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ABSTRACT
The overlap, or similarity, between liquid configurations is at the core of the mean-field description of the glass transition and remains a
useful concept when studying three-dimensional glass-forming liquids. In liquids, however, the overlap involves a tolerance, typically of
a fraction a/σ of the inter-particle distance, associated with how precisely similar two configurations must be for belonging to the same
physically relevant “state.” Here, we systematically investigate the dependence of the overlap fluctuations and of the resulting phase diagram
when the tolerance is varied over a large range. We show that while the location of the dynamical and thermodynamic glass transitions (if
present) is independent of a/σ, that of the critical point associated with a transition between a low- and a high-overlap phase in the presence
of an applied source nontrivially depends on the value of a/σ. We rationalize our findings by using liquid-state theory and the hypernetted-
chain approximation for correlation functions. In addition, we confirm the theoretical trends by studying a three-dimensional glass-former
by computer simulations. We show, in particular, that a range of a/σ below what is commonly considered maximizes the temperature of
the critical point, pushing it up in a liquid region where viscosity is low and computer investigations are easier due to a significantly faster
equilibration.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0022614., s

I. INTRODUCTION

At the mean-field level, glass formation from a liquid is
described as a bona fide thermodynamic transition.1–3 An order
parameter can then be identified, and whereas several choices are
possible,2–4 one that has proven efficient for systematic investi-
gations is the similarity or overlap between liquid configurations.
From the large body of work produced in this direction, it is now
understood that the notion of overlap allows one to character-
ize the statistical properties of the underlying free-energy land-
scape,5–12 the thermodynamics of the ideal glass phase,13–15 the
dynamical glass transition,16–18 the configurational entropy,8,19,20

etc. Beyond the mean-field description, the spatial fluctuations of
the overlap can also be studied and give access to characteristic
length scales, such as the point-to-set length21–27 and effective field-
theoretical models of glassy liquids.18,28–34 The recognition of the
overlap between configurations as a key quantity for glassy systems

comes from spin-glass theory.35 It has been fully developed within
the replica formalism where the overlap quantifies the correlation
between distinct replicas, correlations that reflect the properties of
the free-energy landscape and the existence of multiple metastable
states.

For lattice models, the similarity or overlap between config-
urations is naturally described by considering an on-site variable:
e.g., for an Ising spin glass, one considers at each lattice site the
product of the spins in two configurations; one can further aver-
age this product over the whole sample to obtain a global measure
of the similarity between the two configurations, taking in this case
values between −1 for complete anti-correlation and +1 for com-
plete correlation.35 (A slightly different quantity, the bond overlap
that considers nearest–neighbor pairs, has also been analyzed.35)
For liquids, and more generally particle systems in the continuum,
the definition requires a little more insight: one should account
for (i) permutations of identical particles and (ii) the fact that at a
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nonzero temperature, particles in two similar configurations never
sit exactly at the same place, as already illustrated by two distinct
thermal configurations of the same ideal crystal. The first point
is straightforwardly implemented, but the second one requires the
introduction of a tolerance that takes two configurations as sim-
ilar if the particle centers in the two configurations differ by at
most a small but nonzero distance to be fixed by some physical
arguments.14,19,36–38 In a dense liquid, as in a solid, it is reason-
able to identify this distance with the typical length associated with
vibrational motions, a length which is a fraction of the interpar-
ticle distance. In concrete terms, considering a single-component
atomic liquid for simplicity, the overlap between two configurations
α and γ of N atoms in a volume V, rN

α ≡ {rα,i} and rN
γ ≡ {rγ,i}, is

defined as

Qa[rN
α , rN

γ ] =
1
N

N

∑
i,j=1

w(∣rα,i − rγ,j∣/a), (1)

with a being a fraction of the typical interatomic distance σ and w(x)
being a step function or a smooth variant of it, which is 1 for x < 1
and 0 for x > 1.39 The double sum in Eq. (1) takes care of particle per-
mutations. In all previous studies on model glass-forming liquids,
the cutoff a has been taken such that a/σ = 0.2–0.3, which seems a
physically plausible value for a typical vibrational length. However,
no one has so far investigated what the effect of changing the ratio
a/σ over a significant range is. The goal of the present work is to fill
this gap.

The overlap we consider is a static quantity, with no reference
to the dynamics. One can also investigate the similarity between a
configuration at a given time t′ and the same configuration, having
evolved under the dynamics of its constituents, after an elapsed time
t.40 In Eq. (1), rα ,i and rγ ,j are then replaced by ri(t′) and rj(t + t′),
respectively. The fluctuations of this time-dependent overlap, as
quantified by a generalized dynamical susceptibility often referred
to χ4(t) and a four-point space–time correlation function, are use-
ful to describe the spatially heterogeneous nature of the dynamics
and the growing extent of the dynamical correlations as one cools a
glass-forming liquid. In this case, too, the definition of the overlap
involves a tolerance a, but the physical significance and the effect of
the latter are more readily understandable.41 If a/σ is too small, the
involved dynamics is controlled by only weakly coupled vibrations
and the dynamical correlations remain small, while if a/σ is large,
one encounters the rather unphysical feature that a particle from the
configuration at time 0 can overlap with several other particles at
time t. In between, there is an optimal value of the ratio (around
0.3) for which the spatial correlations in the dynamics grow bigger.
We will not discuss the dynamic overlap any further and only study
the static overlap between configurations sampled from equilibrium
distributions.

