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ABSTRACT

It has recently become possible to prepare ultrastable glassy materials characterized by structural relaxation times, which vastly exceed the
duration of any feasible experiment. Similarly, new algorithms have led to the production of ultrastable computer glasses. Is it possible to
obtain a reliable estimate of a structural relaxation time that is too long to be measured? We review, organize, and critically discuss various
methods to estimate very long relaxation times. We also perform computer simulations of three dimensional ultrastable hard spheres glasses
to test and quantitatively compare some of these methods for a single model system. The various estimation methods disagree significantly,
and non-linear and non-equilibrium methods lead to a strong underestimate of the actual relaxation time. It is not yet clear how to accurately

estimate extremely long relaxation times.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0015227

|I. THE PROBLEM OF LONG TIMESCALES

Glassy materials are characterized by long relaxation times.'
The microscopic origin of these long relaxation times has been a sub-
ject of intense interest. Current approaches suggest that the relax-
ation time might be controlled by the configurational entropy,"’
dynamical facilitation,’ the shear modulus,”* or by one of the sev-
eral additional factors. For most glass formers, the relaxation time
of the supercooled liquid state increases in a super-Arrhenius man-
ner as the temperature decreases. Some experiments and simula-
tions have been interpreted to indicate that the relaxation time
would diverge well above absolute zero if the supercooled liquid
could be cooled sufficiently slowly, but this conclusion has also
been contested.! Aside from the issue of a true divergence, the
structural relaxation time of an amorphous system is a key factor
determining its material properties. It is a long structural relax-
ation time that makes an amorphous system have the mechani-
cal properties of a solid. The relaxation time is a critical piece of
information needed to understand the barriers on the potential
energy landscape and the types of molecular motion responsible for
relaxation.

Conventionally, glasses are produced by cooling bulk liquids
below the glass transition temperature, Tg, which is the temperature
scale set by the competition between the experimental preparation
timescale, tprp, and the intrinsic equilibrium relaxation time of the
system, 7o(T). As a general rule, for this method of glass preparation,
one has

sz(Tg) R~ tprep (1)

up to a prefactor. In practice, it is difficult to vary t,., over many
orders of magnitude. In experiments, tprep ~ 10% s represents a stan-
dard figure. It is possible to realize fast quenches with tp,, = 100 ms
or even shorter times, and a few heroic aging experiments have been
performed over months or even years (fprep = 3 x 107 s). Computer
simulations are limited to about #prep < 1 ps—10 ps.

For liquid-cooled glasses, the preparation time and the relax-
ation time of the system are strongly coupled, as in Eq. (1). It
is therefore possible to measure the relaxation time of any such
sample, as it takes about the same amount of time to equilibrate
the system and to measure its relaxation time. For the past three
decades, the experimental challenge has been to devise techniques
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to measure relaxation times over a broad range of timescales

from 7, » 100 s at T, down to the microscopic relaxation time
of simple liquids, 7, ~ 107" s (faster timescales correspond to
the non-glassy fluid). Experiments can now both follow 7, over
these 12 orders of magnitude and measure the relaxation spec-
tra of liquids near Ty over a correspondingly large range of
frequencies.' "’

The paradigm of Eq. (1) has recently been shattered as progress
in experimental'*"” and numerical'®'"” techniques has allowed the
rapid preparation of glassy materials with very long relaxation times.
For these “ultrastable” materials, therefore, the preparation time tpyep
is typically much shorter than the intrinsic equilibrium relaxation
time,

torep << Ta(T). e

In that case, the temperature scale T is no longer relevant for the
preparation of glasses or for the equilibration of the system. How-
ever, T, remains relevant when it comes to the determination of the
relaxation time because 7, can now be much larger than the available
measurement time.

It is of course possible to characterize many physical prop-
erties of ultrastable glasses (e.g., density and shear modulus), but
the question we would like to ask here is as follows: How can
one estimate the (long) relaxation time of these (rapidly pre-
pared) stable glassy systems? Success in estimating these very long
relaxation times would enhance our understanding of amorphous
materials, allowing more definitive tests of theoretical descrip-
tions.'” Many papers in the past few decades have attempted to
test models and discern fundamental features of supercooled lig-
uids by extrapolating their relaxation times to very low tempera-
tures. We expect that this should be even more successful if the
much longer relaxation times of stable glasses could be utilized.
Indeed, examples of such efforts have already appeared in the
literature.' "'

Another instance where the problem of long timescales arises
is in “natural aging” experiments that utilize samples prepared by
nature over millions of years. Recently, experimental studies have
been performed on amber glasses that were produced naturally
about 20-100 x 10° years ago'”**** and preserved at ambient tem-
perature since then. For some amber samples, the ambient temper-
ature corresponds to a reasonable fraction of Ty and those glasses
have thus aged over about tp.y = 10" s, and for them too, the avail-
able measurement time is much shorter than the relaxation time, as
indicated in Eq. (2).

In this article, we restrict our attention to very stable amor-
phous systems that are equilibrated into the supercooled liquid at
some temperature T < T,. This is not the case for some of the experi-
mental stable glasses discussed above. Nevertheless, our results could
be applied to such systems through the use of a fictive temperature™
to map non-equilibrium systems onto an equivalent equilibrium sys-
tem at temperature TF, before asking what is the relaxation time of
an equilibrium system at fictive temperature Ty. Therefore, we do
not discuss this issue further here and consider the simpler prob-
lem of an equilibrium system characterized by a very long relaxation
time.

Although we discuss in parallel simulations and experi-
ments, the challenge is somewhat different in these two areas.
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Simulations can now provide equilibrated samples at temperatures
below the experimental glass temperature,”’ just as experiments
do. However, the dynamic window for simulations is 7o < 10 us,
whereas it is 7o $ 100 s for experiments. In simulations, we thus
attempt to estimate relaxation times from 10 ys to 100 s, whereas
for experiments, we extrapolate beyond 10” s to estimate relax-
ation times up to 10'° s. In both cases, we thus attempt to extend
direct measurements by about 7-10 orders of magnitude, but the
temperature regimes where the extrapolations are performed are
different.

Various methods to estimate very long relaxation times have
been proposed and used in different types of glassy materials. Our
first goal is to review and organize these different approaches. For
each method, we discuss the practical advantages and inconve-
niences, and we also critically assess the physical content and under-
lying hypothesis needed to obtain a measurement. In addition, we
also perform an extensive set of computer simulations using a sin-
gle model system of polydisperse hard spheres in d = 3 dimensions
to compare several methods in a single system, which is typically
impossible experimentally.

The numerical model utilized in our simulations is described in
Sec. IL. Since all methods necessarily require some kind of extrapola-
tion, we organize the manuscript depending on whether the extrap-
olation is performed using fully equilibrium conditions (Sec. I1I) or
not (Sec. V). We summarize our results in Sec. V.

Il. NUMERICAL MODEL

We study the canonical model of hard spheres in d = 3
dimensions. The pair interaction is zero for nonoverlapping par-
ticles and infinite otherwise. We use a continuous size polydis-
persity,”’ with a flat distribution of diameters between a,, = 0.63
and oy = 1.4, and a non-additive interaction to avoid crystalliza-
tion."” The unit length corresponds therefore roughly to the center
of the particle size distribution. We mostly simulate systems com-
posed of N = 10° particles in a cubic cell with periodic boundary
conditions.

We perform Monte Carlo (MC) simulations at constant applied
pressure P and record the volume fraction ¢. We can alternatively
and equivalently perform constant volume simulations at volume
fraction ¢ and measure the pressure P. For hard spheres, pressure
and temperature are not independent parameters, and the param-
eter space is effectively one-dimensional. One can choose to rep-
resent the evolution of the system as a function of volume frac-
tion, ¢, as is done in most colloidal experiments. Equivalently,
the evolution can be represented as a function of the reduced
pressure,”’

p
T 3)
where p = N/V is the number density and kgT is the thermal
energy. We set kg = 1. The volume fraction ¢ and the reduced pres-
sure Z are one-to-one related by the equilibrium equation of state,
Z = Z(¢). The distinction between isobaric and isochoric paths is
thus immaterial in Monte Carlo simulations.””

As demonstrated by Eq. (3), it is equivalent to think of hard
sphere simulations as being performed at an imposed pressure P,
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with T arbitrarily set to unity, or at an imposed temperature T, with
pressure P arbitrarily set to unity, as the physics is only controlled by
their ratio. In the latter case, it is obvious that Z is nothing but the
inverse temperature, Z ~ 1/T. In the following, we follow the evolu-
tion of the equilibrium relaxation time 7,4 as a function of Z, and this
is equivalent to showing 7, vs 1/T in a fluid with soft interactions.”’
When this convention is used, hard spheres and simple continuous
potentials such as soft spheres or Lennard-Jones particles appear to
be physically very similar.”** " Therefore, hard spheres represent a
convenient model of a glass-former, which can be efficiently studied
numerically.

