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ABSTRACT
The swap Monte Carlo algorithm allows the preparation of highly stable glassy configurations for a number of glass-formers but is inefficient
for some models, such as the much studied binary Kob–Andersen (KA) mixture. We have recently developed generalizations to the KA
model where swap can be very effective. Here, we show that these models can, in turn, be used to considerably enhance the stability of glassy
configurations in the original KA model at no computational cost. We successfully develop several numerical strategies both in and out of
equilibrium to achieve this goal and show how to optimize them. We provide several physical measurements indicating that the proposed
algorithms considerably enhance mechanical and thermodynamic stability in the KA model, including a transition toward brittle yielding
behavior. Our results thus pave the way for future studies of stable glasses using the KA model.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0020208., s

I. INTRODUCTION

Computer simulations of supercooled liquids and glasses play
an important role to link their physical properties to the structure
and dynamics at the microscopic scale.1 Structural relaxation and
equilibration are, however, so slow that simulating glass-forming
liquids is generally difficult. This problem was recently solved
for a broad (but incomplete) class of model glass-formers using
the swap Monte Carlo (MC) algorithm.2–4 For some models, an
equilibration speedup larger than 1011 was achieved, opening the
door to direct comparisons between numerical and experimental
work.5–13

The Kob–Andersen (KA) model is a binary mixture of
Lennard-Jones particles devised to describe the generic physical
properties of simple metallic glasses.14 For this well-studied model,
the swap Monte Carlo algorithm is inefficient as the swap of
unlike species is almost always rejected.15 Therefore, the simu-
lation of low-temperature properties of the KA model requires
alternative methods, such as parallel tempering,16 simulations on
graphic cards,16,17 ghost particle insertion,18 Wang–Landau algo-
rithm,19 transition path sampling,18,20 physical vapor deposition,21

and oscillatory shear.22–24 However, none of these attempts could

provide the type of speedup that the swap Monte Carlo has
provided for the models mentioned before. There is thus a clear need
to further develop computational algorithms to produce more stable
glassy configurations of the KA model.

Recently, we introduced generalized versions of the KA model
(called KA1 and KA2 models), which are very similar to the orig-
inal KA model and for which the swap Monte Carlo algorithm is
very efficient.25 The strategy relies on introducing a small amount
of additional species to the binary KA mixture to enhance the swap
efficiency. This strategy will allow the investigation of properties of
simple metallic glasses down to the experimental glass transition, but
not for the KA model itself. In this work, we demonstrate that the
production of very stable configurations within the KA1 model can,
in turn, be used to produce stable glassy configurations of the orig-
inal KA model as well, for a modest computational effort. Because
many groups have developed numerical expertise and analysis tools
for the KA model, our results pave the way for future studies of stable
glass physics within the KA model.

This manuscript is organized as follows. In Sec. II, we define the
various glass models we used. In Sec. III, we use histogram reweight-
ing techniques to measure equilibrium properties of the KA model.
In Sec. IV, we present two annealing procedures to prepare stable
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configurations of the KA model. In Sec. V, we quantify the stability
of the obtained configurations. We conclude in Sec. VI.

II. MODELS
We consider mixtures of particles i = 1, . . ., N of different

species characterized by a number ωi ∈ [0; 1]. The interaction
potential between two particles i and j is

v(rij;ωi,ωj) = 4ϵωiωj

⎡
⎢
⎢
⎢
⎢
⎣

(
σωiωj

rij
)

12

− (
σωiωj

rij
)

6⎤
⎥
⎥
⎥
⎥
⎦

, (1)

which depends on the distance rij between the two particles, on
the interaction strength ϵωiωj and on the cross-diameter σωiωj . The
potential is truncated and shifted at the cutoff distance rcut,ωiωj

= 2.5σωiωj .
We focus on two related models. The first one is the standard

Kob–Andersen model,14 which is a 80:20 binary mixture of NA par-
ticles of type A (with ωi = 1) and NB particles of type B (with ωi = 0).
The interaction parameters are ϵAB/ϵAA = 1.5, ϵBB/ϵAA = 0.5, σAB/σAA
= 0.8, and σBB/σAA = 0.88. Energies and lengths are expressed in units
of ϵAA and σAA, respectively, and the Boltzmann constant is set to
unity. We denote HKA[rN] the corresponding Hamiltonian of the
KA model.