We focus on the setting put forward by Franz and Parisi6 in
which one considers the effective potential associated with the typi-
cal free-energy cost to constrain an equilibrium liquid configuration
rN at a fixed overlap value Q with a reference liquid configuration
rN

0 . To investigate different regions of the free-energy landscape, the
reference configuration can be drawn from the equilibrium Boltz-
mann distribution at various temperatures T0 and densities ρ0. In
most of what follows, we focus on the situation where the refer-
ence configuration is taken from the equilibrium distribution at the

same temperature T and density ρ as the constrained equilibrium
configuration, and we therefore present the formalism for this case
(but generalization is straightforward). For a single-component liq-
uid with Hamiltonian H[rN

] = (1/2)∑′Ni,j=1v(∣ri − rj∣), where v(r) is
the pair interaction (and where the prime denotes that the sum runs
over all pairs of particles with i ≠ j), the Franz–Parisi (FP) potential
is then defined as

−βNVa(Q) = ∫ drN
0

e−βH[rN
0 ]

Z0(T)
ln∫ drN e−βH[rN

]

Z(T∣rN
0 )

× δ(Qa[rN , rN
0 ] −Q), (2)

where β= 1/(kBT), with kB being the Boltzmann constant, Qa[rN , rN
0 ]

is defined in Eq. (1), and Z and Z0 are normalization factors (i.e.,
partition functions). We have added a subscript a on the potential to
recall that its definition depends on the parameter a.

In mean-field treatments of glass formation, as well as in mean-
field (exact) models and in liquids in infinite dimension, the FP
potential plays the role of a Landau free-energy function of the
order parameter.6–10 It contains essential information on the sta-
tistical properties of the free-energy landscape of the glass-former.
The FP potential always has a minimum corresponding to decou-
pled replicas with a small overlap. For a low-enough tempera-
ture or a high-enough density, the relevant region of phase space
splits into an exponentially large number of metastable states and
a second, metastable, minimum corresponding to coupled replicas
and a higher overlap appears. The difference in potential between
the metastable and the stable minima represents the free-energy
cost to constrain the system within a metastable state selected by
the reference configuration, and hence, it provides a direct mea-
sure of the “configurational entropy” (or “complexity”) of the sys-
tem, which represents the logarithm of the number of metastable
states divided by N. When T is further decreased, the second min-
imum deepens and reaches the same free energy as the decou-
pled minimum at a temperature TK where the thermodynamic
glass transition (random first-order transition,1 often referred to
as the “Kauzmann transition” in the literature) takes place. As
will be discussed in more detail below, the two critical temper-
atures (or densities) Td, at which the metastable minimum first
appears and which corresponds to the “dynamical glass transi-
tion” and to the “spinodal” of the high-overlap phase, and TK
are independent of the choice of a. On the other hand, at higher
temperature than Td, the potential Va(Q) retains some noncon-
vex features that only disappear at a temperature Tc, which, as we
will show in a mean-field approximate liquid theory (hypernetted-
chain or HNC42), depends on the cutoff parameter a in a
nontrivial way.

When transferred to three-dimensional glass-forming liquids,
the mean-field scenario can no longer hold as such. Spatial fluctu-
ations of all local quantities, including the local overlap, brought
about by the finite-dimensional nature of space, radically change
notions such as metastability and spinodal. A “metastable” state
different from the stable one can then only be defined over a
restricted time,43 and the limit of stability of such a state, its spin-
odal, is then blurred and can at best remain as a crossover. For
this reason, no second minimum in the FP potential Va(Q) and
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no dynamical transition at Td can be found in 3d liquids in the
thermodynamic limit. Similarly, the FP potential should remain
convex at all temperatures. This, however, does not prevent the
appearance of singularities in this potential, in the form of straight
segments;44 see Fig. 1 for a sketch. A first-order-like glass transi-
tion at a Kauzmann temperature TK is still possible, as is possi-
ble the existence at higher temperature of a straight-line portion
that shrinks as one increases the temperature and disappears at a
temperature Tc at which Va(Q) has vanishing second and third
derivatives.