Times are reported using standard Monte Carlo time steps,
where one step represents N attempts to make an elementary trans-
lational move. In each elementary step, a particle is chosen at ran-
dom, and a random displacement dr of maximal amplitude |dr| <
0.05 is proposed and accepted if it does not create an overlap with
a neighboring particle. For constant pressure simulations, we per-
form one attempt to change the linear size of the box every N single
particle move.

In such ordinary Monte Carlo simulations, the relaxation time
74(Z) of the system represents the structural relaxation of the mate-
rial,’"** as in traditional molecular dynamics simulations. This
equivalence holds provided attention is paid that the acceptance
probability of the Monte Carlo moves is not a strong function of
the temperature. For traditional Monte Carlo simulations, there-
fore, Eq. (1) holds in the sense that it is not possible to pre-
pare systems with relaxation times larger than the total simulated
time.

To rapidly prepare systems with very long relaxation times, we
use the swap Monte Carlo algorithm,”” which dramatically acceler-
ates the equilibration of dense polydisperse fluids.'”'” In the swap
algorithm, translational moves are performed in alternance with
swap moves where a pair of particles is selected at random, and
their diameters are exchanged if the swap does not create an over-
lap. When swap moves are used, one Monte Carlo step represents
N attempts to perform a Monte Carlo move (either translational or
swap).

Once an equilibrium system has been prepared, dynamical
relaxation is recorded by measuring a dynamical overlap,

Q(t) = % Ze(a —|ri(t) - r:(0)]), )

where r;(t) is the position of particle i at time ¢, a = 0.2, and 6(x)
is the Heaviside function. The overlap is a convenient analog of the
self-intermediate scattering function. We define the relaxation time
of the system as Q(t = 74) = exp(-1), which is also a good mea-
sure of the equilibration time of the system. As usual, this definition
assumes that the stretching of the relaxation is not itself a strong
function of temperature.

In Fig. 1, we show the equilibrium relaxation time of the sim-
ulated system of hard spheres. As with many other model systems,
the relaxation time with standard Monte Carlo follows an Arrhenius
law at high temperature (log 7a ~ Z ~ 1/T at small Z) and becomes
super-Arrhenius, or fragile, at low temperatures (large Z). It is con-
venient to use this onset for fragile behavior to rescale the relaxation
time by 7, = 10* Monte Carlo steps, its value at the onset. As can be
seen for the red points in Fig. 1, it is possible to measure 7,/7, over
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FIG. 1. Evolution of the equilibrium relaxation time 7, of d = 3 polydisperse hard
spheres with reduced pressure Z ~ 1/T using Monte Carlo (MC) simulations. The
relaxation time is rescaled by its value at the onset, 7,, defined by the breakdown
of the high temperature Arrhenius fit (dashed line). We use the same 7, to rescale
the equilibration time measured in the unphysical dynamics of the swap MC, which
provides a fast route to prepare equilibrium configurations with large relaxation
times.

about 5 relevant orders of magnitude using conventional numerical
simulations. This corresponds to about 10° Monte Carlo steps and
represents about 1 week of central processing unit (CPU) time for
N =10 particles.

Also shown in Fig. 1 is the evolution of the relaxation time
when swap Monte Carlo dynamics is used. When the swap moves
are present, 7, quantifies the very fast equilibration time of the sys-
tem in a dynamical process that is now distinct from the physical
dynamics, and the 7, values measured with swap are much shorter.
The speedup offered by swap is so important that equilibrating sys-
tems at Z = 40 are extremely fast, whereas conventional simulations
cannot equilibrate below Z ~ 29. We shall see below that the exper-
imental glass transition corresponding to 7 ~ 100 s is near Z ~ 35,
and swap simulations for this system can reach equilibrium up to
Z ~ 50, much below T,. Therefore, using swap Monte Carlo, it
is possible to prepare very fast (less than 10° Monte Carlo steps,
10 min of CPU time) equilibrium configurations in a regime where
the relaxation time is too long to be measured in computer simula-
tions (more than 10" Monte Carlo steps, about 10° years of CPU
time).

In the rest of the article, we will use this hard sphere system
to benchmark, illustrate, and compare various methods to mea-
sure a relaxation time that is too long to be directly measured. We
will mainly analyze the regime Z = 29-40, which is comfortably
explored in equilibrium conditions using the swap Monte Carlo
algorithm.

A rough dictionary between numerical and experimental
timescales is useful. Typically, for molecular liquids, the onset
timescale is near 7, ~ 10~ '? s.”* The relaxation time at Ty is Ta(Ty)
~10? s < T4/T, ~ 10", This implies that 74/7, ~ 10° < 74 ~ 10 s,
which is the maximal time we can directly simulate. In the following,
we frequently extrapolate numerical timescales up to 74/, ~ 10",
which correspond to 7, = 100 s and thus to the experimental glass
transition temperature T,.
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I1l. EXTRAPOLATION USING EQUILIBRIUM
CONDITIONS

In discussing methods for determining very long relaxation
times, we start with those that directly analyze the system in the
equilibrium conditions in which it has been prepared at temper-
ature T. By construction, an experiment can last at most a dura-
tion that we denote fexp, and we thus consider situations where .,
<« 14(T). Any measurement can therefore only record a physical
quantity defined over a “short-time” ¢. By short, we mean 0 < t < feyp
< To(T). Depending on the chosen observable, ¢ can be anywhere
between t = 0 (for a purely static quantity) and t = t.y, where the
physical observable is defined over the maximal duration of the mea-
surement. We organize the corresponding methods by increasing
values of ¢ between these two limits, exploring the various possible
regimes.

A. Extrapolation from a static quantity: t =0

An obvious choice to extrapolate dynamic data in equilibrium
conditions is the temperature, T. The method is conceptually very
simple. One measures the evolution of 7,(T) in the temperature
regime where this can be done, i.e., when 74(T) < t.xp. One then fits
the relation 7, = 74(T) to some appropriate functional form, which
is then extrapolated to infer the relaxation time in the inaccessible
time regime where 74(T) > texp.

The question we ask in this subsection is different from the
long-standing debates’ * regarding the best description of exper-
imental values of 7, for the temperature range extending down to
T,. While these debates do inform us about possible functional
forms, our goal is to find the best fitting functions to extrapolate the
dynamic data by some 5-10 orders of magnitude in the most precise
manner.

In Fig. 2, we present the result of such an analysis for the simu-
lated hard sphere system. We extend the vertical range of timescales
from the directly accessible regime, 7./, < 10°, up to the experimen-
tal glass transition at 74/7, = 10'* and use various functional forms
to extrapolate the dynamics down to T.

102 : .
Arrhenius ———
Parabolic ———
s Exponential ——
10° MYEGA —— 1
VFTo=1
N VFT 6§ =2
3
=
10* 4
10° -
10 20 30 40
Z

FIG. 2. Extrapolation of the relaxation time directly measured in hard sphere sim-
ulations in the regime 1 < 7,/7, < 10° (symbols) up to the experimental glass
transition at 7,/7, = 10" using various functional forms presented in the text.
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All the functional forms that we use involve activated dynamics,

E(T)

=7, 5
) 5)

To = Too exp(

where 7o is a constant. The art of fitting then lies in a proper choice
for the temperature evolution of the apparent activation energy E(T)
in Eq. (5). We use several such choices.

The simplest choice is the Arrhenius law, where E(T) = E
= const. Given that our system shows fragile behavior, the Arrhe-
nius law in Fig. 2 can be considered a lower bound to the real growth
of the relaxation time.

The simplest correction to the Arrhenius behavior would be a
second order polynomial for the evolution of log 7, vs 1/T. This is
captured by the parabolic law shown in Fig. 2, log 7, ~ (Z - Z,)*
~ 1/T?. Although introduced and discussed in the context of kinetic
facilitation,™ fitting to the parabolic law with free parameters is a
simple and agnostic way of capturing the fragility of the system. In
a similar spirit, the non-Arrhenius behavior of the dynamics can be
captured using a non-analytic function of 1/T using the exponen-
tial"’ (denoted as “Exponential” in Fig. 2) form logza ~ (Eo/T)",
where 7 is a non-integer exponent (here, we use n = 3.8). As shown
in Fig. 2, this provides an extrapolation close to the parabolic form
for the hard sphere system. As we discuss below, we expect that
these two functions represent the most faithful extrapolations as
they simultaneously capture the fragility of the actual data (unlike
the Arrhenius form) and simply extrapolate the measured curvature
over the next few decades.