We also consider an extended version of the KA model (KA1)
by introducing a small fraction δ = NC/(NA + NB) of particles of
type C interpolating continuously between A and B particles. More
precisely, C particles are characterized by a uniform distribution of
ωi ∈ ]0; 1[, while A (respectively, B) particles are still associated with
the type ωi = 1 (respectively, ωi = 0). The Hamiltonian of the KA1
model is

H1[rN] = ∑
i<j

v(rij;ωi,ωj), (2)

with the additional interaction parameters

X1ωi = ωiXAA + (1 − ωi)XAB,
X0ωi = ωiXAB + (1 − ωi)XBB,
Xωiωj = ωijXAA + (1 − ωij)XBB,

(3)

where X = σ, ϵ and ωij = (ωi + ωj)/2.25 We also define the Hamil-
tonian H0[rN] the system would have if C particles with ωi ≤ 0.2
(respectively, ωi > 0.2) were taken as B (respectively, A) particles.
Thus, H0 is the Hamiltonian of the corresponding KA model, given
by Eq. (2) with ωi replaced by ω′i = 1 − θ(1 − ωi/0.2), with θ(x) being
the Heaviside function. Finally, we define

W = H1 −H0 (4)

as the energy difference between the KA1 and the KA energies for a
given configuration of the KA1 model.

We study the KA1 model with NC = 5, NA = 800, and NB = 200
(so that δ = 0.5%), at number density ρ = 1.2 under periodic bound-
ary conditions. We use nine times larger systems for the rheology
(see below). The model is studied using the swap Monte Carlo algo-
rithm. With probability p = 0.2, the identity of particle i is exchanged

with the one of particle j, both particles being randomly chosen.
Otherwise, with probability 1 − p, a standard translational move is
performed in which the position ri of particle i is incremented by
a random displacement δri drawn in a cube of linear size 0.15 cen-
tered around the origin.26 Both moves are accepted according to the
Metropolis rule. We fix the position of the center of mass.

Due to the large difference in diameters between A and B par-
ticles, swap moves are inefficient in the KA model,15 whereas the
introduction of a small fraction of C particles makes swap moves
possible and results in a much faster relaxation.25 The structural
relaxation time τα of the system is defined as the time value at which
the self-part of the intermediate scattering function calculated for the
whole system, with a wave number corresponding to the first peak
of the total structure factor, decays to the value 1/e. It is expressed
in units of Monte Carlo (MC) steps, where 1 MC step corresponds
to N attempted moves. The lowest temperature for which we can
ensure equilibration in the KA model is T ≃ 0.415, whereas for
KA1, we can reach T ≃ 0.36 for a comparable numerical effort of
108 Monte Carlo steps. In terms of τα, this represents a speedup
factor of more than 102 over the standard KA model at the lowest
temperature.

III. REWEIGHTING EQUILIBRIUM DISTRIBUTIONS
In this section, we show how to compute the thermodynamic

properties of the KA model from simulations of the KA1 model
using reweighting methods.27 Since the swap Monte Carlo algo-
rithm efficiently thermalizes the KA1 model, the use of histogram
reweighting can potentially produce thermodynamic properties for
the KA model at the low temperatures where only the KA1 model
can reach equilibrium.

In particular, we focus on the probability distribution of the
energy in the standard KA model

P(E) = ⟨δ(E −HKA)⟩HKA

=
∫ drNδ(E −HKA[rN])e−βHKA[rN]

∫ drNe−βHKA[rN]
, (5)

with δ(x) being the delta function and ⟨⋯⟩HKA being the thermody-
namic average at inverse temperature β = T−1 for the Hamiltonian
HKA.

