely observed phenomenon.
Take a dense system of “particles,” which can be molecules, droplets,
cells, grains, or animals. When the density is not too large, these
particles can easily move, and they can be fueled by thermal fluc-
tuations, chemical reactions, internal motors, or muscles. The sys-
tem is in a fluidlike state. As the density increases, it becomes
increasingly difficult for the particles to find pathways that allow
them to move over large distances. The competition between par-
ticle crowding in a dense environment and the energy injected at
the particle scale may result in a transition from a fluid regime to
a dynamically arrested regime where individual particles are per-
manently trapped by their neighbors. In this arrested state, the
particles respond as a homogeneous block to external perturba-
tions; the system has become a solid. Very simple systems, such as
assemblies of identical particles, in thermal equilibrium would easily
crystallize at large densities, but for many “complex” particles, the
arrested state is fully disordered. The phase transformation between
an equilibrium fluid and an arrested amorphous state is the glass
transition.1

We argue below that the transition from a fluid to an amor-
phous solid is ubiquitously observed not only for molecules and
small colloids (which form molecular and colloidal glasses) but also
is similarly relevant to describe a large class of active materials,2–4

where the “particles” can be phoretic colloids, self-propelled grains,
or crawling cells. In those examples, which we review below, the
competition arises between the crowding of the active particles (that
tends to arrest them) and the intensity of the active forces (that make
them move).

In recent years, we noticed that the fluid-solid transition in
active materials has often been described as a jamming transition,5

rather than a glass transition. We see two reasons for this. First,
the word jamming itself is perhaps more easily grasped. Second, it
echoes work performed in the granular matter community about
20 years ago that attempted to unify the physics of seemingly dis-
parate physical systems, from molecules to grains and foams.6 In a
sense, cells, robots, and phoretic colloids would only be additional
examples of the same type of physics. More recently, however, the
distinction between the glass and the jamming transition, and the
specific features associated with both phenomena have been clarified
and explained in great detail.7 Broadly speaking, the competition
between crowding and particle agitation leads to the glass transition
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phenomenon. By contrast, jamming is understood as a purely geo-
metric transition between viscous and rigid behavior in the absence
of any kind of dynamics. Thus, jamming is a zero-temperature or,
for the purpose of the present paper, a zero-temperature and zero-
activity limit. Strictly speaking, therefore, particles with nonvanish-
ing activity cannot undergo jamming.

B. The equilibrium glass transition
Let us first quickly review the main features of the equilibrium

dynamics of nonactive (thermal, passive) fluids approaching their
glass transition. For brevity, we will use the words “equilibrium glass
transition” to refer to this case.

The most noticeable phenomenon accompanying the incipient
glass transition is the enormous slow down of the dynamics.8 For
instance, the viscosity of a hard sphere colloidal glass former can
increase by seven orders of magnitude when the colloidal suspen-
sion’s volume fraction changes from a dilute value of a few percent
to a value close to the so-called colloidal glass transition.9,10 Even
more impressively, the viscosity of a good molecular glass former can
increase by 12 orders of magnitude upon decreasing the temperature
by a mere factor of two.11

This dramatic slowing down is only one of many spectacu-
lar changes in the dynamics which occur when the glass transi-
tion, either in a colloidal or a molecular liquid, is approached. For
example, the very nature of the single-particle motion changes.12,13

Whereas the single particle motion in a low to moderately high vol-
ume fraction suspension can be well described by a diffusion process,
at a low temperature any given particle goes through a series of dif-
ferent dynamics. First, before it becomes aware of its surroundings,
it freely explores its immediate neighborhood. Next, on intermediate
time scales, it becomes caged by its solvation shell. Finally, on much
longer time scales, it manages to escape from the cage. After many
such transient localizations, the long-time motion may be described
by an effective diffusion process, albeit with a much smaller diffusion
coefficient.

This two-step single particle motion affects the behavior of all
time-dependent correlation functions, which also exhibit two-step
decays with intermediate time plateaus reflecting the cage dynamics
of the particles.12,13 This microscopic dynamics suggests that fluids
approaching the glass transition display viscoelastic response to an
applied stress.

In addition to the caged and slow dynamics, a large combi-
nation of ingenious experiments,14 computer simulations,15,16 and
theoretical analyses17 has established that glassy dynamics is also
increasingly heterogeneous.18,19 Dynamic heterogeneity means that
in a viscous liquid there is a coexistence of fast particles, with a
motion that is much faster than the average, and slow particles, with
a motion that is much slower than the average. However, over time
scales that are (commonly but not universally) considered much
longer than the typical relaxation time of the fluid, fast and slow pop-
ulations lose their character and dynamic exchanges between the two
sets of particles can occur. The additional and, in fact, crucial aspect
of dynamic heterogeneity is that fast and slow particles are also spa-
tially correlated over a new, dynamic correlation length scale that
grows upon approaching the glass transition.

Physically, dynamic heterogeneity can be understood as a direct
consequence of particle crowding. In order to perform some motion,

a particle closely surrounded by its neighbor needs to coordinate
motion with its neighbor in order to diffuse. This is very natural.
After all, human beings in a dense crowd spontaneously coordinate
their motion to become mobile. Collective motion is an important
aspect of the physics of active materials. It is therefore important to
realize that particle crowding is a key ingredient to trigger correlated
motion already for systems at thermal equilibrium.

C. Glassy dynamics in active matter
In the last decade, it has been realized that many, if not all, of the

phenomena associated with glassy dynamics could also be observed
in dense active matter systems. For the purpose of this article, the
term active matter encompasses a variety of different materials.2–4

They range from living tissues to systems of active colloidal parti-
cles to macroscopic granular objects driven by mechanical pertur-
bations. The differences between these very diverse systems have
consequences for the phenomena that can be observed and for the
details of the corresponding experiments.

Let us start with some specific experiments on cells and tissues.
Typically, in these systems, cells are proliferating and sometimes
also dying, with the overall cell density being a nontrivial func-
tion of time during the experiment. Since the dynamics of dense
systems is very sensitive to their density, the fact that the number
density is changing imposes additional variation upon experimental
results.

Angelini et al.20 studied the dynamics of a confluent epithe-
lial cell sheet. They monitored cell motion over a broad range of
length scales, time scales, and cell densities. They found that with
increasing cell density, the dynamics slow down. The log of the
inverse self-diffusion coefficient was found to have nonlinear depen-
dence on the cell density, which shares some vague analogy with
the nonlinear dependence of the log of the relaxation time on the
inverse temperature. Even more interestingly, Angelini et al. found
that not only the dynamics were slowing down but also they were
increasingly more heterogeneous. They estimated the dynamic cor-
relation length and found that it increased with increasing cell
density.

Garcia et al.21 studied a different confluent epithelial cell sheet.
They also found a slowing down of the dynamics upon increas-
ing the cell density. They investigated dynamic heterogeneity and
determined the dynamic correlation length. Interestingly, upon
increasing the cell density (which increased during the duration
of the experiment), the length exhibited a nonmonotonic behav-
ior, first increasing and then decreasing with increasing density.
Garcia et al. also found a distinctly nonequilibrium feature of
active glassy dynamics, nontrivial equal time velocity correlations.
We recall that in equilibrium systems, either colloidal or molec-
ular, equal-time velocity correlations are trivial; velocities of dif-
ferent particles are uncorrelated. By contrast, Garcia et al. deter-
mined that the length scale characterizing these correlations also
exhibits a nonmonotonic dependence on the cell density. Notably,
the dynamic correlation length and the velocity correlation length
were found to be correlated; their relation was found to be mono-
tonic, despite the complex dependence of each length itself on
time.