We add two other fitting forms that become strongly divergent
at lower temperatures. One is the double exponential fit of Mauro
et al.”® (denoted as “MYEGA” in Fig. 2), where log 7o ~ Z exp(aZ),
which does not introduce a finite temperature singularity, but leads
to a very strong increase in 7, at very low T. A second family of
functions (denoted as “VFT” for Vogel-Fulcher-Tamman in Fig. 2)
introduces a finite temperature dynamic singularity, logza ~ A/
(Z - Zy)°, with an exponent 8, which can also vary. We show fits to
the MYEGA form and to a dynamic VFT singularity using both § = 1
and § = 2 in Fig. 2. These three functions closely follow each other.
The dynamic singularities estimated using the VFT laws occur at
Zy = 38 (for § = 1) and 45 (for § = 2). Since the swap algo-
rithm can equilibrate the system at even lower temperatures without
ever encountering any phase transition, we must conclude that the
extrapolated timescales using the VFT law (thus using MYEGA)
overestimate the real behavior of this system.

Despite the quantitative differences obtained between all types
of extrapolations in Fig. 2, we note that the spread in the location
of the estimated glass transition temperature T, defined as 74/,
= 10" remains modest, the spread being in the range Z €,
with the most sensible fitting functions (exponential and parabolic)
falling in the middle of that range, near Z; ~ 35. Therefore, we
conclude that extrapolating numerical data from 5 to 12 orders of
magnitude remain a relatively safe exercise if the goal is to locate the
experimental glass transition temperature. A less optimistic view is
to consider the spread in extrapolated relaxation times near Z = 33,
which covers about 5 orders of magnitude, between the estimates
that we consider as lower and upper bounds.

In previous work,” we used experimental data to per-
form the exercise above using direct measurements in the range
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TalTo = 1 — 10° to extrapolate the dynamic up to 7,/7, = 10'2, where
experimental measurements can still be done. We found that the
parabolic extrapolation performed very well indeed.”® In the rest of
the paper, we choose the parabolic fit as a sensible extrapolation and
use it to provide a reference against which we compare the other
extrapolations, but our conclusions do not depend on this specific
choice.

We can follow the same extrapolation recipe with experiments,
using actual measurements in the regime 7, = 1076 - 10 s to esti-
mate the dynamics up to 7, = 10" s ~ 300 years. We report the
result of this exercise for two materials in Fig. 3: orthoterphenyl
(OTP") and ethylbenzene (ETB*) using the same functional forms
(Arrhenius, exponential, MYEGA, VFT). As with the simulations,
we find that the spread between the various fitting functions is
rather modest for an extrapolation of 8 orders of magnitude, with
Arrhenius and VFT again appearing at the boundaries. Clearly, the
spread is more modest for OTP than it is for ETB, which presum-
ably stems from the different curvature of the data measured above
Ty, which is quite modest for OTP and constrains the fits more
strongly.

Although we have chosen temperature as the simplest example
of a static observable, we note that other quantities could be used
as well. Among well-known examples, we can list the static structure

1010 .
Arrhenius
Parabolic
10° ¢ Exponential 7
MYEGA
. VFT
2]
2902 L |
s
1072 | g
OTP
1076 pa f L
0.0032 0.0037 0.0042 0.0047
1/T
1010 T T T
Arrhenius
108 | Parabolic |
Exponential
MYEGA —
. VFT
=102 b i
IS
1072 .
ETB
10°°F _e ‘ . . .
0.007  0.0075

0.008 0.0085 0.009 0.0095
1T

FIG. 3. Extrapolation of the relaxation time directly measured in experiments
on orthoterphenyl (OTP*') and ethylbenzene (ETB**) in the regime 10~° < 7,
< 10% s (symbols) up to 7, = 10'° s using various functional forms discussed in
the text.
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factor (which can be measured both in simulations and experiments)
or the number of locally favored structures (easily measured in sim-
ulations or colloidal experiments). Soft vibrational modes (encoded
in the Hessian matrix) and machine learned softness have also been
found to correlate well with the dynamics.”** Such alternatives
could potentially be useful, but one would need to have a solid the-
oretical prediction (or some empirical fit or well-tested model for
T > Tg) describing how the chosen static quantity relates to the
relaxation time. In the absence of an accepted predictive theory,
one would need strong evidence that some particular static quantity
correlates in a universal manner with the relaxation time for every
substance.

Among thermodynamic observables, the configurational entropy
Seonf(T) plays a special role in glass physics.”’ Its strong tem-
perature dependence is viewed as an important empirical signa-
ture of supercooled liquids.”** The configurational entropy plays
a central role in some theoretical descriptions.””** In addition,
since the work of Adam and Gibbs," the idea that the decrease
in configurational entropy can be directly related to the growth
of the structural relaxation time has been frequently revisited”*’
and tested.”””" In its original form, the Adam-Gibbs relation states
that

log(7a/70) = A/(TScons (T)). (6)

In the present context, Eq. (6) potentially allows the determina-
tion of 7, from the sole determination of a thermodynamic (static)
quantity, Sconr(T). In computer studies, configurational entropy has
recently been measured in several models at very low tempera-
tures.””””>>’ However, a recent study dedicated to the Adam-
Gibbs relation suggests that Eq. (6) would lead to incorrect esti-
mates of the relaxation time.”' For d = 3 hard spheres in particu-
lar, directly using Eq. (6) to extrapolate 7, strongly overestimates
its temperature dependence. This idea has not yet been exploited
experimentally because experimental determinations of the config-
urational entropy in either naturally aged glasses or vapor deposited
films are not available, but this issue clearly deserves further
study.

Critical discussion. The method studied in this subsection is
conceptually simple but relies on the choice of a “best” fit to extrap-
olate the data. Even when a reasonable fit is performed, its validity
in the regime where no data exist is of course questionable and
cannot be proven. Implicitly, the method also assumes that the
physics at play does not change in the extrapolated regime and
neglects, for instance, the possibility of a pronounced fragile-to-
strong crossover, which can occur if the microscopic mechanism for
relaxation evolves qualitatively in the regime where the dynamics
needs to be extrapolated.

There is no consensus at the moment about how to best fit the
temperature evolution of 7,4, and several empirical fits work very
well. However, there is a distinction between choosing “the” tem-
perature dependence of 74, which requires a deep understanding
of the physics, and choosing the best functional form to extrapo-
late the data by some orders of magnitude, which is a more agnostic
exercise that only requires the physics to be about right, i.e., ther-
mally activated dynamics with a smooth functional form for E(T). It
could be interesting to employ even more agnostic forms of extrap-
olation, as proposed, for instance, in Ref. 54. A major conclusion
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from Figs. 2 and 3 is that various functional forms lead to a modest
spread of the extrapolations, with well-motivated upper and lower
bounds.

B. From a short time quantity, t ~ 7,

The idea here is to replace the direct extrapolation from a
purely static quantity by the measurement of a dynamic quantity
that involves only a very “short” time ¢, i.e., a timescale that does
not grow rapidly as the temperature decreases and remains of the
order of the onset timescale 7,. Physically, such a method must rely
on the idea that complete information on the physical processes
leading to structural relaxation is already encoded in a short time
observable.

Several examples of such observables have been discussed in
the literature, such as the Debye-Waller factor” (amplitude of
short-time vibrational motion), the non-ergocity factor™® (short-
time plateau in density-density correlations), the shear modulus”
(plateau value of stress—stress autocorrelation function), the density
of states™ (distribution of eigenvalues of vibrational modes), and
the speed of sound'” (measured in scattering experiments). All these
quantities are directly related to short-time motion occurring at the
particle scale in glasses at low temperatures from which long-time
structural relaxation is inferred. These observables typically refer to
dynamics occurring on a timescale of about 1 ns over which very
little (if any) of the structural relaxation has occurred at very low
temperatures.

If such a short time quantity could be used to estimate very long
relaxation times, this would, of course, be very useful as a very long
measurement could be replaced by a very short one. This would,
of course, solve the problem posed by Eq. (2). For this approach to
work, however, one needs to precisely know the connection between
the short-time quantity and the relaxation time. The discussion of
possible connections of this type is a long-debated area in the field
of the glass transition,”” and this line of research navigates between
empirical discoveries, phenomenological models, and physical argu-
ments. The shoving model” is an example of an approach that uses
the shear modulus to predict the structural relaxation time and was
tested experimentally in several studies.””” "’ Larini et al. have pro-
vided an empirical fit between the DW factor and the relaxation
time,”" which extends a relation proposed previously for network
glasses.”” An empirical modification of this model was proposed in
Ref. 62.