It is useful to rewrite Eq. (5) using quantities defined within the
KA1 model,

P(E) =
∫ drNδ(E −H0[rN])e−βH1[rN]+βW[rN]

∫ drNe−βH1[rN]+βW[rN]

=
⟨δ(E −H0)eβW⟩H1

⟨eβW⟩H1

, (6)

where now ⟨⋯⟩H1 stands for the thermodynamic average for the
Hamiltonian H1. We used Eq. (2) and the fact that, by definition,
H0 = HKA.
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Introducing P(1)W (W) = ⟨δ(W −W)⟩H1 the probability distri-
bution of W measured in the KA1 model, using the trivial identity
eβW = ∫dWeβWδ(W − W) and the Kolmogorov definition of a
conditional probability, Eq. (6) can be written as

P(E) =
∫ dWP(1)H0 ∣W(E∣W)P

(1)
W (W)e

βW

∫ dWP(1)W (W)e
βW

, (7)

where P(1)H0 ∣W is the conditional probability of H0 given W, measured
in the KA1 model. The two distributions in the right-hand side of
Eq. (7) can be measured in the course of a simulation of the KA1
model and subsequently reweighted to obtain the probability distri-
bution of the energy in the KA model in the left-hand side. Thus,
in principle, the properties of the KA model can be obtained with-
out ever performing a simulation of the KA model itself but only
working with the KA1 model where swap Monte Carlo works well.

In Fig. 1(a), we show the distributions of H1 and H0 measured
in the KA1 model, for a temperature T = 0.45 for which the relax-
ation time of the KA model is τα/τ0 ≃ 2 × 102, with τ0 ≃ 3 × 103

being the relaxation time at the onset temperature T0 ≃ 0.70 of glassy
behavior (corresponding to the appearance of a two-step decay in
correlation functions). We also show P(E) directly measured in the
KA model to assess the validity of the reweighting procedure. The
product P(1)W (W)e

βW plays a crucial role in the reweighting scheme,
as emphasized by Eq. (7). However, as shown in Fig. 1(b), this quan-
tity increases (exponentially) without bounds in the range of W that
is being explored in a direct simulation of the KA1 model. This find-
ing indicates that a direct application of Eq. (7) is not possible with
this set of data as the tails of the distributions involved in the various
integrands are not appropriately sampled. This limitation becomes
increasingly difficult to tackle when δ increases, which explains why
we chose the smallest value δ = 0.5% studied in Ref. 25.

To overcome this sampling issue, we need to force the sys-
tem to visit non-typical, larger values of W. To this end, we use
umbrella sampling techniques.28,29 We perform several simulations
of the KA1 model in parallel, each simulation being run with a biased
Hamiltonian of the form

H1,W0 = H1 + κ(W −W0)
2, (8)

with κ = 0.05 being the strength of the bias, in order to be able to
sample values of W ≃ W0 ∈ [−17.5; 20]. By combining the dif-
ferent umbrella simulations, we can extend the range over which
P(1)H0 ∣W and P(1)W are measured. The latter is obtained by histogram
reweighting as

P(1)W (W) = Z(W0)P(1,W0)
W (W)eβκ(W−W0)2

, (9)

with P(1,W0)
W being the probability density of W with the bias and

Z(W0) being an unknown normalization constant.30 For two con-
secutive values of W0, the ratio of these normalization constants
can be estimated from the range of overlapping values of the biased
probabilities.31 Thus, the estimates of P(1)W from different umbrella
simulations can be glued together, and for each bin, the most accu-
rate value is kept. In Fig. 1(b), we show that P(1)W (W) exp(βW) is
now bounded with a maximum for W ≃ 0. This implies that the
integrals in Eq. (7) are dominated by configurations having W ≃ 0,
namely, KA-like configurations. After umbrella sampling, Eq. (7)
can now be numerically evaluated to obtain an accurate estimate of
P(E) [see Fig. 1(a)].