To unfold these singular features of the FP potential, which,
we recall, characterize the properties of the liquid landscape in
configurational space, it is convenient to apply a source ϵ linearly
coupled to the overlap Qa. Singularities of Va(Q), in the form
of either a nonconvex portion in the mean-field description or
of a straight segment in finite-dimensional systems in the ther-
modynamic limit (see Fig. 1), lead to a line of first-order transi-
tion between a low-overlap phase and a high-overlap phase in the
(ϵ, T) diagram. This line emerges from the Kauzmann transition
point TK at zero coupling ϵ6–10 and terminates in a critical point
located exactly at the temperature Tc, but at a nonzero critical cou-
pling ϵc. We stress again that contrary to the dynamical transition

FIG. 1. Sketch of the Franz–Parisi potential Va(Q) in the mean-field description
(left panels) and for a three-dimensional glass-former (right panels). In the top
panels, the temperature is slightly above TK , at which a thermodynamic phase
transition takes place: a second minimum is present in the mean-field description,
and sc is the configurational entropy; the finite-dimensional system has a convex
potential but with a linear segment between a low-overlap point and a high-overlap
one. In the bottom panels, the temperature is slightly below Tc , at which a singular
point with V′′a (Q) = V′′′a (Q) = 0 exists: no second minimum remains in mean-
field, but the potential is still nonconvex; in finite dimensions, the size of the linear
segment has shrunk with the increasing temperature and goes to zero at Tc . Above
Tc , the FP potential is convex with V′′a (Q) > 0 everywhere, in both mean-field
and finite dimensions.

at Td, this whole line from TK to Tc may a priori be meaning-
ful beyond mean-field. The existence or not of such a nontrivial
extended phase diagram in actual three-dimensional glass-forming
liquids is then a key test for the practical relevance of the mean-
field scenario of the glass transition. What we stress in this work
is that the position of the first-order transition line and of the crit-
ical endpoint in the phase diagram depends on the choice of the
cutoff parameter a. We study its variation in detail and discuss the
consequences.

The rest of this paper is organized as follows: In Sec. II, we
present the general statistical-mechanical framework to describe a
transition from low-overlap to high-overlap phases starting from
liquid-state theory. In particular, we clarify the dependence of sev-
eral quantities on the cutoff parameter a entering in the defini-
tion of the overlap. In Sec. III, we present the HNC approxima-
tion as a mean-field-like closure of the theory developed in Sec. II.
Within this approximation, we obtain equations that can be solved
numerically to study quantitatively the influence of the parame-
ter a. The results concerning more specifically the critical end-
point of the line of first-order transition between phases of low
and high overlap are presented in Sec. IV. We also present ana-
lytical arguments and a detailed discussion for the behavior in
the limiting cases of small and large values of a. In Sec. V, we
give the results of a computer simulation of a three-dimensional
model glass-forming liquid, and we show that they corroborate
our theoretical analysis. Finally, we discuss the implications of our
study and conclude in Sec. VI. Additional details are given in the
Appendix.

II. STATISTICAL MECHANICS OF GLASS-FORMING
LIQUIDS

The most convenient way to compute the FP potential defined
in Eq. (2) is to introduce n replicas of the constrained equilibrium
configuration rN

1 , . . . , rN
n in order to replace the logarithm appearing

in the definition by a more tractable expression and to take at the end
the limit n → 0. As is also standard, in the spirit of the equivalence
between the canonical and the grand–canonical equilibrium ensem-
bles in the thermodynamic limit, one can replace the ensemble in
which Q is the control parameter by an ensemble in which it is the
conjugate source ϵ that is the control parameter. This replacement
amounts to a Legendre transform,6–10

NβVa(Q) = NβFa(ϵ) + NβϵQ, (3)

with

βϵ = βV′a(Q), (4)

where a prime denotes a derivative with respect to the argument.
Within this replica formalism, one is led to consider an equi-

librium liquid mixture of n + 1 components with the Hamiltonian

Hrep[{rN
α }] =

1
2

n

∑
α,γ=0

N

∑
i,j=1

wαγ(rα,i, rγ,j∣ϵ, a), (5)

where the interaction potentials are given by
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wαγ(r, r′∣ϵ, a) = δαγ v(∣r − r′∣) − [(1 − δα0)δγ0

+ δα0(1 − δγ0)]ϵw(∣r − r′∣/a). (6)

A key quantity in liquid-state theory to access the FP poten-
tial is the so-called Morita–Hiroike functional ΓMH of the one- and
two-particle densities45,46 for the replicated (n + 1)-component liq-
uid mixture, which is obtained via a Legendre transform between the
interaction potentials wαγ and the two-particle densities ρ(2)αγ . Since
we are interested in homogeneous phases, it is sufficient to consider
translationally invariant densities; moreover, all replicas have the
same one-particle density ρ. After introducing the total correlation
functions hαγ via ρ(2)αγ (r, r′) = ρ2

[1+hαγ(∣r−r′∣)] (where gαγ = 1 + hαγ

is the conventional pair correlation function),42 the Morita–Hiroike
functional (per unit volume) reads33,34,45,47

ΓMH[{hαγ}; ρ] = (n + 1)ρ(ln ρ − 1) +
1
2
ρ2
∑
αγ
∫
r
[1 + hαγ(r)]

× βwαγ(r∣ϵ, a) +
1
2
ρ2
∑
αγ
∫
r
[1 + hαγ(r)]

× {ln[1 + hαγ(r)] − 1} +
1
2∑p≥3

(−1)pρp

p

× ∑
α1⋯αp

∫
r2
∫
r3

⋯∫
rp

hα1α2(r2)

× hα2α3(∣r3 − r2∣)⋯hαpα1(rp) + 2PI, (7)

with r = |r|, wαγ(|r − r′| |ϵ, a) = wαγ(r, r′|ϵ, a), and 2PI denot-
ing the sum of all two-particle irreducible diagrams formed with
density vertices linked by total correlation functions.45,46 Without
these terms, the above expression reduces to the well-known HNC
approximation of liquid-state theory.42 Note also that the interaction
potential with a dependence on ϵ and a only appears in the second
term of the right-hand side of Eq. (7) so that one can formally rewrite
the functional as

ΓMH[{hαγ}; ρ] =
1
2
ρ2
∑
αγ
∫
r
[1 + hαγ(r)]βwαγ(r∣ϵ, a) + F [{hαγ}; ρ],

(8)

where F is independent of the pair potentials, emphasizing the Leg-
endre transform between the interaction potentials and the two-
particle densities.