Numerically, the easiest way to apply such a method is to mea-
sure the short-time plateau value of the mean-squared displacement
(MSD) in equilibrium conditions because this observable requires
the least computational effort. The mean-squared displacement is
defined as

2(1) = 1 S Jet) = 5 (). )
1

The Debye-Waller (DW) factor is conventionally defined as the
value of A%(t) at a time t*, where the MSD displays an inflection
point, i.e., when dlogA*(t)/dlogt exhibits a minimum.”’ Using
the dictionary above to connect the numerical and experimen-
tal timescales, this inflection point occurs roughly in the regime
10*-10° Monte Carlo time steps, which indeed corresponds to about
0.1 ns-1 ns.
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The evolution of (A*(t*)) with pressure for the hard sphere
system is shown in Fig. 4, which demonstrates that the DW fac-
tor decreases smoothly as temperature decreases. Previously pub-
lished simulation results typically cover a much narrower temper-
ature range.”’ We find that neither the 1/T nor the T dependence of
the DW factor is linear, but the temperature evolution can easily be
fitted by second order polynomials using either variables (see Fig. 4).
We see no physical reason to introduce fitting functions containing
singularities in the temperature dependence of the DW factor (as
proposed, for instance, in Ref. 62).

In the absence of an agreed model to relate the DW factor
to the relaxation time, we take a pragmatic approach to the treat-
ment of the data. First, we make a parametric plot of the evolu-
tion of y = log 7, vs the inverse of the DW factor, x = 1/ (AZ), in
the accessible numerical regime. We fit the obtained curve either
with a second-order polynomial (y = a + bx + cx?, as in Ref. 61),
or with a non-analytic form (y = a + bx", where n ~ 1.6, close to
values reported in Ref. 62). Notice that these two fitting functions
thus lead to expressions for the relaxation time that are mathemati-
cally equivalent to the parabolic and exponential fits used in Sec. III
A. We then use these functions to estimate the relaxation time in
a regime where only the DW factor can be measured (see Fig. 4).
By construction, the prediction is excellent in the numerical regime
where the relaxation time can be directly measured, and we find that
it provides an extrapolation at low temperatures, which is some-
what above the extrapolation obtained using the parabolic fit. In
particular, the model proposed in Ref. 61 leads to a slightly faster
increase in the relaxation time than the one of Ref. 62, at least for our
system.

Experimentally, an approach using short time dynamics to esti-
mate long relaxation times was followed in Ref. 19 to analyze vapor-
deposited ultrastable glasses. Here, an empirical relation between the
derivative of the relaxation time and the speed of sound™ was used
to reconstruct the temperature dependence of the relaxation time in
the regime where only the speed of sound can be measured. This
allowed the authors to estimate relaxation times up to 10'° s from
the speed of sound measurements.

Critical discussion. The method discussed here exploits the
generic idea that the long-time structural relaxation in supercooled
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FIG. 4. Extrapolation of the relaxation time in hard sphere simulations using the
Debye Waller (DW) factor. Left panel: smooth evolution of the DW factor with
inverse temperature, Z ~ 1/T. Right panel: the parametric relation z,(DW) is fit-
ted using two functional forms drawn from Refs. 61 and 62 in the numerical regime
and extrapolated to low temperatures. The extrapolations compare reasonably well
with the parabolic fit.
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liquids is somehow encoded in short-time dynamics measurements.
Although sometimes described as a “growing consensus,”"” this idea
remains vividly debated. Even if one accepts the existence of cor-
relations, much remains to be done to transform such observations
into causal, predictive tools for the dynamics. This implies that the
method followed here is essentially empirical and heavily relies on
fitting. In our view, there is, in fact, not much of a conceptual dif-
ference between extrapolating a direct fit to the temperature depen-
dence of the relaxation time and extrapolating an indirect fit of its
parametric dependence against, say, the Debye Waller factor. The
two approaches are, in fact, mathematically equivalent. This method
would be superior if there were strong evidence for a single, univer-
sal function that connects short time dynamics to long relaxation
times.

Our conclusion is that the relaxation time is not better esti-
mated using an extrapolation involving short-time dynamic func-
tions rather than with temperature extrapolations. In particular,
claims based on such extrapolations regarding the fate of super-
cooled liquids at low temperatures are quite speculative.'” More fun-
damentally, the theoretical basis for a deep, quantitative connection
between short time dynamics and structural relaxation remains to
be developed further.

C. From an intermediate time quantity, 7, « t <« 7,4

Here, we explore the idea of a measurement performed over a
time ¢ that grows as temperature decreases, but not as fast as 7y itself,
so that such a measurement can still be performed in a regime where
T, can no longer be accessed. The method is conceptually not very
different from a very short time quantity discussed above, as one still
needs to connect the outcome of the measurement over a time ¢ to
infer a very large value of 7, > t.

As a specific example, we discuss the 8 process, which is visible
at a timescale 7, < T/;(T) <« Tg(T). This refers to dynamical pro-
cesses, which do slow down with decreasing temperature, but this
slowing down is typically much less pronounced than the one of
To. More generally, we may ask whether dynamics occurring over
a timescale Tp << Ty Can be used to infer the behavior of 74, inde-
pendently of its precise nature or classification (whether this is a 8
process, an excess wing, a secondary process, etc.). By studying the
connection 74(74) at equilibrium, one could potentially infer 7, by
simply measuring 7g.

At the theoretical level, a connection between the timescales
8 and T, is at the core of the coupling model,®” which predicts a
relation between three timescales,

1o = (175) /077, (8)

where 7 is a parameter of the model. For 1/(1 — n) > 1, one has 7
<« 74. Clearly, if the model in Eq. (8) is well obeyed with a parameter
n that is known, then this relation can be directly used to deduce (a
very long) 74 from the measurement of (an accessible) 7g.

As an application, Casilini and Roland”* have explored this
idea in the non-equilibrium glassy state of polyvinylethylene.
They measured 75 in the glassy state below T, for an ordi-
nary cooling procedure and inferred 7, using an expression close
to Eq. (8).
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To our knowledge, this method has not yet been used to study
glasses with large relaxation times such as vapor deposited glasses,
although the dynamics at timescales corresponding the f3 relaxation
has been analyzed.””*® Importantly, there are many indications that
the structural relaxation times in ultrastable glasses may be more
than 8 orders of magnitude larger than those in ordinary glasses, but
the timescale of the 8 process itself is changed by a much smaller fac-
tor of at most one order of magnitude.””*” In contrast, Eq. (8) with
a reasonable value of # predicts a much larger shift in 75. A possible

explanation for this behavior was offered.””

Critical discussion. Unlike static and short time quantities, this
type of measurement deals with the dynamics at times that are not
microscopic and, as such, more directly connects to the slow relax-
ation processes. However, the empirical relation 7, = Ta(rﬁ) still
needs to be extrapolated into unknown territory, and the theoreti-
cal basis for this connection provided by the coupling model is not
widely accepted. In addition, the timescale 75 measured experimen-
tally decreases with the aging time for a number of systems (Refs.
64 and 67), whereas the structural relaxation presumably increases
instead, suggesting that care is needed to relate 73 to 74 in an
unambiguous manner. All these issues would clearly deserve further
experimental analysis.

D. From the maximal accessible time, t = teoxp

In this approach, one measures the dynamic relaxation [some
correlation or response function, Q(¢)] over as broad a dynamic
range as possible, i.e., up to the maximal time window fep. If the
temperature is high enough, then one can directly access the entire
relaxation process, from which the relaxation time 7, can be esti-
mated, e.g., Q(t = 74) = exp(—1) for a normalized correlator. When
temperature becomes smaller, only a small part of the relaxation pro-
cess can be observed within the experimental time window. The goal
is to then use this small part of the dynamic relaxation process to
infer the value of the (inaccessible) 7,.

The necessary assumption behind such a method is that the
relaxation processes are the same at high and low temperatures up to
a global rescaling of the distribution of timescales by a single num-
ber, 74. This assumption is sometimes called the time temperature
superposition (TTS) principle and has been studied experimentally
quite extensively, with some liquids obeying the superposition prin-
ciple quite well and some others not at all. This property has also
been discussed theoretically in various contexts, but there is no gen-
eral conclusion since it is sometimes found to hold” and some-
times found to be violated.”””" We see no particular reason (from
either experiments or theory) to conclude that the superposition
hypothesis should be generically obeyed.””

Mathematically, the time temperature superposition principle
assumes that the structural relaxation obeys

Q(t) = O(t/7a), 9)

over a very broad (in log-scale) range of the scaling variable /7.
In practice, the measurement of the scaling function Q(x) at high
temperature is used to guide the rescaling of the data at low temper-
atures using 7, as a free scaling parameter along the horizontal time
axis.