We have shown that the thermodynamic properties of the KA
model can be obtained from simulations of the KA1 model, which
can involve the efficient swap moves. However, these measurements
rely on umbrella sampling simulations, and care must be taken that
these biased simulations are all performed in equilibrium condi-
tions. To ensure a proper sampling in the umbrella simulations, we
measure the relaxation time τα as a function of ⟨W⟩H1,W0

, the average
value of W [see Fig. 1(c)]. It turns out that τα increases from its value
in the KA1 model to its value in the KA model when ⟨W⟩H1,W0

≃ 0
and increases further for positive values. The physical interpretation
is that the biased KA1 system visits KA-like configurations when
⟨W⟩H1,W0

≃ 0, for which the swap algorithm is inefficient, despite
the fact that the acceptance rate of swap moves is actually very high.
This means that the frequently accepted swap moves in the biased
KA1 model do not accelerate the equilibration.

FIG. 1. (a) Probability distributions P(1)
H1

and P(1)
H0

of energies H1 and H0 in the KA1 system at T = 0.45 along with the reweighted probability distribution P (Rew.) of the
energy for the KA model obtained from Eq. (7). The probability distribution P has also been directly measured in the KA model (KA) to check the quality of the reweighting
procedure. (b) Plot of P(1)

W (W)e
βW with (red) and without (black) umbrella sampling. The dashed line marks the limit of W in unbiased Monte Carlo simulations of the KA1

model. (c) Relaxation time τα of the system in the different umbrella simulations as a function of ⟨W⟩H1,W0
, the average value of W.
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Therefore, the strategy devised here does work correctly, and
the numerical results for the KA model can be obtained without
ever simulating it. However, it can only be implemented at suffi-
ciently high temperatures as one needs to achieve equilibration times
close to the one of the KA model itself to implement the reweight-
ing procedure. In other words, at equilibrium, we can measure P(E)
using the KA1 model only in a range of temperatures for which it
can directly be measured in the KA model as well as a continuous
chain of equilibrium simulations interpolating between KA1 and KA
models is needed. There is thus no computational advantage.

IV. TWO ANNEALING PROCEDURES
To produce useful results for the KA model using only the KA1

model, one needs to smoothly transform KA1 data into KA ones.
If done in fully equilibrium conditions, a bottleneck is necessarily
encountered as the final steps involve being in equilibrium within a
system close to the KA model. This is always problematic as the swap
Monte Carlo algorithm does not work well in this regime.

In this section, we again transform the KA1 results (which ben-
efit from the swap algorithm) into KA ones (which do not) but relax
the constraint that the final configurations are at equilibrium. To this
end, we develop two annealing procedures to smoothly transform
in a finite amount of time very stable KA1 configurations into KA
ones. The hope is that the gain in stability in the first steps is not
completely lost during the annealing procedure.

In method I, we perform simulations with the Hamiltonian
H1,W0 , and we linearly increase the value of the bias W0 up to W0
= 0 (the system is then close to the KA model) in a total num-
ber of Monte Carlo steps tMC. Initially, the value of W0 is set to
the instantaneous value of W in the initial configuration. We then
switch the Hamiltonian to H0, which is equivalent to treating the
final configuration as a bona fide KA configuration. In this method,
the KA1 model is then gradually biased using the umbrella sampling
Hamiltonian in Eq. (8) toward the KA model.

In method II, we do not rely on umbrella sampling, and we
always use the bulk KA1 Hamiltonian. We gradually convert the
minority species C particles into A or B particles, thus achieving
the desired H1 → H0 annealing. In practice, we run simulations
with Hamiltonian H1, and at each MC step, with probability pω
= 1/50, we pick up at random one C particle and we increase (respec-
tively, decrease) its variable ωi by a small increment dω if initially
ωi > 0.2 (respectively, ωi ≤ 0.2). Otherwise, with probability 1 − pω,
we perform translational or swap moves according to the procedure
presented in Sec. II. The increment dω is chosen so that after an
average number of tMC MC steps, the C particles are all converted
into either A or B particles. We can then switch the Hamiltonian
to H0, which is again equivalent to treating the final configuration
as a bona fide KA configuration. We should stress that even though
the annealing methods may look artificial regarding other prepara-
tion protocols (such as gradual cooling or aging), the only thing that
matters is that a genuine amorphous KA glass is eventually obtained
through the algorithm.