The equilibrium total correlation functions are obtained by
minimizing the Morita–Hiroike functional,

δΓMH

δhαγ(r)
= 0, or

δF
δhαγ(r)

= −
1
2
ρ2βwαγ(r∣ϵ, a). (9)

Being interested in the liquid phase above the ideal glass transition
and by homogeneous configurations, we can assume replica symme-
try between the n constrained replicas (replica 0 is different due to
the attractive coupling) in the solution of the above minimization
equations and then take the limit n→ 0. One thus needs to consider
four distinct functions, h∗11(r), h∗12(r), h∗00(r) and h∗01(r), where the

superscript ∗ means that the functions correspond to the solutions
of the minimization equations.48

We want to focus on the correlation between the constrained
replicas and the reference one, i.e., on h01(r). To do this, one can
solve the minimization equations for h00(r), h11(r), and h12(r). The
solutions are then functionals of h01(r) and of the potential v(r)
[except h00(r), which only depends on v(r) and is decoupled from
the other total correlation functions in the limit n→ 0]; they depend
on ρ, but they do not depend on ϵ and a. Let us call F [h01; ρ]
the functional resulting from replacing h00(r), h11(r), and h12(r) in
F [{hαγ}; ρ] by their solution. Its expression is

F [h01; ρ] = lim
n→0
{
F[{hαγ}; ρ] −F [h00; ρ]

n
}∣

RS

+
ρ2

2 ∫r
[1 + h∗11(r)]βv(r), (10)

with RS denoting replica symmetry and F [h00; ρ] denoting the func-
tional for the reference replica only. The key point is that the func-
tional F [h01; ρ] is independent of ϵ and a. On the other hand, the
function h∗01(r) that is now obtained as the solution of

δF [h01; ρ]
δh01(r)

= ρ2βϵw(r/a) (11)

depends on ϵ and a. [There is no factor 1/2 in the expression because
we take h10 = h01 and the change of sign is due to the minus
sign in Eq. (6).] However, when ϵ = 0, the dependence on a drops
out because the right-hand side of the above equation is simply
zero.

At this point, we can go back to the FP potential Va(Q).
From Eq. (1) and the definition of h01(r), the overlap Qa between
constrained and reference configurations can be expressed as

Qa = ρ∫
r
[1 + h01(r)]w(r/a). (12)

When the constrained and the reference configurations are uncor-
related, h01(r) ≡ 0, and the overlap takes its “random” value, Qa ,rand
= ρ∫rw(r/a). It is then more convenient to characterize the nontriv-
ial features associated with correlations between replicas through the
order parameter

ΔQ = Qa −Qa,rand = ρ∫
r

h01(r)w(r/a). (13)

The free energy Fa(ϵ) introduced in Eq. (3) can be derived from the
functional F [h01; ρ] as

βFa(ϵ) =
1
ρ
F [h∗01; ρ] − ρ∫

r
[1 + h∗01(r)]βϵw(r/a), (14)

and the FP potential is obtained by the Legendre transform. Express-
ing it in terms of ΔQ rather than Q, it takes the form

βVa(ΔQ) =
1
ρ
F [h∗01; ρ] − ρ∫

r
h∗01(r)βϵw(r/a) + βϵΔQ, (15)

where h∗01(r) and ϵ can now be considered as functions of ΔQ and a.
We are now in a position to discuss two generic properties of

the FP potential as a function of the cutoff parameter a.
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(1) If the potential has several extrema, as it does in mean-field
treatments, the value of ϵ at these extrema is zero; as stressed
above, the function h∗01(r) is then independent of a and cor-
responds to the extrema of the functional F [h01; ρ]. The tem-
perature and density at which these extrema appear and dis-
appear as well as the value of the associated free energy are
intrinsic properties of F [h01; ρ] and therefore do not depend
on a. As a result, neither Td nor TK depends on the choice
of a. The value of the overlap at the extrema on the other
hand depends on a through Eq. (13). Requiring for physi-
cal consistency that the value of ΔQ at the correlated mini-
mum corresponding to the emerging glass phase is positive
may put an upper bound on the value of a, but this does
not correspond to a real physical singularity: this point will
be illustrated and discussed in more detail below. In addi-
tion, the complexity, which we remind that it represents
the free-energy cost to constrain the liquid within a single
metastable state and that it corresponds to the height of the
secondary minimum in the potential Va(Q), must also be
independent of a.