More recently, Mongera et al.5 performed a more complex
series of experiments. They focused on the important biological
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process of vertebrate body axis elongation. They identified and
investigated an amorphous solidification process in which the cells
become solidlike as they transition from mesodermal progenitor
zone (MPZ) to presomitic mesoderm (PSM). The transition was
monitored through the mean-square displacement, which was found
to increase in a diffusive way in the MPZ and exhibit arrest in the
PSM. They also studied the mechanical response of both PSM and
MPZ and identified a yield stress, which is a commonly observed
mechanical property of amorphous solids. Finally, they investi-
gated active fluctuations and the role they play in the amorphous
solidification. They found that active fluctuations are strong in the
MPZ and weak in the PSM, in analogy with thermal fluctuations
in liquid and glassy phases. This finding led them to hypothe-
size that these active fluctuations play the role of a temperature.
As we mentioned earlier, in our view, the amorphous solidifica-
tion process uncovered by Mongera et al. is a glass rather than a
jamming transition since it happens at a nonvanishing level of the
activity.

Colloidal systems have long served as a laboratory to observe
and understand glassy dynamics.22,23 The reason is that many col-
loidal experiments allowed workers to obtain significantly more
information about the microscopic dynamics of the colloidal sys-
tems than in atomic systems. The wealth of available information
compensates for the fact that in colloidal systems the slowing down
is not as spectacular as in atomic systems and typically only five or
six decades of the change in the relaxation times can be observed.
Colloidal systems consisting of active Janus colloids (in which one
part of the colloidal particle is covered with some kind of catalyst,
leading to a self-propelled motion) were one of the first synthetic
active matter systems. Initially, the experiments focused on single-
particle motion and then on moderately dense systems.24–26 In the
latter systems, clustering and phase separation of active colloidal
particles with purely repulsive interactions can be observed.26,27

More recently, some groups started investigating the structure and
dynamics of dense active colloidal systems.28 Although the details
of the experiments are just emerging, it is clear that the dynamics
of dense active colloidal systems exhibit classic signatures of glassy
colloidal dynamics, with nontrivial dependencies of the microscopic
dynamics upon changes in control parameters. We hope that further
work in this area will yield a wealth of information on the inter-
play between colloidal crowding and phoretic activity since such
experiments probe a simpler version of the more complex tissue
dynamics.

Finally, we mention a new experimental active matter system
that belongs to the category of driven granular systems. For some
time, Dauchot’s group has used macroscopic grains driven by shak-
ing the plate on which they are placed as an experimental model
system to study glassy dynamics and jamming phenomena.29 Strictly
speaking, this driven system is active in the sense that it is an ather-
mal system, devoid of any intrinsic dynamics and driven at the
level of individual particles. However, since the drive is memory-less
and the grains and the motion are isotropic, the most appropriate
theoretical and/or simulational model for this system is an effec-
tive equilibrium system with thermal fluctuations. Recently, Dau-
chot’s group introduced two new model systems of shaken grains.
The first system consists of monodisperse polar grains whose asym-
metry leads to persistent motion under shaking.30 These grains,
therefore, behave very much as self-propelled particles with ballistic

short-time motion and effectively diffusive long-time motion. The
system of polar grains is best modeled by models used for polar
active matter.31,32 More recently, a bidisperse version of the polar
grain system was also introduced. In this system, crystallization is
suppressed, and active glassy dynamics can be observed. Prelimi-
nary results again suggest important slowing down of the final dif-
fusive motion accompanied by an intermediate-time localization of
individual particles. We hope that further analysis will investigate
the presence of correlated motion or velocity correlations in this
system.

In all these active systems, particle motion is uniquely con-
trolled by the intensity of the active forces of biological, chemical,
or mechanical origin. The particles are fully arrested when activity is
absent and may start to diffuse and undergo interesting dynamics for
a finite level of activity. The main questions we wish to address are
as follows. How should we describe the transition between a dense
amorphous solid and a fluid controlled by active forces? What is the
microscopic dynamics that can be expected at the transition? Can
this transition be analyzed theoretically using simplified models of
active matter?

This brief review is focused on models of active glassy dynam-
ics. We start by a short review of the phenomena observed in nonac-
tive systems approaching their glass transitions. Next, we discuss the
minimal ingredients of models of active glass-forming systems and
introduce what we consider the minimal model that can exhibit the
salient features of active glassy dynamics. We then show some of the
unexpected phenomena observed in simulations and (sometimes)
deduced from theoretical considerations. We also briefly discuss
models that attempt to approximate specific experimental systems
more closely, albeit at the cost of introducing more control param-
eters and more variables. We end with some perspectives for future
research in the field.

II. GLASSY DYNAMICS IN NONACTIVE SYSTEMS
A. Short review of the equilibrium glass transition

To set the stage for the discussion of active glassy dynamics,
we first discuss the salient features of the structure and dynamics
of equilibrium (nonactive, i.e., “passive”) glassy systems. We note
that many of the microscopic phenomena discussed in this section
require detailed information about particles’ motion on the micro-
scopic scale, and for that reason, they were first observed in com-
puter simulations and later studied in colloidal systems. We also
recall that almost all good glass-formers studied in computer simula-
tions are many-component mixtures (for single component systems
with typical interaction potentials, it is virtually impossible to avoid
crystallization upon even mild supercooling).

All the examples shown in this section and in the next one
were obtained for a 50:50 binary mixture of spherically symmetric
particles interacting via the Lennard-Jones potential cut at the mini-
mum, which is usually referred to as the Weeks-Chandler-Andersen
(WCA) interaction,33

Vαβ(r) = 4�[(
σαβ
r

)
12
− (

σαβ
r

)
6
] (1)

for r ≤ &αβ = 21/6σαβ and constant otherwise. In Eq. (1), α, β denote
the particle species A or B, � = 1 (which sets the unit of energy),

J. Chem. Phys. 150, 200901 (2019); doi: 10.1063/1.5093240 150, 200901-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics PERSPECTIVE scitation.org/journal/jcp

FIG. 1. The pair correlation function, g(r), (left panel) and the static structure factor,
S(q), (right panel), for three volume fractions in the vicinity of the glass transition
for an equilibrium WCA system at a low temperature, T = 0.01.

σAA = 1.4, σAB = 1.2, and σBB = 1.0 (which sets the unit of length). In
all the figures except for Figs. 3 and 5(c), we show properties pertain-
ing to the larger, A, particles. In Figs. 3 and 5(c), we show probability
distributions pertaining to the smaller, B, particles.Figures 1–3 and 5
present new results obtained by analyzing trajectories generated for
the project described in Ref. 34, whereas Figs. 6–8 have simply been
adapted from the results shown in Ref. 34.

A defining feature of an approaching glass transition is a dra-
matic slowing down of a liquid’s dynamics with little change in the
pair structure upon a small change in the temperature T and/or
density. The pair structure is typically monitored through the pair
correlation function35

FIG. 2. The self-intermediate scattering function, Fs(q; t), for three volume fractions
in the vicinity of the apparent glass transition, for an equilibrium WCA system at
a low temperature, T = 0.01. The wavevector q is close to the position of the first
peak of the static structure factor, q = 5. Small changes in the static structure
shown in Fig. 1 are concurrent with a dramatic slowing down of the dynamics.