In both methods, we transform KA1 into KA configurations at
constant temperature. More complicated annealing schemes could
involve changing other parameters as well,32 but we leave them
for future work. To test our methods and compare the relative

efficiency of all schemes, we decided to use similar computational
effort [i.e., similar central processing unit (CPU) times] for all con-
figurations, with a maximum wall time of two weeks (corresponding
to 108 Monte Carlo steps).

First, we prepared a series of equilibrium and glassy configura-
tions of both KA and KA1 models. For the KA model, equilibration
is ensured down to T = 0.415, and for the KA1 model, equilibra-
tion is ensured down to T = 0.36. To produce glassy configurations
at even lower temperatures, we quenched several configurations at
these final temperatures to a range of lower temperatures, down to
T = 0.30. The aging time for each of these glasses is tw = 108.

The equilibrium (for T ≥ 0.36) and aged (for T < 0.36) KA1 con-
figurations are then slowly annealed using methods I and II toward
KA configurations. We used annealing times tMC from 9 × 105 to
7.5 × 107 to keep the longest simulations to at most 108 Monte
Carlo steps and to ensure a fair comparison between all protocols.
To improve the statistics, we performed 30 independent simulations
for each temperature.

As a result of the annealing methods, we obtained an ensem-
ble of KA configurations at various temperatures, whose stability we
can compare to direct simulations of the KA model over a similar
preparation timescale. For the KA model, we used either equilibrium
configurations for T ≥ 0.415 or configurations aged for 108 Monte
Carlo steps for T < 0.415.

V. STABLE GLASSY KA CONFIGURATIONS
In this section, we analyze the KA configurations produced by

the annealing methods I and II and by direct aging with the KA
Hamiltonian using various physical quantities.

A. Inherent structure energies
Our first strategy to quantify the stability of the KA configura-

tions is to quench them to T = 0 and to record the inherent structure
(IS) energy per particle. In Fig. 2, we show the average energy of the
IS per particle eIS for (a) method I and (b) method II as a function
of the inverse temperature for three different annealing rates, corre-
sponding to tMC = 9 × 105, 9 × 106, or 7.5 × 107 (and dω = 10−4,
10−5, or 1.2 × 10−6 for method II). For a given rate, we have checked
the influence of the number of C particles and we found that for con-
centrations larger than δ = 0.5%, higher energy states were reached.
This is why we only show the results for δ = 0.5%. In addition, we
clearly see that the lower annealing rates give lower IS energies at
fixed temperature.

As a matter of comparison, we show two additional datasets
in Fig. 2. The first one represents the average IS energy of the KA1
model for the set of initial conditions described before. The sec-
ond one corresponds to the IS energies obtained directly in the KA
model, as explained in Sec. IV. The annealing data clearly lie above
the data for the KA1 model, suggesting that during the annealing,
some of the initial stability gained via the swap Monte Carlo algo-
rithm is lost. However, the annealed states lie much below the IS
energies obtained by direct aging in the KA model using a compa-
rable numerical effort. The KA configurations obtained by aging a
time tw = 108 lie much above the configurations obtained via meth-
ods I and II, which shows that it would require a much longer
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FIG. 2. Average inherent structure energy per particle eIS for the KA and KA1
models as a function of inverse temperature. The dashed blue line corresponds to
eeq
IS = a/T + b, which fits the equilibrium data for the KA model. The IS energies

are obtained, thanks to method I [panel (a)] and II [panel (b)] at different rates.
Fictive temperatures are determined via the dashed–dotted lines.