(2) The critical point Tc mentioned in the introduction corre-
sponds to the temperature at which the FP potential either
recovers full convexity in mean-field approximations or loses
signatures of singular behavior corresponding to the pres-
ence of a straight segment in large enough finite-dimensional
systems (in finite dimensions, the potential is indeed always
convex but may display a straight segment between two val-
ues of the overlap, see Fig. 1). Then, there is a critical value
ΔQc at which

V′′a (ΔQc) = V′′′a (ΔQc) = 0 (16)

and a critical value ϵc such that

ϵc = V′a(ΔQc). (17)

From Eq. (15), one can see that, generically, not only ΔQc but
also ϵc and Tc should now depend on a. The location of the
critical point, and as a consequence of the whole first-order
transition line in the (ϵ, T) phase diagram, therefore varies
with the choice of a.

In the theory of critical phenomena, one is used to distinguish
“short-range fluctuations” due to the microscopic details of a sys-
tem (e.g., the local interactions between its constituents), and “long-
range,” potentially scale-free, fluctuations that appear at criticality.
As is well-known in statistical physics and field theory, different
microscopic models may belong to the same universality class at
the critical point, hence showing the same long-distance physics.
However, the nonuniversal quantities, such as the location of the
critical point, depend on the short-range fluctuations as well and
vary from one model to another. The situation is more subtle here.
From the very same liquid, one may build a family of effective the-
ories for the overlap that is indexed by the tolerance a. One could
anticipate that the long-distance physics (the universality class of the
critical point) is independent of a but that nonuniversal quantities
depend on a. However, this is not the whole story: for instance, the
extrema of the FP potential are independent of a, as a consequence

of the property that the intrinsic generating functional is indepen-
dent of a and ϵ, and this applies whether or not the system is at
criticality.

In Sec. III, we will illustrate the above described generic fea-
tures in the case of an approximate mean-field treatment based on
the HNC closure.

III. HNC APPROXIMATION AND THE FRANZ–PARISI
POTENTIAL

The HNC approximation is one of the standard tools of liquid-
state theory to describe the structure and the thermodynamics of
liquids. It amounts to neglecting all 2-PI diagrams in the Morita–
Hiroike functional given in Eq. (7). The minimization equations
in Eq. (9) can be cast in a more familiar form by introducing the
direct correlation functions cαγ(r) that are related to the total cor-
relation functions by the Ornstein–Zernicke equations.42 Assuming
again replica symmetry in the limit n → 0, one finds in Fourier
space

1 + ρh00(q) =
1

1 − ρc00(q)
,

1 + ρhcon(q) =
1

1 − ρccon(q)
,

h12(q) = [1 + ρhcon(q)]2{c12(q) + ρ[1 + ρh00(q)]c01(q)2
},

h01(q) = [1 + ρh00(q)][1 + ρhcon(q)]c01(q),
(18)

where we have introduced the “connected” correlation functions,
hcon = h11 − h12 and ccon = c11 − c12,49 and kept the same notation
for the functions in Fourier and in real spaces. The HNC closure
derived from the minimization equations can then be written as

c00(r) = −βv(r) + h00(r) − ln[1 + h00(r)],
c11(r) = −βv(r) + h11(r) − ln[1 + h11(r)],
c12(r) = h12(r) − ln[1 + h12(r)],
c01(r) = βϵw(r/a) + h01(r) − ln[1 + h01(r)].

(19)

From the solution of these equations, one obtains the free energy
βFa(ϵ) [see Eq. (14)] and then the FP potential [see Eq. (15)],
whereas the overlap difference with the random limit ΔQ is given
by Eq. (13).

The HNC approximation is of mean-field character as it leads
to a nonconvex potential at low-enough temperature for glass-
forming liquids and then sustains infinitely long-lived metastable
states. It has already been well studied in the context of the glass
transition,9,10,50–54 including a calculation of the FP potential.9,10 Our
purpose here is not to repeat all of these calculations but to investi-
gate the role of the cutoff parameter a used in the definition of the
overlap.

We consider two different single-component liquid models in
three dimensions: a hard-sphere model, with v(r) = 0 for r ≥ σ and
=∞ otherwise, and a soft-sphere model, with v(r) = v0[(σ/r)12 + κ0
+ κ2(r/σ)2 + κ4(r/σ)4] for r < 1.25σ and v(r) = 0 otherwise, where
v0 is the energy scale (the Boltzmann constant kB is set to unity)
and κ2 l (l = 0, 1, 2) are constants that ensure that the potential v(r)
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and its first two derivatives are continuous in r = 1.25σ. The con-
trol parameter is density in the former case and temperature in the
latter (in this case, the density is set to unity). For the threshold func-
tion involved in the definition of the overlap [see Eq. (1) or (12)],
we have chosen a continuous one, w(x) = exp(−x4 ln 2). Note that
in the HNC approximation where we consider homogeneous con-
figurations, one does not have to worry about crystallization and
the liquid always forms an ideal glass through a thermodynamic
phase transition at a low-enough temperature TK or a high-enough
density ρK .