FIG. 3. The probability of the logarithm of the single-particle displacements,
P[log10(δr); t] for two volume fractions in the vicinity of the apparent glass tran-
sition, for an equilibrium WCA system at a low temperature, T = 0.01. For each
volume fraction, P[log10(δr); t] is shown at times t equal to 0.01, 0.1, 1, and 10
α relaxation times τα at that volume fraction. For Gaussian distributions of dis-
placements, the shape of P[log10(δr); t] does not depend on time and its peak
value equals to 2.13. The small changes in the static structure shown in Fig. 1 are
concurrent with dramatic changes in the dynamics.

g(r) =
1
ρN

⟨ ∑
n,m≠n

δ[r − (rn(0) − rm(0))]⟩ (2)

or the static structure factor35

S(q) =
1
N

⟨∑
n,m

eiq⋅(rn(0)−rm(0))
⟩. (3)

In Eqs. (2) and (3), N is the number of particles, ρ is the number
density, and rn(t) is the position of particle n at a time t. While these
functions are related through a Fourier transform and thus encode
the same information, it is easier to distinguish differences in struc-
ture on nearest neighbor length scales by examining g(r) and it is
easier to compare the decay of the structure on longer length scales
by examining S(q).

In Fig. 1, we show the density dependence of the pair corre-
lation function and the static structure factor of a WCA system at
the constant temperature, T = 0.01. While the pair structure changes
very little, the long-time dynamics of the system (as characterized by
time-dependent correlation functions defined below) slows down by
approximately 3 orders of magnitude.

To determine if the structure evolves in time, we can examine
time dependent versions of Eqs. (2) and (3), where rn(0) is replaced
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by rn(t). The time dependent version of Eq. (3) defines the collective
(coherent) intermediate scattering function35

F(q; t) =
1
N

⟨∑
n,m

eiq⋅[rn(t)−rm(0)]
⟩, (4)

which characterizes the relaxation of the initial structure on a length
scale characterized by 1/q, where q = |q|. The characteristic decay
time of F(q; t) for wavevector q near the peak position of the static
structure factor defines a structural relaxation time, usually referred
to as the α relaxation time, τα. For reasons of computational effi-
ciency, quite often one monitors the self-intermediate scattering
function35

Fs(q; t) =
1
N

⟨∑
n
eiq⋅[rn(t)−rn(0)]

⟩, (5)

which corresponds to the n = m terms in Eq. (4). The characteristic
decay time of Fs(q; t) for q at the peak position of the static structure
factor is nearly equal to τα but easier to compute.

In a simple liquid above the onset of glassy dynamics, it is found
that Fs(q; t) decays nearly exponentially. This is consistent with a
Gaussian distribution of particle displacements

Gs(r; t) =
1
ρN

⟨∑
n
δ[r − (rn(t) − rn(0))]⟩ (6)

whose mean-square average increases linearly in time, i.e., with
Fickian diffusion.

Two differences occur when the liquid is supercooled or if its
density is increased. A plateau develops in Fs(q; t) that indicates that
the particles are localized, as a solid, at intermediate time scales. The
particles are said to be trapped in cages formed by their neighbors,
and they have to escape their cages for Fs(q; t) to decay from the
plateau. The decay from the plateau occurs at increasingly later times
upon approaching the glass transition, and an operational definition
of the glass transition is that one is no longer willing to wait for
Fs(q; t) to decay from this plateau. The other major change is that
the decay after the plateau is no longer exponential; it is usually fit-
ted by a stretched exponential function, ∝ exp(−(t/τ)β), where the
so-called stretching exponent β decreases with decreasing temper-
ature. In Fig. 2, we show Fs(q; t) for the same state points as in
Fig. 1.

The nonexponential decay of Fs(q; t) implies that the probabil-
ity of the displacements Gs(r; t) is non-Gaussian. The non-Gaussian
character of the single particle displacements was investigated in
some detail. It was found that the particles are localized for an
extended period of time and then make a relatively quick jump to
another cage where they stay for another extended period of time.
A consequence of this hoppinglike motion is that the particles can
be separated into slow and fast subpopulations. The slow particles
are ones that moved less than expected for a Gaussian distribution
of displacements and the fast particles are ones that moved more
than what was expected for a Gaussian distribution of displacements.
Importantly, the slow and fast particles are also found to be spa-
tially correlated and form increasing larger clusters upon approach-
ing the glass transition. These spatially heterogeneous dynamics
are recognized as one of the hallmarks of glassy dynamics. To
inspect the Gaussian character of the single-particle motion, it

is convenient to monitor the probability distribution of the log-
arithm of single-particle displacements, log10(δr), during time t,
P[log10(δr); t], which is simply related to Gs(r; t), P[log10(δr); t]
= ln(10)4πδr3Gs(δr, t).40,41 The usefulness of P[log10(δr); t] comes
from the fact that if Gs(r; t) is Gaussian, then the shape of the prob-
ability distribution P[log10(δr); t] is independent of time and its
peak is equal to ln(10)

√
54/π e−3/2

≈ 2.13. In Fig. 3, we show
P[log10(δr); t] observed for a simple fluid, which indicates near-
Gaussian diffusion (top), and the bimodal P[log10(δr); t] distribu-
tion obtained at intermediate time scales for a slowly relaxing system
(bottom).

In the description above, we have not specified the type of
microscopic dynamics giving rise to the glassy dynamics. Interest-
ingly, it was demonstrated by direct numerical comparison that the
global evolution of the relaxation dynamics, of the slow relaxation of
time correlation functions, and of the dynamic heterogeneity asso-
ciated with spatio-temporal fluctuations of the dynamics is actually
the same for Newtonian,36 Langevin,37 Brownian,38 or even Monte
Carlo39 dynamics. Physically, this implies that details of the micro-
scopic motion at very short times do not affect the manner in which
the slow dynamics proceeds at much larger times. In other words,
the strong separation of time scales makes the details of the driv-
ing dynamics irrelevant at long times. This finding will play an
important role when discussing the role of nonequilibrium active
forces.

B. Driven dynamics of glasses: Rheology
As we wish to understand the behavior of dense materials

driven by active forces, it is interesting to mention that glassy mate-
rials can be driven out of equilibrium by many types of forces, and
“active” forces are only one particular example on which we shall
focus below.

A well-known example of a driving force that is frequently
applied to a dense assembly of particles is an external mechanical
perturbation that can take the form of a shear flow or a constant
stress.42 The obvious qualitative difference with active forces is that
such mechanical perturbation is applied at a large scale, rather than
at the particle level, but dense active particles or sheared thermal sys-
tems are two examples of nonequilibrium glassy dynamics. Before
discussing the former, it is therefore interesting to learn from the
latter case.

The field of glassy materials driven by an external mechan-
ical constraint relates to the rheology of glassy systems. Starting
from an arrested glass at a low temperature, the application of a
constant force (such as a shear stress) may give rise to a yielding
transition. Whereas the glass responds in a nearly linear manner at
small applied force, the response becomes nonlinear at larger applied
force until a well-defined force threshold is crossed (called a “yield
stress”) above which the glass deforms plastically and undergoes
microscopic relaxation. The yielding is thus a form of a solid-to-
fluid transition driven by an external force of sufficient strength,
which is currently under intense scrutiny.43,44 The response of a
glassy system to an applied force is obviously relevant to active glassy
materials.

Another way to mechanically drive a glass is to impose a con-
stant rate of deformation, i.e., a finite shear rate. This is again a
useful analogy since such geometry introduces a new time scale
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(the shear rate) for the external driving force, in close analogy with
self-propelled motion in active particle systems. The presence of a
finite shear rate has been analyzed in great detail.45,46 The main
finding is that to sustain a constant deformation rate, a dense sys-
tem needs to constantly undergo plastic rearrangements, and the
structure is thus never dynamically arrested. In other words, the sys-
tem is always in a driven steady state where particles diffuse and
the structure rearranges and there cannot be a fluid-to-solid tran-
sition since the material is permanently in a nonequilibrium fluid
phase.