(numerically inaccessible) aging time to produce a similar stabil-
ity. Overall, this suggests that the annealing procedures I and II at
small rates lead to more stable KA states with lower IS energies for a
modest computational cost.

B. Fictive temperatures
To further quantify the stability of the annealed states, we esti-

mate their fictive temperature Tf . To this end, we fit the temper-
ature evolution of the equilibrium IS energy of the KA model as
eeq
IS (T) = a/T + b (with a, b fitting parameters), shown by the dashed

blue line in Fig. 2. This is a well-known temperature dependence.33,34

We can then directly read-off the value of the fictive tem-
peratures for the KA configurations obtained from direct aging or
annealing by the identification eIS = eeq

IS (Tf ). This is shown with the
black and purple dashed–dotted lines, respectively, in Fig. 2. We find
that in a direct KA simulation, the lowest IS energies correspond to
Tf ≃ 0.386, whereas the lowest IS energies for methods I and II give
Tf ≃ 0.355. The latter is within 18% of the experimental glass tran-
sition temperature estimated for this system, Tg ≃ 0.30. These fictive
temperature values confirm the enhanced stability of the annealed
KA configurations.

C. Relaxation timescales
To determine a dynamic speedup gained by the annealing

protocols devised above, we convert the obtained IS energies (or,
equivalently, fictive temperatures) into an equilibrium relaxation
timescale. To do this, we first need to extrapolate the equilibrium
relaxation time τα(T) of the KA model to lower temperatures to infer
relaxation timescales that are too large to be directly measured.35

We use a parabolic fit of the temperature dependence of τα(T),34

namely, τα,p(T) = τ0,pe J(1/T−1/Tp)2
(with τ0,p, J, and Tp fitting param-

eters). Consequently, for each value of the IS energy in Fig. 2, we

FIG. 3. Parametric plot of the estimated relaxation time τα vs the average IS
energy per particle eIS. The dashed line combines the estimate of τα(T) using
a parabolic fit with an affine dependence of eIS with 1/T. We can then report the IS
energies obtained by direct aging in the KA model or by annealing the KA1 model
with methods I and II and convert them into estimated relaxation times.

determine the corresponding fictive temperature Tf (thanks to the
method explained in Sec. V B), and we compute the extrapolated
α-relaxation time τα = τα ,p(Tf ) from the parabolic fit. In Fig. 3, we
display the parametric plot τα(eIS) for IS energies obtained at various
temperatures either by direct aging in the KA model or by anneal-
ing KA1 configurations with the slowest annealing rates. The lowest
IS energies obtained for the annealed configurations provide much
larger estimates of the corresponding relaxation timescales, with a
speedup factor of about 102–103. Therefore, we conclude that the
speedup factor obtained for the KA1 model with δ = 0.5% translates
into a similar speedup for the original KA model, for an equivalent
computational effort.

We recall that this very large speedup factor is obtained keeping
constant the total computational timescale involved in the prepara-
tion of the KA configurations. In other words, the speedup offered by
the present algorithms are totally costless, unlike all other methods
described in the Introduction. We did not attempt to combine our
approach to any other technique, such as parallel tempering, graphic
cards, or longer simulation times. This would provide even more sta-
ble configurations at the expense of increased computational time
and, for some of these methods, a different scaling of the efficiency
with the system size.

D. Rheology
We next examine the stability of the annealed KA configura-

tions against shear deformation. It has recently been shown that the
stability of glassy configurations qualitatively affects the nature of
the yielding transition, with a sharp ductile-to-brittle transition with
increasing stability.36–40 This transition is characterized by the emer-
gence, in large enough systems, of a macroscopic discontinuity in the
stress–strain curves, accompanied by the formation of macroscopic
failure taking the form of a system-spanning shear-band. Despite
scores of rheological studies of the KA model, this transition has not
been observed in this model so far.
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To study the rheology of stable KA configurations, we need to
prepare larger configurations. We first produce very large KA/KA1
samples by replicating 33 systems of N = 1000/1005 particles to
obtain larger samples of N = 27 000/27 135 particles. These repli-
cated systems are further aged for 106 MC steps at temperature
T = 0.36. The KA1 samples are then annealed to KA states using
both methods I and II, with tMC = 5 × 104, pω = 1/50, and
dω = 5 × 10−3.