Equations (18) and (19) are solved iteratively by using a real-
space linear mesh of size dr = σ/128 for a ≥ 0.1 and dr = σ/512
otherwise (to ensure that dr × a > 10), with a large-distance cutoff of
L = 8σ. We have checked that taking a larger cutoff distance and/or
a smaller mesh size only leads to a very small quantitative change of
our results. For a given value of a and a given density ρ (in the hard-
sphere case) or a given temperature T (in the soft-sphere case), we
compute the curves ΔQ(±)(ϵ) from Eq. (13) by increasing the source
ϵ from 0 [ΔQ(+)] or decreasing it from a high-enough value [ΔQ(−)].
The first-order transition region is detected when there is a range of

FIG. 2. Evolution with density of the Franz–Parisi potential Va(ΔQ) in the HNC
approximation for a three-dimensional hard-sphere system and two different val-
ues of the cutoff parameter a: (a) a/σ = 0.2 and (b) a/σ = 0.5. In all panels, the
up and down triangles mark the values of ΔQ at the dynamical transition (spinodal
of the metastable glass minimum) and the critical point, respectively. For both fig-
ures, the color code is the same and given by the colorbar in panel (a). The dotted
lines represent the region where there is no replica-symmetric solution to the HNC
equations.55

FIG. 3. Phase diagram in the [βϵ, (ρσ3)−1] plane of the three-dimensional hard-
sphere system in the HNC approximation. Two different values of the cutoff param-
eter a are shown: a/σ = 0.2 and a/σ = 0.5. A line of first-order transition (empty
symbols) emerges from the thermodynamic glass transition point in ϵ = 0 and
ends in the critical point (full symbol) in [βcϵc, (ρcσ3)−1]. Note the difference in
the location of the line for the two values of a, except for the initial point in ϵ = 0,
which represents the Kauzmann transition of the bulk system.

ϵ values for which ΔQ(+)(ϵ) ≠ ΔQ(−)(ϵ).55 With this procedure, we
are able to locate the critical point with an arbitrary degree of preci-
sion. In the following, we restrict ourselves to a precision of 10−3 for
ρcσ3 and 10−5 for βcϵc in the hard-sphere case and of 10−3 for Tc/v0
and 10−5 for ϵc/v0 in the soft-sphere case.

We illustrate in Fig. 2 the behavior of the FP potential Va(ΔQ)
for the hard-sphere system as density increases for two different val-
ues of the cutoff parameter, a/σ = 0.2 and 0.5. The potential has a
similar shape and evolution as first found in Refs. 9 and 10 (in their
case, a/σ = 0.3). At ρKσ3 = 1.203, the potential has two minima of
equal height, and the high-overlap minimum becomes metastable as
ρ decreases until it disappears in a saddle point at ρdσ3 = 1.183 (above
the value of 1.17 found by in Refs. 9 and 10 but consistent with the
value provided by Parisi and Zamponi54). At still lower density, the
potential retains a nonconvex shape down to some critical density
ρc at which convexity is eventually recovered. As we have already
emphasized, the values of ρK and ρd do not depend on the choice of
a, but those of the overlap at the metastable minimum do depend on
a. We also find, as will be further described below, that the value of
the critical density ρc depends on a significantly.

In Fig. 3, we display the phase diagram of the hard-sphere
model in the [βϵ, (ρσ3

)
−1] plane for the same two values of a as

in Fig. 2. As is well known,6–8 the nonconvexity of the FP potential
gives rise to a line of first-order transition emerging from the ther-
modynamic glass transition point in ϵ = 0. The line ends in a critical
point at [βcϵc, (ρcσ3

)
−1]. As clearly seen, the location of the line is

different for the two values of a and the end critical point as well.

IV. HNC RESULTS FOR THE CRITICAL ENDPOINT
A. Numerical results

In this section, we systematically investigate the dependence on
a of the critical point that is associated with the return to convexity
of the FP potential in the HNC framework. The critical density ρc(a)
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FIG. 4. Variation with the cutoff parameter a of the critical density ρc(a) for hard
spheres (top panel) and of the critical temperature Tc(a) for soft spheres (bottom
panel) in the HNC approximation.

for hard spheres or the critical temperature Tc(a) for soft spheres is
determined by solving the HNC equations and then using Eqs. (13)
and (15) and the two conditions in Eq. (16). Finally, (βcϵc)(a) is
obtained from Eq. (17).

We show in Fig. 4 the variation with a of the critical den-
sity ρc(a) for hard spheres and the critical temperature Tc(a) for
soft spheres. Both critical quantities vary by a large amount: more
than 15% for ρc and a factor of 2 for Tc over the covered range
of a. For comparison, recall that within HNC, the relative change
between ρd and ρK for hard spheres is 1.7% and between Td and
TK for soft spheres is about 14%.56 Furthermore, the evolution of
either ρc or Tc with a is nonmonotonic with a minimum in ρc for
a ≈ 0.08σ and a maximum in Tc for a ≈ 0.09σ. By choosing a/σ
around 0.08–0.09, one can then move the critical point in the liq-
uid phase quite significantly away from the dynamic and thermody-
namic glass transitions, as compared with the conventional choice of
a = 0.3σ.