C. Fluid-to-solid jamming transition
at zero temperature

As briefly mentioned in the Introduction, the jamming tran-
sition describes a fluid-to-solid transition in the absence of any
fluctuations, in particular, thermal fluctuations.47

A clean setting to observe the jamming transition is to consider
packings of soft repulsive spheres; imagine, for instance, green peas
(without gravity). Peas are a useful image as thermal fluctuations are
clearly insufficient to drive their dynamics. The jamming transition
separates a low-density regime where the assembly of peas cannot
sustain a shear stress and responds as a fluid, from a large-density
regime where the assembly of peas responds as a solid. For repulsive
spheres, the details of the jamming transition have been worked out
in great detail. In particular, it is found that the emergence of rigid-
ity corresponds to a nonequilibrium critical point, characterized by
power laws and several critical exponents. In particular, the pair cor-
relation function g(r) in Eq. (2) develops singular behavior exactly at
the jamming transition, the yield stress increases continuously from
zero as a power law of the density, etc.

Since the transition takes place at zero temperature, it is impor-
tant to realize that there is, by definition, no glassy dynamics that
can be observed near the jamming transition since the former can
only emerge when particles are driven by some sort of fluctuations.
Sheared assembly of such non-Brownian particles does not dis-
play glassy dynamics either. Another important consequence of the
absence of any dynamics is that the preparation protocol of the
athermal packing needs to be specified to analyze jamming.48,49 In

FIG. 4. Schematic temperature-density phase diagram for soft repulsive spheres
undergoing a glass transition at finite temperature and jamming transitions in the
absence of thermal fluctuations.

particular, it is found that the location of the jamming transition for
a given system cannot be unique but is instead dependent on the
packing preparation. There is thus not a unique jamming transition
density but instead a line of critical protocol-dependent jamming
transitions.50

Although glass and jamming transitions both describe fluid-to-
solid transitions, they are quite distinct physical phenomena. This
is most easily realized by studying the temperature-density phase
diagram of soft repulsive spheres;51–53 see Fig. 4. The jamming tran-
sitions take place at T = 0 along the density axis over a range of
densities. By contrast, the glass transition with its associated glassy
dynamics takes place at finite temperature, and thus, the struc-
tural and dynamical signatures associated with both transitions are
observed in different, nonoverlapping physical regimes.

III. MINIMAL MODEL OF GLASSY DYNAMICS
OF ACTIVE PARTICLES
A. Self-propelled particles

To study how “activity” interferes with “crowding,” our central
theme, a minimal model should simultaneously capture the physics
of crowding in dense particle assemblies, and those particles should
be driven by active forces. Before modeling systems as complex as
epithelial tissues or self-phoretic colloidal particles in a solvent, we
suggest that it is useful to learn some lessons from minimal models.
In equilibrium, the glass transition is typically studied as a function
of two control parameters, the particle density controlling crowding
and the temperature that drives the microscopic motion of the par-
ticles. Many investigations fix one of these control parameters and
vary the other in order to simplify studying the phase diagram, and
both directions are essentially equivalent.

Active systems composed of self-propelled particles are char-
acterized by two more control parameters, the persistence time of
the active force and its average strength. Thus, the parameter space
immediately doubles from two to four dimensions and the problem
becomes intractable. Since we are interested in how activity influ-
ences the glass transition, we can simplify matters by removing the
effects of the thermal bath, i.e., temperature, from the picture (note
that since there is still nonvanishing activity, we are away from any
jamming transition). Additionally, we can either fix the density or
fix one of the parameters that controls the active motion to examine
the influence of activity on the glass transition.

Self-propulsion in the active matter model can take many
forms, which are believed to yield essentially the same behavior as
far as collective behavior is concerned. A mathematically appeal-
ing minimal active matter model is a system of interacting active
Ornstein-Uhlenbeck particles (AOUPs)54–56 where particles per-
form overdamped motion in a viscous fluid, thus neglecting thermal
fluctuations. The self-propulsion forces evolve in time according to
the Ornstein-Uhlenbeck57 stochastic process. Thus, the equation of
motion for the position rn of particle n is

ṙn = ξ−1
0 [Fn + fn], (7)

where Fn = −∑m≠n∇V(rnm) is the force originating from pairwise
particle interactions and fn is the self-propulsion force acting on
particle n. Note that since thermal fluctuations are neglected, there
is no term corresponding to a thermal bath in Eq. (7), and thus,
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without the active force, the particles would only evolve toward
the closest potential energy minimum. The pair potential V(r) can
be any simple model for a dense fluid usually studied in the field
of simple glasses, from hard spheres to WCA and Lennard-Jones
potentials.

The equation of motion for the active force fn is

τp ḟn = −fn + ηn, (8)

where τp is the persistence time of the self-propulsion and ηn
is an internal Gaussian noise with zero mean and variance
⟨ηnηm⟩noise

= 2ξ0TeffIδnmδ(t − t′); I denotes the unit tensor. The
average ⟨. . .⟩noise denotes averaging over the noise distribution. The
parameter Teff, which we will refer to as the (single-particle) effec-
tive temperature, quantifies the noise strength and, therefore, the
magnitude of the active forces.

B. Lessons from the dilute limit
Before discussing dense systems, it is useful to consider the

dynamics of a single particle evolving according to Eqs. (7) and (8).54

The mean squared displacement of a single AOUP can be calculated
as

⟨δr2
(t)⟩ =

6Teff

ξ0
[τp(e−t/τp − 1) + t], (9)

which exhibits typical features of a persistent random walk. Indeed,
for t≪ τp, we can expand the exponential, ⟨δr2

(t)⟩ ≈ (3Teffτp/ξ0)t2,
and the motion is ballistic. For t ≫ τp, the exponential can be
neglected, ⟨δr2

(t)⟩ ≈ (6Teff/ξ0)t, and the motion is diffusive with
a diffusion coefficient D0 = Teff/ξ0. Here, we see the origin of the
name effective temperature: Teff plays the same role as the equi-
librium temperature T in the expression for the long-time diffu-
sion coefficient of an isolated particle. Importantly, systems with the
same effective temperature will have the same long time diffusion
coefficient in the absence of interactions. This makes Teff a useful
parameter to determine how the long-time dynamics changes upon
approaching the glass transition. The persistence time τp gives the
time scale for the transition from ballistic to diffusive motion for an
isolated particle.

After the introduction of the effective temperature Teff, it is nat-
ural to ask whether this parameter has other properties of the tem-
perature in equilibrium passive systems. This question can be asked
several ways. For example, one could ask whether there is a linear
response relation involving a single AOUP in which the equilib-
rium temperature T is replaced by Teff. One could also ask whether
the familiar Gibbs-Boltzmann distribution is recovered when a sin-
gle AOUP is placed in an external potential, with the equilibrium
temperature replaced by Teff.

The answers to the above questions vary.54 It is possible to
come up with a single particle linear response problem in which,
in the small frequency limit, the response and correlation func-
tions are related by Teff. Also, one can show that for a single AOUP
in a linear potential with a lower wall (the sedimentation prob-
lem), the probability distribution has the Gibbs-Boltzmann form

with the equilibrium temperature replaced by Teff. However, one
can also show that the probability distribution of a single AOUP
placed in a harmonic potential has a Gaussian form, but the param-
eter that replaces the equilibrium temperature is in fact a function
of both Teff and the persistence time τp. These results suggest that,
in general, Teff does not always play the same role as the temper-
ature in equilibrium systems. We note that in systems of interact-
ing AOUPs, other temperaturelike parameters could be defined.58,59

These temperatures will be influenced by the single particle effec-
tive temperature Teff, the persistence time τp, and the interparticle
interactions.