Using these KA configurations, we perform a constant-volume
athermal quasi-static shear protocol in the xz-plane with a strain
increment Δγ = 10−4 using Lees–Edwards periodic boundary condi-
tions. Each strain increment is followed by an energy minimization
using the conjugate-gradient method. In Fig. 4(a), we present the
stress–strain curves σ(γ) for three different samples for each of the
three different preparation protocols (aged KA, methods I and II). In
all cases, we observe an elastic regime, a weakening due to small plas-
tic events, followed by a stress drop at the yielding transition, before
reaching a steady-state regime at large deformation. For the aged KA
samples, the yielding transition after the stress overshoot is the result
of several plastic events, resulting in a modest stress drop and a rel-
atively homogeneous strain field [see the snapshot in Fig. 4(b)]. The
two annealing protocols provide KA samples with much lower fic-
tive temperatures. This results in unique, sharp, and macroscopic
stress drops in the stress–strain curves of all samples, associated with
system-spanning shear-bands that are formed within a single energy
minimization and a highly heterogeneous plastic deformation field
[see snapshots in Figs. 4(c) and 4(d)]. The strong shear localization
at the yielding transition is correlated with the increased stability of
the system,36–44 which further confirms that the proposed annealing
methods produce highly stable KA glass configurations.

Physical information about the properties of stable KA config-
urations is also contained in the elastic regime at small deformation.

FIG. 4. (a) Stress–strain curves for aged KA and annealed samples with methods
I and II. We report three independent loading curves for each case. The smooth
stress overshoot of the aged KA turns into a sharp stress drop for the stable
annealed samples. Snapshots of the non-affine displacement between γ = 0 and
γ = 0.11 for (b) a KA sample, (c) an annealed sample with method I, and (d) an
annealed sample with method II. The color of the particles encodes the absolute
magnitude of their non-affine displacement in units of σAA.

In particular, the shear modulus G describes the elastic response of
the system: G = σ/γ for small enough γ. For the determination of
the shear modulus, we revert to system sizes N = 1000/1005, and we
perform athermal quasi-static simulations for the equilibrium, aged,
and annealed KA samples corresponding to tMC = 7.5 × 107. The
slope of the stress–strain curve in the range of 0%–1% strain is plot-
ted as a function of either the temperature (for equilibrium samples)
or the fictive temperature (for non-equilibrium glasses) determined
in Sec. V B.

The results are shown in Fig. 5. The data for equilibrium config-
urations show that G increases modestly over the simulated temper-
ature regime (by about 10%). The aged KA configurations display a
shear modulus that is about 2% larger, whereas the annealed glasses
obtained using methods I and II exhibit an 8% increase instead, con-
firming again that the annealed configurations are more stable than
well-aged KA glasses. The reported trend is consistent with various
earlier studies.9,45–47

These results demonstrate that brittle yielding can now be ana-
lyzed in computer simulations of metallic glasses as well and espe-
cially in the KA model, which is one of the most studied models.
In particular, we have demonstrated that the behavior of KA glasses
can turn from ductile to brittle by tuning the degree of annealing
of the configuration before shearing, just like in experiments. This
result was first shown in polydisperse soft sphere systems36 and now
in the KA model that mimics metallic glasses with a small number
of components. Our annealing procedure thus provides a systematic
way of tuning the mechanical response of simulated metallic glasses
and complements other preparation protocols, such as cycling shear
at finite temperature and finite shear rate.22 This new possibility
also opens interesting research avenues to understand, for instance,
the correlation between deformation in the brittle regime and dif-
ferent structural indicators such as the ones studied in Ref. 48 but
also locally favored structures, which are well documented in the
KA model.49,50 In addition, within the KA model, the influence of