The values of the source or coupling ϵc(a) and of the overlap
Qc(a) (or rather of the difference ΔQc(a) with the random value)
at the critical point are shown as a function of a in Fig. 5 for the
hard-sphere system and in Fig. 6 for the soft-sphere system. In all
cases, the variations with a are nonmonotonic, with a minimum in
βcϵc and a maximum in ΔQc around a ≈ 0.35σ. The behavior of these
critical quantities for vanishing and large values of a will be discussed
below.

FIG. 5. Variation with the cutoff parameter a of the critical value of the source
(βcϵc)(a) (a) and of the critical value of the overlap difference ΔQc(a) (b) for the
three-dimensional hard-sphere system in the HNC approximation.

Note that the variation with a of the location of the critical
point is not given by a simple dimensional analysis, ΔQc(a) ∼ a3 and
(βcϵc)(a) ∼ 1/a3 (in the framework of the replicated free-energy func-
tional presented in Sec. II, ϵ and a represent the strength and the
range of the attractive interaction between replicas). The observed
nonmonotonic behavior and the detailed evolution at small a and
large a are much more involved than this naive expectation. This
stems from the nontrivial structure and variation with a of the pair
correlation functions.

We display in Fig. 7 the HNC total correlation functions
h01,c(r), h12,c(r), and h11,c(r) at criticality for a wide range of values
of a in the case of the hard-sphere system. Note that due to the hard-
core exclusion, h11,c(r) = −1 for r < σ. On the other hand, h01,c(r) and
h12,c(r) have a nontrivial r dependence on a scale r ∼ a < σ, and their
value at small r≪ a strongly increases as a decreases when a ≤ 0.2σ.
We discuss this behavior in Sec. IV B.

B. Behavior at small values of a

We consider first the limit in which a → 0+, where as seen
from Figs. 5 and 6, ΔQc(a) seems to go to 0, whereas (βcϵc)(a)
seems to diverge. To make some progress in trying to rationalize
this limiting behavior, we assume that ρc(a) and Tc(a) stay finite and
nonzero when a → 0+, which is compatible with the data in Fig. 4,
and that the total correlation functions h01,c(r) and h12,c(r) can be
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FIG. 6. Variation with the cutoff parameter a of the critical value of the source
(βcϵc)(a) (a) and of the critical value of the overlap difference ΔQc(a) (b) for the
three-dimensional soft-sphere system in the HNC approximation.

decomposed in a part that varies on the scale of a, whose ampli-
tude grows as a→ 0+, and a part that varies on the scale of σ, whose
amplitude goes to zero as a → 0+. (Note that when a = 0, the repli-
cas are decoupled, h12 = h01 ≡ 0 and h11 = h00.) As already noticed,
the function h11,c(r) on the other hand only varies on the scale of
σ with a O(1) amplitude and so does h00,c(r) (which is independent
of a).

Through heuristic arguments based on an analysis of the HNC
equations in the limit a → 0+, we derive that a consistent solu-
tion of the equations is obtained for the total and direct correlation
functions at criticality in the form (for convenience, we omit the
subscript c on all the quantities)

h01(r) = a−3/2
∣ ln a∣1/2ĥ01(r/a) + a3/2

∣ ln a∣1/2h̃01(r/σ),

h12(r) = a−3/2
∣ ln a∣1/2ĥ12(r/a) + a3/2

∣ ln a∣1/2h̃12(r/σ),

h11(r) = h̃00(r/σ) + O(a3
∣ ln a∣),

h00(r) = h̃00(r/σ),

(20)

where all the functions ĥαγ(x) and h̃αγ(x) have an amplitude and a
range of O(1). The function hcon is the difference between h11 and
h12 given by the above expressions.

FIG. 7. HNC total correlation functions h01,c(r) (a), h12,c(r) (b), and h11,c(r) (c) vs
r /σ (on a logarithmic scale for the two first panels and on a linear scale for the
last one) at criticality for a wide range of values of a for hard spheres in the HNC
approximation. In panel (c), the dot marks the maximum value of h11,c .

In Fourier space, the above expressions translate into

h01(q) = a3/2
∣ ln a∣1/2[ĥ01(qa) + σ3h̃01(qσ)],

h12(q) = a3/2
∣ ln a∣1/2[ĥ12(qa) + σ3h̃12(qσ)],

h11(q) = σ3h̃00(qσ) + O(a3
∣ ln a∣),

h00(q) = σ3h̃00(qσ),

(21)

where we have kept the same notation for the functions in real
and Fourier spaces. Note that both h01(q) and h12(q) go to 0 when
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FIG. 8. Limit a→ 0+ of the HNC calculation in the case of hard spheres. (a) Log–
log plot of ΔQc /(4πa3/3), h01(r → 0), and h12(r → 0) vs a/σ; the continuous lines
show the expected a−3/2|ln a|1/2 dependence. (b) βcϵc on a linear scale vs a/σ on
a logarithmic scale along with the expected |ln a| behavior (continuous line).

a → 0. The tilde functions keep the signature of the liquid struc-
ture and have a peak near q ≈ 2π/σ, whereas the hat functions
have a structure that follows from that of w and decay on a range
q ≈ 1/a. This implies that a complete separation of scales for the
wave-vector dependence of the tilde and hat functions is achieved
when 2π/σ ≪ 1/a; this requires, in practice, very small values of
a, typically, a/σ ≲ 10−2. Details on the derivation are given in the
Appendix.