This, however, does not preclude using the single particle effec-
tive temperature Teff as a control parameter for dense active sus-
pensions since it can still tell us how much the interactions slow
down the long-time dynamics. Therefore, the minimal model of
active glassy dynamics involves the single particle effective tempera-
ture Teff, the persistence time τp, and the number density as control
parameters. This set of control parameters allows us to investigate
the influence of being driven by nonequilibrium active forces on the
glassy dynamics.

In the limit of vanishing persistence time, the equations of
motion (7) and (8) reduce to the equilibrium dynamics of an over-
damped Brownian system at the temperature equal to the effective
temperature. Thus, the departure from equilibrium is quantified by
the persistence time, and increasing the persistence time drives the
system further away from equilibrium. For the sake of brevity, we
will sometimes use the phrases increasing/adding activity to indicate
increasing the persistence time. Note, finally, that for the hard sphere
interaction, the absolute value of Teff does not compete with any
energy scale, and the system is left with only two control parameters,
density and persistence time.

C. Many-body physics at large density
1. Basic observations: Nonequilibrium glass transition

Armed with a simple model of active particles, we can now
examine if the glass transition exists and how it evolves with chang-
ing Teff, the persistence time, and the density. Initial studies of hard
and soft spheres suggested that adding activity does not destroy the
glass transition but rather pushes the transition to a higher density,
in the case of hard spheres,60 or to a lower temperature at constant
density, in the case of soft spheres.61

It may appear logical that a driven system has a delayed glass
transition, as compared to its equilibrium counterpart. We will
show below a counterexample that proves that intuition incor-
rect. We recall that another incorrect intuition could be drawn
from the analogy with driven glassy systems discussed in Sec. II B,
where we showed that a glass driven with a given deforma-
tion rate does not possess a glass transition and is always in a
nonequilibrium steady state. Simulations and theoretical analysis for
self-propelled particles show that the local (as opposed to global
mechanical deformation) nature of the driving in fact qualitatively
changes the picture. A self-propelled particle system does undergo
dynamic arrest to an amorphous glass that we call a nonequi-
librium glass transition. This expression makes clear the distinc-
tion with the equilibrium glass transition that is observed in dense
particle systems driven by thermal fluctuations, as described in
Sec. I B.
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To elucidate the role of the activity, we investigated the struc-
ture and dynamics of systems of AOUPs with the WCA interaction.
Since there are three control parameters, we fixed the effective tem-
perature at two illustrative values and then investigated the density
and persistence time dependence of the structure and dynamics at
each Teff. The two values of the effective temperature correspond
to two limits of the WCA interaction. At the higher temperature,
Teff = 1.0, the particles are able to explore a significant range of the
repulsive part of the pair interaction. At the lower temperature, Teff
= 0.01, the particles do not penetrate the repulsive wall of the poten-
tial and they should behave effectively almost like hard spheres.
Thus, with these two values of Teff, we hope to analyze the behav-
ior of a broad class of representative model systems, from mod-
els for dense liquids to dense assemblies of repulsive colloids and
grains.

The central outcome of most numerical studies of dense
systems with self-propulsion is that, as the strength of the
self-propulsion is decreased, i.e., as the effective temperature is
decreased, or as the “crowding,” i.e., density, is increased, the mate-
rial undergoes a form of dynamic arrest characterized by a phe-
nomenology very similar to observations in equilibrium systems
driven by thermal fluctuations.60,62 We demonstrate these central
observations in Fig. 5 where we show the modest evolution of the
pair structure of the AOUP model, which accompanies the dramatic
slowing down of the dynamics and clear dynamic heterogeneity. In
fact, to an unexpert eye, the data in Fig. 5 could very well be taken as
classic signatures of the glassy dynamics usually observed in equilib-
rium liquids, but they are reported here for a driven active system of
self-propelled particles.

2. Nonequilibrium structure of active fluid
Let us now turn to a more detailed description of the physics

associated with nonequilibrium glassy dynamics of active particle
systems. We argued in the previous paragraph that active materials
display all classic features of the dynamics observed in equilibrium
fluids approaching their glass transitions. Thus, our goal here will
be to emphasize the new features and difficulties that are specific to
active systems.

We start with a description of the structure of the active system
approaching the glass transition. For a fixed value of the persistence
time, we have shown that the pair structure evolves very little as
the glass transition is approached. It is, however, interesting to ask
how does the pair structure evolve as the system increasingly departs
from equilibrium with increasing persistence time. In Fig. 6, we fix
the value of the effective temperature and show how the pair corre-
lation function g(r) changes as τp increases. Recall that as τp→ 0, the
system is at thermal equilibrium at a temperature Teff.

We observe that the increasing activity has a profound influ-
ence on the pair structure of nearest neighbors. The first peak of the
pair correlation function increases very rapidly with increasing per-
sistence time, and it reaches very large values and becomes extremely
narrow at the lower effective temperature. We believe that equilib-
rium systems with similar short distance structure would be totally
arrested.

More in detail, we observe that at low Teff, the position of the
first peak of g(r) remains at the same distance r corresponding to the
cutoff of the WCA potential and thus to the radius of the equivalent
hard sphere system. The growing peak amplitude can be interpreted

FIG. 5. Dense systems of self-propelled particles undergo a nonequilibrium glass
transition as density is increased at constant effective temperature. Small varia-
tions of the steady state structure factor S(q) shown in panel (a) are concurrent
with dramatic slowing down of the relaxation of the self-intermediate scattering
function Fs(q, t) shown in panel (b) and the emergence of strong dynamic hetero-
geneity, which is evident from the probability distributions of the logarithm of the
single-particle displacements, P[log10(δr); t] shown in panel (c).

as an effective short-range attraction resulting from the competi-
tion between the repulsive interaction and the self-propulsion. This
effective adhesion has been discussed in the context of motility-
induced phase separation and cluster formation in self-propelled
particles.

For the system at higher Teff, the growth of the peak ampli-
tude is observed but is less pronounced than for the hard sphere
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FIG. 6. The steady-state pair correlation function g(r) for an AOUP system with
WCA interactions at (a) low effective temperature, Teff = 0.01, and (b) high effec-
tive temperature, Teff = 1.0. In the former case, particles almost never overlap,
but the self-propulsion leads to an effective attractive interaction that makes the
particles “sticky.” In the latter case, there is some interpenetration and some effec-
tive attractive interaction, but the main consequence of the self-propulsion is the
increase in the effective particle radius with τp. This figure has been adapted from
Ref. 34.

limit. This reflects a more subtle change in the effective interac-
tion between particles. Perhaps, the more striking observation is
that the peak position is highly sensitive to the persistence time
and shifts to larger distances as τp increases. Physically, this means
that the effective radius of the particles is actually increasing as the
persistence time grows, suggesting an increasing crowding of the
particles.

We will discuss below the dynamical phenomena that com-
plement these observations. For equilibrium systems, a very accu-
rate liquid state theory was developed decades ago to predict the
fluid structure starting from the pair interaction.35 There exists at
present no such theory for active matter, but we clearly observe
that such theory should take into account the details of the self-
propulsion mechanism. The nonequilibrium nature of the self-
propulsion dynamics implies that the sole knowledge of the inter-
action potential between particles is not enough to predict the
structure of the nonequilibrium fluid.

3. A purely nonequilibrium object:
Velocity correlations

For equilibrium systems, the static structure is characterized
by either g(r) or by S(q), which are the most important structural
quantities. In fact, almost all theories of glassy dynamics use the pair
structure as the only static input.