We illustrate how the method works for the simulated hard
sphere system. We first show the dynamic correlation Q(¢) measured
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in equilibrium conditions over a fixed, large time window of 2 x 10°
Monte Carlo steps (see the inset of Fig. 5). While the entire decor-
relation can be followed at high enough temperatures, we can only
detect a very long plateau followed by the onset of decorrelation for
the lowest temperature shown in the figure. We then rescale the data
using 7o as a free scaling factor. In practice, we use the measured 7,
in the high temperature regime, and we progressively rescale lower
temperatures one after the other to construct a master curve. The
result of the exercise is shown in Fig. 5, where we also show an
empirical function that describes the master curve Q(x) in Eq. (9),
with a final stretched exponential decay with stretching exponent
0.75. The extrapolated relaxation times are compared to the directly
measured 7, and the reference parabolic fit in Fig. 5. We see that the
extrapolation is very smooth and seems to follow quite closely the
parabolic fit.

A limitation of this approach is illustrated by our choice of
datasets in Fig. 5. Although we can produce equilibrium configu-
rations at even lower temperatures than those shown, we do not
utilize them here because we only detect a very long horizon-
tal plateau in Q(¢), and the horizontal shift on the master curve
becomes too imprecise. For example, for Z = 40, over the last 5
decades of time, the correlation function decays by a factor of only
AQ/Q = 0.6%.

Critical discussion. A positive point is that this method exploits
the entire dynamic information available to an experiment or a sim-
ulation regarding the relaxation process, which takes place entirely
in equilibrium. However, this method relies on the unproved
assumption that Eq. (9) works at all temperatures. This assump-
tion is presumably correct over a narrow enough temperature
range, as the physics evolves smoothly with temperature. How-
ever, when several orders of magnitude are extrapolated, there can
be no way to test the validity of the result, which may very well
depend on both the considered material and the chosen physical
probe to record the dynamics.”” A specific problem is that when
the probed dynamics (over a timescale t.y) and the extrapolated
timescale 7, differ by many orders of magnitude, as in Eq. (2), it
becomes possible that the dynamics only probes secondary pro-
cesses (such as excess wings or 8 process) whose temperature depen-
dence is weaker than the one of the structural relaxation time,
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FIG. 5. Extrapolation of the relaxation time in hard sphere simulations using the
time temperature superposition (TTS) principle in Eq. (9). Left panel: measured
time correlation function Q(t) using either t (inset) and t/z, (main) from Z = 25 to
Z = 36 (left to right). The same colors are used in later figures. The full red line is
the master curve Q(x). Right panel: comparison of measured and extrapolated
7, along with the parabolic fit.
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which would then lead to a strong underestimate of the extrap-
olated time scale. For ultrastable glasses, it is even possible that
some yet unknown secondary process becomes prominent at very
low temperatures and is followed instead of the true structural
relaxation.

IV. NON-EQUILIBRIUM AND NON-LINEAR METHODS

In this section, we discuss approaches that use a non-linear per-
turbing field to speed up the dynamics so that relaxation times that
are too long in equilibrium become measurable due to the influence
of the perturbation. These methods also involve an extrapolation of
these biased relaxation times to estimate the equilibrium relaxation
time in the absence of a non-linear field. The fact that the dynamics
speed up markedly indicates that the perturbation is strongly non-
linear, and thus, the system is indeed relaxing, but these dynamics
occur far from equilibrium.

A. Shear flow

When a highly viscous supercooled liquid is subjected to a
shear flow, its viscosity remains constant within the linear response
regime, but it then decreases rather sharply due to the imposed
external flow.”*”” This is called shear thinning behavior.”” At the
microscopic level, relaxation processes also speed up in the non-
linear regime, and the relaxation time then becomes a function of
the external flow.”””

It is easy to observe such behavior in dense colloidal sus-
pensions and complex fluids because these systems form soft
glasses that can be deformed easily.””" The same behavior is
also observed in molecular supercooled liquids and polymeric
materials,”"** although these materials may eventually break and
fracture at large deformations. It is easy to perform computer
simulations of the influence of a shear flow in supercooled
liquids.

If the imposed rate of deformation, the shear rate j, is small
enough, then the shear stress ¢ will be given by the Newtonian
viscosity #o(T),

a=no(T)y. (10)

Since #o(T) and 74(T) typically have very similar temperature
dependences, a rheological measurement is a good way to estimate
the relaxation time of the system. When the shear rate increases,
however, the system is driven out of equilibrium. The shear flow
then distorts the structure and may accelerate the relaxation of
the structure. The measured viscosity is then non-Newtonian and
becomes a function of both the temperature and the imposed shear
rate,

a=n(T.9)p, (11

where typically #(T,7) ~ 7(T, ) ~ 1/7. Interestingly, the crossover
between linear and non-linear regimes is controlled by 7,(T) itself so
that Eq. (10) is obeyed when $74(T) < 1, whereas Eq. (11) holds in
the opposite limit, y74(T) > 1. These two limits can be combined
in a master curve of the form

(T, 7) = no(T)F(y7a(T)), (12)
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where the scaling function obeys F(x — 0) ~ 1 and F(x > 1) ~ 1/x
in order to recover the two limits discussed above. Such a functional
form has been used in many different systems.”*

The scaling form in Eq. (12) can be used to estimate large
relaxation times using a non-linear shear flow. This is illustrated
by a recent computational study by Jadhao and Robbins"*** who
measured the viscosity of a numerical model for squalane over
a dynamic range of about four orders of magnitude at various
temperatures in both the Newtonian and non-Newtonian regimes.
Constructing a master curve of the family described by Eq. (12),
they used strongly non-linear measurements to infer the Newto-
nian viscosity in a temperature regime where the linear regime
is too difficult to access directly. As a result, they reconstructed
the Newtonian viscosity of their model over a window of about
25 orders of magnitude. From these extrapolated viscosity mea-
surements, they concluded that the viscosity of squalane under-
goes a crossover from fragile to strong behavior at very low
temperatures.

Experimentally, this method has not yet been used to esti-
mate large relaxation times, to our knowledge. In practice, for
molecular liquids, it is not obvious that this can be practi-
cally accomplished, as shearing highly viscous glassy materials
often leads to inhomogeneous flows, including shear bands and
fracture.

Critical discussion. Using an equation such as Eq. (12) requires
an extrapolation along an assumed scaling function. As usual, the
quality of the scaling function can only be tested when both regimes
of the scaling form can be accessed directly. Instead, at very low T,
the non-linear measurements can only access the non-equilibrium
branch of the master curve, and forcing the measured data on a
master curve requires both the horizontal and vertical adjustment
that are, in fact, not independent and determines the value of 7,(T)
extracted by this procedure. There is therefore no guarantee about
the quality of the extrapolation. Moreover, given that the external
shear flow strongly perturbs both the static and dynamic prop-
erties of the system, it seems physically unlikely that a strongly
sheared system contains information about the equilibrium struc-
ture and dynamics of an unsheared system that relaxes many orders
of magnitude more slowly. In practice, only data that are “not too
far” from the crossover region captured by Eq. (12) can fully be
trusted, but it seems difficult to formulate a more precise, quan-
titative criterion to decide which data to trust and which data
to discard. The procedure thus appears too hazardous to allow
strong statements about the functional form of the temperature
dependence of the viscosity (also the relaxation time) at very low
temperatures.

B. Modification of the pair interaction

Another strategy to measure the dynamics at a given state point
is to modify the pair interaction between the particles, which is, of
course, easily done in a computer simulation.

Assuming that particle crowding is responsible for slow relax-
ation, it is clear that making the particles less “rigid” should speed
up the dynamics. If one fully understands the crossover between the
original system and its softened version, one can try to extrapolate
from the dynamics of the softened system to the dynamics of the
original system.
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A specific example of such a strategy can be found in the
numerical study of Refs. 28 and 85, which addresses the glass transi-
tion of hard and soft particles in a unified manner. Here, the original
pair interaction one wishes to analyze is the hard sphere potential,
similar to the one described in Sec. I1. As described above, the relax-
ation time only depends on a single parameter, which can be either
Z or ¢, since both are related by the equilibrium equation of state, Z
- 2(9).

In their study, Berthier and Witten introduce a softened ver-
sion of the hard sphere potential, which is chosen as a harmonic
repulsion, V(r) = e(1 — r/o)? for r < o, so that the hard sphere
potential is recovered in the limit € - co. When € (or, rather, the
ratio ¢/T) is finite, however, temperature and density can be varied
independently, as in ordinary liquids.