FIG. 5. The shear modulus G for various equilibrium, aged, and annealed KA
samples as a function of the fictive temperature (or the actual temperature for
equilibrium samples). The annealed KA samples are achieved using methods I
and II with tMC = 7.5 × 107. Inset: stress–strain curves in the small γ regime used
to determine G for samples marked with horizontal arrows.
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FIG. 6. Potential energy per particle e of various glasses heated at constant rate
10−6: the liquid-cooled glass (LC KA) and the aged KA glass show relatively lower
Ton, compared to the glasses generated by the two annealing methods I and II.
The onset temperatures Ton are marked by arrows. For the liquid-cooled glass
cooled at constant rate 10−7, we also show the cooling curve.

attractive forces on the yielding behavior could also be investigated
in computer simulations by direct comparison with a purely repul-
sive model [particles interacting via the Weeks-Chandler-Andersen
(WCA) potential51]. These attractive forces are known to affect the
equilibrium behavior of supercooled liquids quantitatively,52 and
experiments suggest that the rheology of attractive glasses is also
quantitatively different from their repulsive counterparts.53

E. Calorimetric measurements
We finally perform calorimetric measurements on systems of

size N = 1000/1005 to study the stability of the generated glasses in
the spirit of experiments performed on vapor-deposited ultrastable
glasses.54,55 Our goal is to monitor the onset temperature Ton at
which the potential energy per particle e(T) shows a brutal change
of slope from its low-temperature glassy behavior when the glass
sample is heated at constant rate. Note that this temperature is dif-
ferent from the onset temperature of glassy behavior T0 mentioned
before as Ton is a non-equilibrium, rate-dependent quantity, while
T0 is measured at equilibrium.

In Fig. 6, we compare four different glasses at the same heating
rate of 10−6: (i) a glass prepared from an equilibrium configuration
at T = 1.36 cooled at a constant rate of 10−7; (ii) a KA sample aged at
T = 0.36 during tw = 108; and [(iii)/(iv)] annealed samples prepared,
thanks to methods I/II at the same temperature T = 0.36 and the
lowest annealing rate (with tMC = 7.5 × 107). For the liquid-cooled
glass, we estimate the onset temperature Ton = 0.56. The well-aged
KA sample shows a moderately larger onset temperature, Ton = 0.58,
while the two annealed glasses display a higher Ton = 0.65, which
again reflects the much larger kinetic stability reached using the
annealing methods proposed in this work.

VI. CONCLUSION
To summarize, we have examined the possibility of using the

speedup offered by the swap Monte Carlo algorithm in the extended

Kob–Andersen (KA1) model to access low-energy states in the orig-
inal Kob–Andersen (KA) model where swap moves are inefficient.
We found that an equilibrium method introduces a bottleneck with
equilibration times that are as large as in the original KA model, and
therefore, this method does not provide any significant speedup. We
have, however, introduced two non-equilibrium annealing methods
that produce very stable glassy configurations of the KA model at
equivalent computational cost, with a speedup of about 2–3 orders
of magnitude. The achieved glass states have a significantly lower
inherent structure energy compared to the ones obtained from direct
aging in the KA model; they have lower fictive temperatures and
mechanical and calorimetric properties that indeed correspond to
enhanced kinetic stabilities.

We have thus developed a computationally cheap method to
produce KA glassy configurations that are very stable. Unlike parallel
tempering, transition path sampling, or ghost insertion method, the
methods proposed here scale very well with the system size and are
conceptually very simple. The present algorithm thus outperforms
these more complicated algorithms. We believe that our strategy is
generic, and it can be implemented in other glass-formers with a
small number of components. We also believe that combining the
annealing methods with a parallel tempering scheme or graphic card
simulations would allow the production of even more stable sys-
tems. These would prove useful for further investigations of physical
properties of highly stable metallic glasses using the well-studied KA
model.
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