An important development originating from the theoretical
description of dense active systems is the discovery that an additional
correlation function appears in active systems that has no equilib-
rium analog.64 This function quantifies correlations of the veloci-
ties of the individual particles. The velocity of overdamped AOUP
i is equal to ξ−1

0 (fi + Fi), recall Eq. (7), and the velocity correlation
function in Fourier space is defined as

ω∣∣(q) = q̂ ⋅ ⟨
N
∑
i,j=1

(fi + Fi)(fj + Fj)e−iq(ri−rj)⟩ ⋅ q̂, (10)

with q̂ = q/∣q∣. We note that for a binary mixture there would
be three different partial correlation functions of the overdamped
velocities.

In the limit of vanishing persistence time, the correlation
function in Eq. (10) becomes trivial, i.e., wavevector independent,
because positions and velocities are independent quantities at ther-
mal equilibrium. For finite persistence times, it has a nontrivial
wavevector dependence, as shown in Fig. 7. In addition to the large
q oscillations that imply local velocity correlations reflecting the
local structure of the dense liquid, there is a clear upturn at low-
q that can be used to define a finite correlation length for velocity
correlations.

Physically, the nontrivial character of the velocity correlation
function implies that a snapshot of short-time displacement fields
is likely to reveal large-scale correlations that are purely due to
the nonequilibrium nature of the active particle system. These spa-
tial correlations represent a nontrivial form of collective motion.

FIG. 7. The steady-state equal-time velocity correlations ω∥(q) for an AOUP sys-
tem with WCA interactions at a low effective temperature, Teff = 0.01. Increasing
range of the velocity correlations with increasing τp is signaled by the growth of
the small wavevector peak of ω∥(q). Developing local structure of the velocity cor-
relations is evident from the growth of the amplitude of the oscillations of ω∥(q).
This figure has been adapted from Ref. 34.
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We note that these correlations exist even in the dense, but non-
glassy, active liquid and are thus not specifically connected to the
glassy dynamics itself. Numerical measurements indicate that the
temperature dependence of the velocity correlation function is rel-
atively modest, suggesting that correlations already present in the
active fluid survive but do not change in any remarkable way as the
nonequilibrium glass transition approaches.

The theoretical importance of the velocity correlations (10)
is twofold. First, these correlation functions enter into the exact
description of the short time dependence of various correlation
functions. Second, they also enter into approximate theories of the
long-time dynamics of active glassy systems.

4. How does activity change the slow dynamics?
We now turn to the dynamics. We note that, quite surprisingly,

in some cases the evolution of the relaxation time for a fixed Teff
does not change monotonically with τp.64 For small τp, the relaxation
time may initially decrease and then increase with increasing τp. This
finding demonstrates that the activity can alter the glassy dynam-
ics in rather subtle, unexpected ways. This nonmonotonic behavior
of the relaxation time is not mirrored in structural quantities such
as g(r) and S(q) since, for instance, the height of the first peak of
g(r) increases monotonically with persistence time, even though the
relaxation time does not.

An enhancement of the structure, as given by the increase in the
peak height of g(r) and a decrease in the relaxation time, is contrary
to what is expected from studies of equilibrium glassy liquids. A well-
studied theory for passive liquids that connects the liquid structure
with dynamics is the mode-coupling theory,65 which has only the
static structure factor as input. While the mode-coupling theory for
the glass transition is not an exact description for this transition, it
describes reasonably well the initial part of the slowing down of the
dynamics and it provides microscopic physical insights.

To gain some insight into why active systems may have a
nonmonotonic evolution of the relaxation time with the persis-
tence time, a mode-coupling-like theory for active systems was
developed.64,66 It was shown that if the theory incorporated the
nontrivial character of the velocity correlations, the theory could
indeed predict a nonmonotonic evolution of the relaxation time with
increased persistence time. There is a minimum of the relaxation
time with increasing persistence time, and the relaxation time begins
to increase again with increasing persistence time. The additional
velocity correlations are, therefore, an important component of the
slow dynamics of dense active systems.

Next, we focus on the glass transition itself.34,67 For a fixed value
of the persistence time, we find that the relaxation time increases
when the effective temperature is decreased and/or when the den-
sity increases, just as for dense equilibrium fluids. This simply means
that even for active systems, the glass transition results from a com-
petition between active forces that make the particles move and
crowding that tends to arrest them.

To analyze the increase in the relaxation time of the system
and to obtain the fluid-glass phase diagram, we use an empirical
fitting form τα ∼ τ0 exp(B/(�0 − �)) to calculate a critical density
for the glass transition, �0(Teff, τp), which depends on the other
two parameters of the model. The evolution of the glass transition
lines are reported in Fig. 8, in a (temperature, density) phase dia-
gram. For a given value of the persistence time, the phase diagram

FIG. 8. Evolution of the fluid-glass phase diagram with the persistence time of
the self-propulsion. With increasing persistence time, the effective glass transition
line (determined by fitting the volume fraction dependence of the relaxation time)
shifts toward smaller volume fractions at higher effective temperatures and toward
larger volume fractions at low effective temperatures, so departure from equilibrium
can either promote or suppress the glassy dynamics. Filled symbols are Brownian
dynamics (BD) simulations. This figure has been adapted from Ref. 34.

offers two phases, the fluid at low density and high temperature,
and the glass at large density and low temperature. The “BD” line is
obtained from simulations performed with Brownian dynamics, i.e.,
in the equilibrium τp → 0 limit, and it corresponds to the equilib-
rium glass transition. All other lines correspond to nonequilibrium
glass transition lines.

The influence of a finite persistence time on the glass transi-
tion is obvious. These data confirm that at low Teff an increase in
the persistence time shifts the glass transition toward large densities,
whereas the opposite effect is observed for larger Teff, with a complex
behavior at intermediate Teff values. These nontrivial dependencies
show that departing from equilibrium can either promote or depress
glassy dynamics and that it is difficult to form a physical intuition,
even for very simplistic models such as AOUPs.

IV. MORE COMPLEX MODELS
In this section, we briefly discuss some of the more complex

computational models of dense active matter. Most of these models
were proposed to incorporate specific features of activity encoun-
tered in laboratory active matter systems. Some of them attempt to
(semi)qualitatively model specific biological, colloidal, and granular
systems.

A. More models for self-propelled particles
Perhaps, the most popular model for active particulate sys-

tems is that of active Brownian particles.68,69 It models active mat-
ter as consisting of particles that move via a combination of active,
directed motion and Brownian motion. The particles are endowed
with an axis of symmetry. They move systematically along this
axis with a constant velocity v0. The equation of motion for the
positions takes the same form as in Eq. (7), but the active force
now takes the form ξ0v0ni, where the unit vector ni indicates the
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direction of self-propulsion. The direction of the axis of symmetry
moves via rotational diffusion with diffusion coefficient DR. In two
dimensions, that diffusion is described by a single angle that evolves
via a simple Langevin equation of the form θ̇ =

√
2DRη, where η is

a Gaussian white noise. In addition, the particles may also be sub-
jected to a random Brownian force and instantaneous friction char-
acterized by temperature T and friction coefficient ξ0. The particles
interact via spherically symmetric interaction potential V(r). In the
original version of the model, the resulting translational diffusion
coefficient due to these random forces, DT = T/ξ0, and the rotational
diffusion coefficient were constrained to follow the relation imposed
by hydrodynamic considerations,68 DR = 3DT/σ2, where σ is the par-
ticle diameter. In several studies, this relation has been relaxed60 and
both DR and DT were treated as independent parameters, which is
equivalent to using the persistence time of the AOUP particle as a
free parameter of the model.