A possible strategy to extend the dynamic regime accessible
by direct studies of hard spheres is to perform equilibrium mea-
surements of the relaxation time of the harmonic sphere system at
a series of state points (¢, €/T). The relaxation time 7,(¢, €/T) of
harmonic spheres converges, by construction, to the hard sphere
relaxation time 7/ (¢) in the appropriate limit,

7w (9) = fim_ tu(gre/T): (13)

There is no assumption behind Eq. (13). Now, assuming a master
curve of the form

79/ T) = 70 ($) F(X(¢,€/T)), (14)

where X(¢, €/T) is a simple function of its two variables and
F(X(¢,00)) = 1, it is possible to construct the master curve F(X)
in a regime where direct measurements are possible, and a data col-
lapse at larger ¢ can be used to infer the hard sphere relaxation
time in a regime where its direct measurement is no longer pos-
sible. First employed in computer simulations,”**>* the crossover
between harmonic and hard spheres in the context of glassy dynam-
ics has subsequently been studied theoretically using the mode-
coupling theory of the glass transition.”” The theoretical study con-
firmed that a scaling form such as Eq. (14) can indeed be generically
expected.

Critical discussion. As with several methods discussed above,
the extrapolation using Eq. (14) relies on an accurate determination
of the scaling function used to rescale the data. The more problem-
atic part comes from extrapolating data along the master curve in a
regime where only a small part of the curve is covered by the actual
data so that the extrapolation is no longer reliable. As mentioned
above, it is difficult to decide when the extrapolation becomes too
hazardous to be performed, and it is tempting to use it to get a very
broad range of timescales, with a reliability that is however totally
unknown and impossible to assess.

C. Increasing the temperature: Glass melting

Given that the dynamic relaxation at the equilibrium temper-
ature T is too long to be measured, a natural idea to speed up the
relaxation is simply to heat the system to some higher temperature,
T’ > T, and measure the relaxation dynamics there immediately after
the temperature has been changed. If one waits too long after the
quench before measuring the dynamics, then one simply measures
the equilibrium relaxation time at the new temperature T'. We are
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interested in the regime where 7,(T) is so large that relaxation is too
long, i.e., the system appears arrested at temperature T. To detect
some dynamics, T’ necessarily needs to be large enough for relax-
ation to proceed on the experimental timescale so that the system
will eventually transform back into the equilibrium liquid state at
temperature T'. We call this transformation process “glass melting.”
It has been extensively studied recently in the context of ultrastable
glasses.”

The ideal protocol is as follows: (i) prepare the equilibrium sys-
tem at T, (ii) suddenly heat the system at T' > T at time t, = 0,
and (iii) measure the relaxation dynamics right after the temperature
change using some time correlation Q(t + tw, tw ), which quantifies
the dynamics between times t,, and ¢ + t,,.

The decay of the correlation Q(t + tw, tw) with t for t, = 0
allows us to define the melting time, t,,;(T’, T), which quan-
tifies how long it takes the system to transform from the origi-
nal glass created at T into the supercooled liquid at T'. The ratio
S = tper(T', T)/72(T’) is the stability ratio.” This adimensional
number quantifies the kinetic stability of the initial amorphous state.
The most stable systems prepared to date either by vapor deposition
or by the swap algorithm exhibit S = 10* - 10°.""" To determine
the large relaxation time of the initial amorphous state, the idea is to
study the evolution of t,,.;;(T’, T) with T and to extrapolate to the
limit t,,, (T = T, T) = 7o(T).

For the method to be useful, however, the temperature jump
T — T’ must be large enough to considerably speed up the dynam-
ics. There is no reason, therefore, for the dynamics to proceed during
the melting process as if the system were close to equilibrium. A
recent combination of theoretical,”” > numerical,”” and experi-
mental®” studies suggests that the melting of ultrastable glasses
indeed proceeds via a nucleation and growth process, where melt-
ing is initiated at rare regions within the sample from which the
liquid invades the rest of the sample, very much like a crystalline
material would also melt. The melting process should thus be char-
acterized by spatially heterogeneous dynamics associated with a
length scale, which is considerably larger than in the equilibrium
relaxation process.” Regarding the behavior of t,,,;(T', T) itself,
it should depend in a non-trivial way both on the nucleation rate
of the initial fluid droplets and on the velocity of the liquid front
propagating through the glass,”””* and it is accordingly difficult
to capture these dependences using simple mathematical expres-
sions. Empirically, it makes sense to expect some kind of activated
behavior, "’

(15)

’
tmelt(T,> T) ~ Tmelt(T,> T) eXP(M))

T/

where the time prefactor 7, and the activation energy E can, in
principle, depend on both T’ and T.

We have applied this method in the simulations of the d = 3
hard sphere system. Numerically, we first prepare equilibrium con-
figurations at temperature T (i.e., pressure Z) using the swap Monte
Carlo algorithm, and we suddenly change it to T > T (i.e., Z' < 2).
(Recall that for our system, the variables Z and 1/T can be inter-
changed.) After the quench, we immediately record the time evolu-
tion of the overlap function Q(f + tw, tw) with t,, = 0. From its decay
time to the value 1/e, we extract a melting time tmenr (T, T), which we
report in Fig. 6 for a series of different temperatures T. To construct
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FIG. 6. Extrapolation of the glass melting times (small symbols) in hard sphere sim-
ulations (top) and experiments (bottom) on a metallic glass using Eq. (16) shown
as dashed lines. In this figure, symbols with the same color are obtained by chang-
ing T” at constant T with the color code identical to Fig. 5. For the simulations, the
extrapolated data (large blue symbols) fall below the parabolic fit (red line) and
are described by an Arrhenius behavior (blue line). Similar behavior is observed
in experiments on a Au-based metallic glass,”” with the extrapolated data falling
below the direct measurements.

this figure, we vary T’ for each value of T and produce symbols with
the same color. Empirically, we find that the behavior of t,,,;; for our
system is well described by an Arrhenius behavior,

)

tmelt(T,) T) ~ Tmelt(T) eXP( (16)
where the prefactor and the activation energy only depend on the
stability of the initial configuration. Fits to Eq. (16) are shown as
dashed lines in Fig. 6. We can then use these fitted Arrhenius func-
tions to extrapolate the relaxation time up to temperature T, 7a(T)
= tya(T' = T, T). We report these extrapolated data in Fig. 6 as
the larger blue symbols, along with the reference parabolic fit. We
find that for the lowest temperatures T where the extrapolation is
the largest, the extrapolated data seem to follow an Arrhenius form
quite distinct from the (fragile) parabolic fit.

Experiments have been performed to record t,.;(T’, T) for
a number of substances including both ultrastable and ordinary
glasses.”””"”” A fragile fitting function as in Eq. (15) has been used
to fit the data.”’ The experimental melting times are qualitatively
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consistent with the simulation results reported in Fig. 6 in that
an Arrhenius extrapolation of melting times from high tempera-
ture yields estimate equilibrium relaxation times that are too short.
Simple, classic models of glassy dynamics™ """ also capture this
behavior.

One set of experimental results is particularly useful to compare
with our simulation results. Fast-scanning calorimetry was used to
study the melting of a Au-based metallic glass.”” Samples were first
taken to equilibrium and then very quickly heated to the annealing
temperatures, where isothermal melting was observed. These exper-
imental results are included in the second panel of Fig. 6, plotted in
the same format as the simulation results. In these experiments, the
Arrhenius extrapolation procedure (of about 2 orders of magnitude)
yields an estimate of 7, about 3 times shorter than the measured
value of 7,.

Critical discussion. When T’ and T are very different, the phys-
ical processes governing the glass melting and the equilibrium relax-
ation are distinct. In particular, glass melting is dominated at short
times by nucleation events at rare locations that relax much faster
than the rest of the system. It is unclear how these fast events con-
tribute to the structural relaxation time in equilibrium conditions. In
equilibrium, fast localized processes are often considered to simply
contribute to secondary processes.'’” For glass melting, the extrapo-
lation of the temperature dependence of these processes is unlikely
to provide the correct estimate of the equilibrium relaxation time 7o,
as, indeed, both numerical and experimental data in Fig. 6 suggest.
Presumably, when T' and T are close enough, the Arrhenius behav-
ior in Eq. (15) will break down and increase faster to provide the
right limit for ¢, (T' — T, T).”

D. Lowering the energy barriers

We now discuss an alternative method to speed up the
dynamics that is not directly applicable to experiment but can
be implemented numerically relatively easily. It has recently
been used to study the dynamics of spin glasses in computer
simulations.'”’