The active Brownian particle model is intended to represent
active colloids. It has been used, in particular, in many studies of
motility-induced phase separation. It has also been used to study
the influence of the activity on the glassy dynamics. In a simula-
tional study of active Brownian hard spheres, Ni et al.60 showed that
when the magnitude of the systematic velocity is increased while all
the other parameters are kept constant, the apparent glass transi-
tion volume fraction moves toward larger values. Ni et al. noted that
the faster dynamics was accompanied by decreasing height of the
first peak of the steady state structure factor. This finding qualita-
tively agrees with the results of the investigation of the glassy phase
diagram described in Sec. IV, where this corresponds to low Teff val-
ues for the AOUP model. In another study, Fily et al.70 used the
active Brownian particle model with a soft repulsive potential to map
out the density-temperature phase diagram of the model. They also
reported a “frozen” phase at low activity and large density, which in
our view should be interpreted as a glass, but the slow glassy dynam-
ics on the approach to this arrested glass phase was not analyzed in
detail. We expect that it should present the same phenomenology as
the AOUP models shown in Sec. III.

B. Aligning interactions
The field of active matter was largely born from the quest to

describe and understand theoretically the physics of animal flocks.
The Vicsek model71 was conceived to capture the competition
between the natural tendency for animals to align the direction
of their self-propulsion and an external noise. While it is unclear
whether all self-propelled particle types (such as cells and colloidal
particles) truly possess the same tendency to alignment, the exis-
tence of implicit aligning interactions was demonstrated for some
active materials, such as vibrated polar disks.30

A computational model was proposed in Refs. 31 and 32 to
describe a system of vibrated polar disks first studied in Ref. 30. In
this computational model, the motion of the particles is not over-
damped. The particles are endowed with a polarity represented by a
unit vector. Thus, the instantaneous state of a given particle is rep-
resented by its position, velocity, and polarity. The self-propelling
force of constant magnitude acts in the direction of the polarity. In
turn, there is a torque acting on the velocity, which tends to align it
with the polarity. There might also be two stochastic torques that
randomly rotate the velocity and the polarity vectors. Finally, the

particles interact via a spherically symmetric interaction potential.
This is quite a complicated model with many adjustable parame-
ters that leads to a huge parameter space. However, since it was first
proposed to describe features observed in a specific experimental
study, the parameters were adjusted to best reproduce the results of
that specific experiment. It was shown that single particle, binary,
and collective properties of the experimental system can indeed
be reproduced numerically. Both the experimental system and the
model have also then been studied at larger density when particles
form an active crystalline phase.72 Computational and experimental
studies of the glassy phase of a binary mixture of the same model are
currently in progress, and preliminary results suggest that an active
glassy phase is indeed found, whose properties will hopefully be ana-
lyzed in more detail in future work. We note that the model of Refs.
31 and 32 could be thought of as an underdamped version of a model
analyzed in Ref. 73. The latter model also exhibits implicit aligning
interactions. The authors of Ref. 73 identified a “jammed” phase that
in our view is an arrested glass phase. Again, the transition between
the fluid and arrested phases was not characterized in any detail, and
this would be a worthwhile research effort.

In an effort to describe the collective motion observed in
dense epithelial tissues, Sepulveda et al.74 proposed a computational
model where particles interacting with a rather complex pairwise
interaction are self-propelled with a finite persistence time and are
subject to short-range aligning interactions between the directions
of the self-propulsion. Again, the parameter space of the model is
impressive, but the many parameters of the model were adjusted
to reproduce a specific set of experimental observations. In some
later versions of the model, friction to a substrate and additional
ingredients were added to the model.21 Finally, we note yet another
model with the aligning interactions introduced in Ref. 75. It would
be interesting to try and simplify such models in order to address
more specifically the physical question of how aligning interactions
between self-propulsion directions may affect and perhaps change
qualitatively the glassy dynamics obtained in the absence of aligning
interactions reviewed in Sec. III.

C. Modeling cell dynamics: Division, death,
and volume fluctuations

One of the common phenomena in biological active matter is
cell division and death. A combination of these processes can lead
to an unstable system with cells eventually dying out or instead a
growing tissue that expands and invades space. If cell death and divi-
sion are instead statistically balanced, a driven steady state can be
reached. Quite importantly, for the present article, it was shown by
Matoz-Fernandez et al.76 that cell division and death can strongly
influence the glassy behavior. In this study, a particle-based model
of two dimensional epithelial tissues was investigated. The particles
interacted via a combination of a short-range repulsive and a longer-
range attractive harmonic potential. The activity was modeled as a
combination of a cell death process, in which particles representing
cells were randomly removed from the system, and a cell division
process, in which a new (daughter) cell was added on top of an exist-
ing (mother) cell, with a probability depending on the number of
neighboring cells in contact with the mother cell.

A rich nonequilibrium phase diagram with gaslike, gellike, and
dense confluent phases was found. A remarkable result is that in the
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dense confluent phase any positive rate of cell death and division
always fluidizes the system and prevents any amorphous solidifica-
tion. Physically, the reason is that any such event reorganizes the
system locally, and thus at long times, any location in the system has
eventually reorganized with probability unity, completely reshuf-
fling the structure; the dynamics is not arrested. By contrast, a system
without cell death and division but endowed with activity modeled
similarly to that present in the active Brownian particles model was
found to exhibit classic features of glassy dynamics upon decreasing
the magnitude of the velocity, as expected by analogy with the type
of minimal active model discussed in Sec. III.

In the opposite limit where death is not compensated by cell
division, the density of cells would increase exponentially with time
in a confined volume. Here, the interesting setting is when open
boundary conditions are present since from just a few cells that
can divide, a large tissue/colony can expand. This was numerically
modeled in Ref. 77 using an appropriate pairwise interaction and a
dynamics uniquely ruled by the stochastic rules for particle division.
In agreement with the steady state study of Matoz-Fernandez et al.,
Malmi-Kakkada et al.77 concluded that cell division also leads to a
complete reshuffling of the growing colony at long times, suggesting
that the cell division rate directly controls the onset of glassy dynam-
ics. However, they surprisingly do not observe any specific glassy
feature even when the division rate is small. It would be interesting
to specifically revisit such a model in order to analyze in more detail
the microscopic mechanisms responsible for tissue fluidization.78,79

Finally, a qualitatively different type of active dynamics,
inspired by observations of real tissue dynamics, has recently been
numerically studied.80 In this model, the confluent tissue is again
modeled as soft repulsive particles at large density, and the only
source of activity is given by spontaneous fluctuations of the par-
ticle volume. Observations in dense epithelial tissues suggest that
individual cells undergo relatively large volume fluctuations (up to
20%) that appear almost periodic with a very low frequency.81 In
the numerical model, these oscillations were taken as purely peri-
odic with a very low but fixed frequency. In the opposite limit where
frequencies are widely distributed or changing with time, the driv-
ing becomes random and resembles the random fluctuations pro-
vided by thermal noise, thus leading to ordinary equilibriumlike
glassy dynamics. For purely periodic driving forces, a sharp fluid-to-
solid transition is reported, but it shares no features with the glassy
dynamics. Instead, there seems to exist a sharp threshold between
an arrested state when volume fluctuations are small and a fully flu-
idized state when they are large. The transition between the fluid and
solid states appears discontinuous and is akin to a nonequilibrium
first order transition. It was argued that the proper analogy with
the physics of glasses is not with the glass transition itself but rather
to the yielding transition discussed in Sec. II B which is also found
to be discontinuous.82 Physically, volume fluctuations appear as a
slow driving force, and fluidization occurs when that force exceeds a
threshold, as for yielding, the only difference being that the force acts
on a local rather than a global scale. This transition thus qualifies as
an “active yielding transition.”