The method directly attacks the problem we want to solve:
starting from an equilibrium configuration at a given temperature
T, thermal fluctuations are insufficient to trigger structural relax-
ation in the available time window, t.y. An obvious consequence
is that only configurations that are close to the initial condition in
configuration space are then sampled by the dynamics. The idea
here is therefore to add a thermodynamic field, denoted as €, which
energetically disfavors configurations that are too close to the ini-
tial condition. This is equivalent to increasing the free energy of
the metabasin the system was visiting at time ¢t = 0 to induce
a faster relaxation toward another metabasin with a lower free
energy.

In practice, we add a thermodynamic perturbation to the model
of the form

AE = €Q(t,0), (17)

where Q(t, 0) is the dynamic overlap defined in Eq. (4) between a
configuration at time t and the initial condition at time t = 0. The
field € > 0 is such that large Q(t, 0) values (which correspond to con-
figurations close to the initial condition) cost an additional energy
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FIG. 7. Top panel: evolution of the relaxation time z,4(e, T) with the amplitude of
the field e at constant temperature (color code as in Fig. 6). Bottom panel: the
extrapolated times 7,(¢ — 0, T) are reported together with the direct dynamical
measurements and the reference parabolic fit and are described by an Arrhenius
behavior (blue line).

AE ~ €, whereas low Q(t, 0) values (which correspond to config-
urations far from the initial configuration) are not affected by the
field e.

Therefore, the field € acts as a thermodynamic force that repels
the system from its initial condition, forcing it to relax. The idea is
to measure the relaxation time in the presence of the field at tem-
perature T, 7q(e, T), and then to extrapolate its behavior toward
the equilibrium system at ¢ — 0. Conceptually, this approach is
not very different from the temperature change in Sec. IV C, and
here again, large field values will be needed to speed up the dynam-
ics in the interesting low-temperature region, which very likely will
drive the dynamics far from the equilibrium relaxation process,
making the extrapolation back to equilibrium once again potentially
problematic.

The method is illustrated in Fig. 7 for hard spheres. The top
panel shows how 7(e, T) becomes smaller as € increases, demon-
strating that indeed the relaxation from the initial condition is con-
siderably accelerated by the field e (notice that the vertical time axis
is in log-scale). To extrapolate the data, we use a simple Arrhenius
form
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70(e, T) ~ 7o(T) exp(—ﬁ), (18)

where the prefactor gives the desired equilibrium relaxation time
and Eo(T) is a fitted energy scale. The fit is excellent both at high
and low temperatures, but interesting deviations can be seen in the
crossover regime between the two, especially near ¢ — 0.

The extrapolated relaxation times are shown in Fig. 7 together
with the direct measurements and the parabolic reference fit.
We observe, similar to the melting times in Sec. IV C, that
the extrapolated timescales are better described at low temper-
atures by a simple Arrhenius dependence. The deviations from
the Arrhenius fit of Eq. (18) observed for intermediate temper-
ature indicate that the extrapolation performed at lower tem-
peratures considerably underestimates the true relaxation time.
Physically, this presumably results from the fact that Eq. (18)
only describes the strongly non-equilibrium relaxation at large
€, when the dynamics differs qualitatively from the equilibrium
one.

Critical discussion. The same discussion as for the glass melting
is relevant here, in the sense that a strong ¢ field is needed to speed
up the dynamics at low T, but such strong field drives the system far
from equilibrium, which renders the extrapolation back to equilib-
rium problematic. As for the temperature change, it is likely that the
field € induces dynamics where rare soft regions first relax and then
trigger the relaxation elsewhere in the system, which could explain
the Arrhenius dependence of the extrapolated relaxation times in

Fig. 7.

E. Aging dynamics

Glasses equilibrated at very low temperatures barely relax when
left at that temperature, which is our central problem. It is there-
fore common practice to change the temperature and study the
subsequent dynamics. The glass melting process discussed above
in Sec. IV C is a specific example of such a protocol in which the
dynamics is followed all the way back to equilibrium in order to
infer a melting time. Quite often, however, aging experiments do not
reach complete equilibrium, and the time dependence is carefully
studied to infer information about the equilibrium situation.'’* This
is the topic of the present section. We distinguish between strategies
where some intermediate time quantity is followed and those that
directly attempt to follow the evolution of the structural relaxation
time.

1. Intermediate time dynamics

Ediger and co-workers’”* have followed the evolution of the
dynamics in the frequency range corresponding to the f3 process
in several molecular glass-formers to infer the relaxation time of
ultrastable glasses by comparing two distinct sets of experiments,
based on dielectric measurements, "' (w): (i) perform an isothermal
aging experiment after a rapid quench from high temperature to a
final temperature T and measure how the amplitude of the f8 pro-
cess evolves with the waiting time #,, spent since the quench and
(ii) directly measure the amplitude of the 8 process for the equilib-
rium ultrastable glass at the same temperature T. By construction,
the data in the first set of measurements must (slowly) converge to
the result of the second set in the limit of large t,,. Estimating how
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long it takes for the first set of measurements to match the second
one provides the equilibration time at temperature T. In practice,
Kasting et al. observed that ¥’ ~ —log t,, during the aging, and they
extrapolated (in some cases by more than 6 orders of magnitude)
this logarithmic behavior to the independently measured equilib-
rium value. The extrapolated relaxation times deviate significantly
from a fit performed for T > T, using the VFT law.”

We have followed a similar strategy in hard sphere simulations
to infer long relaxation times using intermediate times dynamics. To
this end, we follow the spirit of Ref. 66 and compare two indepen-
dent sets of numerical measurements. First, we measure the dynam-
ics of equilibrium samples at various pressures, Z, over a large time
window. We obtain the average correlator Q(¢) in equilibrium. The
analog of the out-of-phase component of the dielectric susceptibility
is computed as'”’

" B < dQ(t) wt
Q' (w) = [w dt dt 1+ (wt)?’ (19)

The spectrum Q”(w) exhibits the usual two-peak structure, cor-
responding to the structural relaxation at low frequency and to
the microscopic relaxation process at large frequencies. The two
peaks are separated by a minimum at intermediate frequency. We
denote the amplitude of the minimum as Q,,;, and take this as our
intermediate-time dynamical quantity. At equilibrium, Qyy;, ¢(T)
only depends on temperature. Our choice of observable is justified
by the fact that it avoids choosing an arbitrary frequency scale to
probe the intermediate time dynamics.

In a second set of measurements, we perform an instantaneous
quench from a high temperature (Z = 17; recall from Fig. 1 that
the onset is near Z = 20) to a series of low temperatures and fol-

low the isothermal evolution of Q;,',,v,,(T, t ) with the time t,, spent

I’

since the quench. Empirically, we find that Qp, (T, tw )/ Qipin, e(T)
~ A(T)t,”, with a ~ 0.23 and A(T) being a temperature depen-
dent prefactor. We then use this functional form to estimate
the time when the dynamics comes to equilibrium, Qj;, (T, tw
= 7a)/Qpin, q(T) = 1, and use this as an extrapolated estimate for
the equilibrium relaxation time of the system. We report the results
of this analysis in Fig. 8, where the maximum extrapolated relax-
ation time is about 10° times larger than the maximal waiting time
tw accessible in the simulations.

As expected, the equilibration time defined in this manner
matches the relaxation time data in the regime where 7, can be mea-
sured directly. However, when extrapolated to lower temperatures,
the estimated relaxation times seem to grow in an Arrhenius man-
ner, with an activation energy that is significantly smaller than the
one obtained by fitting in Sec. IIT A.

Critical discussion. These measurements correspond to a non-
equilibrium version of the ones described in Sec. 1II C for equi-
librium situations, but instead of using a relation between 78 and
T4, one simply uses the dynamics at intermediate timescale as an
observable, which should reach its equilibrium behavior for aging
times t, ~ Ta. Thus, no particular relationship between the « and
B relaxations is needed. However, there are two key assumptions.
One is that equilibration of the 8 process is achieved on a timescale
governed by 74, which appears validated by experiments and simu-
lations, at least in the regime where this can be directly tested. The
second key assumption is that observing the dynamics over a given
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FIG. 8. Estimates of the relaxation time using the aging of the intermediate time
dynamics. The extrapolated times are reported together with the direct dynamical
measurements and the reference parabolic fit and are described by an Arrhenius
behavior (blue line).

window of waiting times t,, allows one to extrapolate 74, even when
the ratio 7a/t,, > 1. The simulations above indicate that the extrap-
olated relaxation times are underestimated by the approach. This
makes physical sense since at early aging times, the system has no
reason to explore the same relaxation processes (or, equivalently, the
same part of configuration space) that govern the dynamics at much
later timescales.

2. Long-time dynamics

We now focus on aging experiments that use protocols similar
to Sec. IV E 1 but directly focus on the long-time dynamics rather
than on an intermediate time quantity.

This type of analysis will thus combine several procedures men-
tioned above: (i) dynamics is followed after a sudden change in the
experimental conditions, such as a temperature change, as in Sec. IV
C, (ii) the dynamics is measured over the largest available time win-
dow, as in Sec. III D, and (iii) a rescaling of the obtained dynamics
on some master curve is performed, as in Secs. IV A and IV B. There-
fore, the hypotheses needed in this case are a combination of all those
listed in the corresponding sections.

This type of analysis was recently performed on both 20-
million-year old amber glasses”’ and vapor deposited ultrastable
Teflon.” Earlier, extremely long aging experiments have also been
performed on liquid-cooled glasses'” '"* and analyzed along simi-
lar ideas. In the Teflon work, mechanical measurements performed
over a large timescale of about 10* s are used to infer equilibrium
relaxation times up to 10" s, i.e., an extrapolation of 11 orders of
magnitude.

Using hard sphere simulations, we performed an analysis of the
aging dynamics. The thermal history is an ordinary, instantaneous
quench from high temperature (Z = 17) to some low temperature.
During the aging, the volume of the system increases slowly toward
its equilibrium value. For very low temperatures, the relaxation time
is very large, and the volume does not reach a steady state during the
aging and depends explicitly on t,,, the time spent since the quench.
We have recorded the evolution of the volume fraction ¢(t,,) (which
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scales as the inverse of the volume). In a separate set of simulations,
we use the swap Monte Carlo algorithm to directly measure ¢4 in
equilibrium. We can then define the adimensional variable ¢.; —
¢(tw), which must vanish, by construction, when t,, > 7,. We use
this variable to infer a relaxation time at low temperature assuming
a master curve of the form

beq = ¢(tw) = G(tw/7a), (20)

where G(x) is a scaling function such that G(x — o) = 0 to reflect
equilibrium.

The knowledge of the equilibrium value of the volume frac-
tion (or of any alternative choice of a physical observable) is often
not available experimentally, and the rescaling onto master curves
is thus less constrained. In practice, experimental data collapse can
be achieved by shifting the measurements both horizontally and
vertically to produce a master curve (see Ref. 23).

The numerical analysis is summarized in Fig. 9, where 7, is
adjusted for each volume fraction to get the best data collapse, in
the spirit of Refs. 20 and 23. The data seem to follow a logarithmic
dependence at short times, G(x <« 1) ~ —log(x), interrupted near
x =1 by a (possibly stretched) exponential cutoff, as illustrated in
Fig. 9. Since the procedure only provides 7, up to a global rescal-
ing factor, we include in the analysis one temperature for which the
relaxation time can be measured directly in equilibrium to set the
overall scale, as is also done experimentally.

As in the experiments (similarly in Secs. IV A and IV B), the
dynamics is actually measured over a fixed waiting time window,
but large relaxation times are inferred by assuming the rescaling
form in Eq. (20). The scaled variable t,,/7, covers about 12 orders
of magnitude in Fig. 9, even though the data for any single tem-
perature covers about 4 orders of magnitude. The master curve
is thus artificially reconstructed by gluing together small pieces of
data.

We finally report 7, obtained through this analysis in Fig. 9
along with the direct measurements and the reference parabolic fits.
The extrapolated data deviate rapidly from the parabolic fit and
follow a simpler Arrhenius form. We note that the temperature
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$ [ Direct e
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— S ° © 8 | Arrhenius —
j 002 ¢ ° . 1 10 Parabolic —
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FIG. 9. Left panel: evolution of the volume fraction with waiting time after a quench
from high temperature (Z = 17) to various final states (shown with different col-
ors, the final pressure increases from right to left from Z = 26 to Z = 38) in hard
sphere simulations. The waiting time is rescaled to provide the best data collapse,
assuming that Eq. (20) is valid. The full line illustrates the scaling function G(x).
Right panel: the extrapolated times 7, are described by an Arrhenius behavior
(blue line) and are reported together with the direct dynamical measurements and
the reference parabolic fit.
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dependence that we extract from this analysis is Arrhenius and, in
this respect, similar to the results obtained in several experimen-
tal studies,””*”'" even though in our system, the dynamics in the
extrapolated regime is expected to be slower than indicated by this
Arrhenius law.

Critical discussion. The method presented here combines many
of the tools discussed separately in earlier sections, and thus, the crit-
icisms described there all apply simultaneously here. First, this is a
non-equilibrium method, and there is no guarantee that the dynam-
ics is the same as in equilibrium. Second, the measured time window
is short compared to the long-time dynamics inferred using a recon-
structed master curve of unknown validity. Third, it is possible that
these dynamics are influenced by the existence of secondary pro-
cesses, which have a temperature dependence weaker than structural
relaxation.

V. CONCLUSION

Measuring the relaxation time of very stable or very old glassy
materials is currently an important challenge for both simula-
tions and experiments.” > The title of this article is intentionally
provocative, since it is, by definition, impossible to measure a relax-
ation time that is too long to be measured. No method can safely
estimate very large timescales, and no method can deliver rigorous
lower or upper bounds for 7,. All such measurements need to be
critically analyzed, and all physical conclusions subsequently drawn
from these extrapolations need to be critically evaluated.

In Fig. 10, we gather all the methods used throughout the paper
to extrapolate the relaxation time of the hard sphere system from
TalTo = 10° (end of the numerical time window) to 74/7o = 10"
(experimental glass transition temperature). Starting from the tem-
perature fit extrapolation, we suggested that the parabolic fit could be
used as a reference for later comparisons, whereas the Arrhenius fit
should be seen as a reasonable (but non-rigorous) lower bound since
it neglects the curvature of the actual data. The most obvious state-
ment regarding Fig. 10 is that the relaxation times estimated by these
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FIG. 10. Compilation of extrapolated 7, values obtained by the methods described
in this article. The parabolic fit represents our reference temperature dependence,
while the Arrhenius fit obtained in Sec. IIl A should be considered a lower bound.
Most non-equilibrium extrapolations fall below the Arrhenius fit and are likely in
€rror.
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methods differ substantially, and at best, only one of these methods
can be correct.

We find that the extrapolations using the Debye Waller factor
(Sec. I1I B) and time temperature superposition at equilibrium over
a large time window (Sec. III D) provide extrapolations above the
Arrhenius fit and have some degree of fragility comparable to the
parabolic fit extrapolation.

On the other hand, several non-linear and non-equilibrium
methods such as glass melting (Sec. IV C), the e-field (Sec. IV D),
and aging dynamics (Sec. IV E) seem to lead to a strong under-
estimate of the actual relaxation time. As explained in the corre-
sponding subsections, a strong underestimation of the extrapolated
relaxation times makes physical sense, since these methods system-
atically probe physical processes that are distinct from the long-time
equilibrium dynamics that they seek to estimate. This conclusion
is reinforced by the fact that these non-equilibrium methods yield
estimates that are smaller than the Arrhenius extrapolation of the
relaxation times, which represents a well-motivated lower bound to
the relaxation times.

Our general conclusion is that extrapolating to obtain large
relaxation times is a difficult exercise, which seems to be giving con-
sistent results only if the extrapolation involves a modest number
of decades, but becomes a hazardous task when a larger number of
decades is involved. Given all the uncertainties mentioned through-
out this article, it should be clear that one should not use extrapo-
lated data to make definitive statements about the fate of supercooled
liquids at very low temperatures, such as addressing, for instance, the
existence of a Kauzmann transition.

We would like to offer some more optimistic views before clos-
ing. First, all estimates (presumably underestimates) of the relax-
ation times in vapor-deposited ultrastable glasses and in silico glasses
prepared by the swap Monte Carlo algorithm indicate that these sys-
tems are characterized by relaxation times that are many orders of
magnitude larger than ordinary glasses. Therefore, there should be
no doubt that these materials do behave as extremely old glasses
that have been prepared in a comparatively modest amount of time.
Second, even if we do not yet know how to accurately estimate
the extremely long relaxation times of ultrastable glasses, study of
these materials provides important clues. For example, the den-
sity,“") modulus, "’ enthalpy,l ! yibrational density of states,''> and
configurational entropy” > of ultrastable glasses are consistent with
extrapolation from the supercooled liquid above Tg. This indi-
rectly indicates that the relaxation time should similarly be increas-
ing smoothly as the temperature decreases, consistent with all the
extrapolations presented here.

At present, we do not see how to improve on the methods dis-
cussed here to estimate experimentally very large relaxation times.
Regarding simulations, there is still the hope that novel algorithms
can be invented to considerably speedup not only the equilibration
of the system but also its physical relaxation dynamics. Studying the
dynamics at very long times is thus the very clear, next challenge
faced by computer studies of glassy materials.
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