D. Vertex models for tissue morphology
Finally, let us briefly discuss two models that, to different

degrees, are not particle based. These models belong to the category

of vertexlike models that are very popular among researchers focus-
ing on modeling real confluent biological tissues. The first model is
the so-called Voronoi model.83 In this model, the cells are modeled
as Voronoi volumes defined by their neighbors and the degrees of
freedom are the Voronoi cell centers. However, the energy expres-
sion is that of the standard vertex model,84 where the energy is
given as the sum of quadratic departures of the area and the perime-
ter from their preferred values. In this model, the forces act on
the Voronoi cell centers. The second model is the standard vertex
model,84 in which the degrees of freedom (on which the forces and
thermal noise are acting) are the positions of the vertices of each cell.
The same energy expression is used as in the Voronoi model.

Vertex models are interesting models because they reflect more
faithfully the geometric structure of dense confluent tissues. A
remarkable result is that the vertex model may undergo a jam-
ming transition in the absence of driving that is purely controlled
by the competition between surface and bulk terms in the energy
functions.85 Therefore, as the average shape of the cells evolves, the
mechanical response of the system changes from a fluid to a solid
response, in very much the same way a dense packing of soft parti-
cles undergoes a jamming transition as the density is increased, as
discussed in Sec. II C.

The properties of these models have also been studied in the
presence of either thermal forces (i.e., in equilibrium) or in the pres-
ence of self-propulsion with a finite persistence time.83,86,87 For a
given persistence time (that can be zero), a transition between a fluid
and an arrested solid state is observed, with a growing relaxation
time and, again, the phenomenology associated with a nonequilib-
rium glass transition, suggesting that a phase diagram for vertex
models in a plane comprising activity and parameter shape should
qualitatively resemble the sketch in Fig. 4 for soft spheres. Further
work should clarify the details of both the glass and the jamming
transition in the broad family of vertex and Voronoi models.

V. CONCLUSIONS AND SOME THEORETICAL
PERSPECTIVES

Among the many directions that have emerged in the growing
field of active matter, the analysis of dense systems composed of indi-
vidual entities locally driven by active forces is receiving attention
from a large community of scientists, and novel experiments and
active materials in this regime keep emerging. In this work, we have
provided a conceptual framework to understand how dense active
materials may become dynamically arrested when active forces lose
the battle against particle crowding to form an amorphous state of
active matter. We have argued that systems such as dense tissues,
self-phoretic colloids, and active granular materials would display
similar glassy dynamics despite the fact that they evolve far from
equilibrium. This observation suggests that the field of the equi-
librium glassy dynamics and the field of dense active materials are
intimately connected.

We argued that minimal models of active particle systems con-
firm the experimental observation that a fluid to amorphous solid
glass transition can indeed be observed, for instance, using computer
simulations. The simplicity of these models, as compared to the
complexity of the experimental realizations described above, makes
these models useful starting points to address very precise questions
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about the modifications brought by the nonequilibrium nature of
active matter to the equilibrium glass transition phenomenon.

There are many challenges ahead of us to get a better theoretical
understanding of nonequilibrium glass transitions. The main con-
ceptual difficulty is that active systems are out of equilibrium. This
makes their analysis quite delicate as the tools of equilibrium sta-
tistical mechanics are no longer available. As a result, there exists at
present no established theory to describe the steady state structure of
simple active fluids, not to mention very dense active fluids. Further-
more, the various identities relating equal-time and time-dependent
correlation functions and static and dynamic linear response func-
tions become invalid, and there might be systematic currents inside
the active system.

There have been a few approaches to describe the static steady
state properties of dense active matter systems.55,63,88–92 These stud-
ies focused on the influence of the activity on the phase behavior.
Reasonable theoretical descriptions of the influence of the activ-
ity on the pair structure and of the phase behavior were obtained.
However, Rein and Speck93 questioned this approach and the gen-
eral ability of effective pair potentials to describe the local structure.
Speck, Löwen, and collaborators developed their own approach to
the phase behavior that more explicitly involved self-propulsion and
correlations involving the self-propulsions.94 They also generalized
the dynamical mean-field theory to include the activity and derived
an active version of the Cahn-Hilliard theory.95,96 Finally, Löwen
and collaborators generalized dynamical density functional theory
to active particles.97–99

Of particular interest to us are the theories for the active
(nonequilibrium) glassy dynamics.64,66,100–106 These theories are
inspired by theories of equilibrium glassy dynamics. Specifically,
there is a theory100 that follows the spirit of the mean-field p-spin
approach,107 a number of theories64,66,101–104,106 that rely upon a
factorization approximation that is the cornerstone of the mode-
coupling theory of glassy dynamics,65 and a theory105 that attempts
to include some elements of active matter into the framework of
mean-field (RFOT) glass theory.108

Theories in the second group adopt a more microscopic per-
spective, i.e., they deal with systems of moving particles and include
at least some static (equal-time) correlations. These theories system-
atically predict the existence of a nonequilibrium form of a glass
transition. Although we argued that this is a generic result, we recall
that the same theories would predict that the fluid-to-glass transi-
tion of mechanically driven glasses would be destroyed by the exter-
nal mechanical perturbation, suggesting that the effect of active or
mechanical driving on glasses can be rather subtle.

The theories in the second group can be differentiated using
several criteria. First, these theories can be differentiated with respect
to the model they attempt to describe. Thus, there is a theory devel-
oped by us that focuses on the simplest model system, the system
of athermal AOUPs,64,66 a theory that describes a thermal AOUP
system102 (i.e., a system of particles subject to both self-propulsions
evolving according to the Ornstein-Uhlenbeck process and ran-
dom thermal forces), and three theories101,103,106 describing active
Brownian particles. In our opinion, it is relatively easy to adopt
a theory developed for one model system to another model sys-
tem and the more substantial differences between various theo-
ries of mode-coupling flavor originate from another source. Sec-
ond, we can contrast between theories that attempt to describe both

steady-state properties and the dynamics of active particles101,103

using a version of the “integration-through-transients” approach
used to describe the properties of sheared colloidal suspensions109

and theories that assume that the steady-state structure is known
and that focus instead directly on the prediction of stationary time
correlation functions.64,66,102,106 Third, we can contrast theories that
attempt to replace the active model system by an equivalent equilib-
rium (thermal, passive) system101,102 and theories in which the time-
evolution of the self-propulsion is accounted for explicitly albeit
approximately.64,66,103,106

It seems that important ingredients of a theory are a reason-
ably accurate description of the time evolution of the self-propulsion
and incorporation of new nonequilibrium static correlations. Thus,
a promising route for future work seems to be a combination of
the formally exact description of the time evolution of the self-
propulsion of the approach of Ref. 103 and of our own theory64,66

which automatically takes into account nonequilibrium static corre-
lations.

We have shown that a nonequilibrium glass transition is a gen-
eral feature of model active matter systems. In the future, on the
experimental and simulational side, the focus should shift to investi-
gating specific nonequilibrium features of the transition. For exam-
ple, since it was shown that polar driven grains can form a flowing
crystal,110 it would be interesting to investigate whether and under
what conditions a flowing glass state (i.e., an amorphous solid that
spontaneously moves as a rigid body) is possible. On the theoret-
ical side, the validity and accuracy of various theories should be
quantitatively assessed. To this end, one needs to carefully simu-
late model active systems, measure various static correlations, and
then use them in mode-coupling equations in order to determine the
approximate dynamics. The results should then be compared with
the simulations. This would parallel the work done previously in the
area of equilibrium glassy dynamics.111,112
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