With the above ansatz, one has

ΔQc(a→ 0+
) ∼ a3/2

∣ ln a∣1/24πρc(0+
)∫

∞

0
dxx2w(x)ĥ01(x)

(βcϵc)(a→ 0+
) ∼ β̂ϵ∣ ln a∣

(22)

so that βcϵcΔQc → 0 as (a|ln a|)3/2 when a→ 0+.
We compare the above predictions with the numerical solu-

tion of the HNC equations for small a in Fig. 8. One can check that
ΔQc/(4πa3/3), h01(r → 0), and h12(r → 0) all diverge as a−3/2|ln a|1/2

[panel (a)] and that βcϵc diverges as |ln a| [panel (b)], as expected
from the above equations. Additional comparisons between the
numerical results and analytical predictions are provided in the
Appendix.

C. Behavior at large values of a
Finally, we discuss the case of large values of a. As shown in

the bottom panels of Figs. 5 and 6, the overlap difference with the
random value of the overlap (which gives the location of the stable
liquid minimum of the FP potential) ΔQc(a) decreases as a increases
for a/σ ≳ 0.35 and seems to stick to a finite value for a/σ ≈ 0.55.
For a ≳ 0.55, the numerical solutions of Eqs. (18) and (19) become
more difficult to follow even for ρ ≥ ρd (or T ≤ Td). At the same
time, the HNC integral equations do not seem to be driven to any
singularity.

To try to understand this behavior, it is worth looking first
at what happens at the metastable minimum when the latter exists
beyond the dynamical transition. For concreteness, we focus on the
hard-sphere model. As we have already noted, the total correlation
functions at the minima of the FP potential are independent of a. Let
us call ΔQg(a) the difference between the overlap at the metastable
glass minimum and that at the global minimum for ρ ≥ ρd. Then,
from Eq. (13),

ΔQg(a) = 4πρ∫
∞

0
drr2w(r/a)h01,g(r), (23)

with h01,g(r) being independent of a. Because h01,g(r) becomes neg-
ative for r ≳ 0.35σ [see for illustration the function at a density

FIG. 9. HNC result for the metastable glass minimum of the FP potential for hard
spheres at a density ρ = 1.193, which is intermediate between ρd and ρK : (a) total
correlation function h01,g(r); (b) difference in overlap ΔQg with the global minimum
as a function of a.
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ρd < ρ < ρK in Fig. 9(a)], the integral in Eq. (23) can become neg-
ative for some values of a. This is shown in Fig. 9(b) where we plot
ΔQg as a function of a: it is positive for small values, then turns neg-
ative for a/σ ≥ 0.556, becomes positive again for a/σ ≥ 0.938, and
eventually weakly oscillates around a slightly positive value. This is
found for all densities above ρd and in the ideal glass phase as well.
The value a∗/σ for which ΔQg(a) first turns negative does not vary
much with density (it is equal to 0.5576 at ρd and 0.555 at ρK ). Hence,
while the underlying physics is unchanged, by changing the cut-
off parameter in the definition of the overlap, one can switch from
correlated replicas at the metastable glass minimum (ΔQg > 0) to
anti-correlated replicas (ΔQg < 0). For physical reasons, it seems
more pleasant to work with ΔQg > 0 and restrict the range of a to a <
a∗, but this restriction is not motivated by the presence of a physical
singularity.

From the above considerations, one can rationalize the behav-
ior of the critical point as a/σ approaches some special value close
to 0.55. Replacing for simplicity the smooth w(r/a) by a discontin-
uous step function, one finds that ΔQc(a) ≈ 4πρc(a) ∫a0 drr2h01,c(r).
The maximum observed in ΔQc(a) should then appear in the close
vicinity of the value of a for which a = r∗(a), where r∗(a) is the
lowest r for which h01,c(r) = 0. This is indeed what is numer-
ically found with amax/σ ≈ 0.35, while the value of a such that
a = r∗(a) is a ≈ 0.39σ. For a > amax, ΔQc(a) decreases because the
integral involves negative values of h01,c(r). Therefore, when ΔQc

FIG. 10. HNC result for three-dimensional hard spheres and a/σ = 0.73: (a) FP
potential (the dotted lines represent the region where there is no replica-symmetric
solution to the HNC equations55); (b) phase diagram in the [βϵ, (ρσ3)−1] plane.

becomes too small, all nontrivial features of the FP potential become
concentrated essentially in a point and one can no longer numer-
ically solve Eqs. (16) and (17). Again, this is not associated with
any physical phenomenon. Except for a small region 0.555 ≤ a ≤
0.5576 (see above) where an unrealistic behavior of the phase tran-
sition line between low-overlap and high-overlap phases is found
(a peculiarity that does not seem worth studying in more depth),
larger values of a (but still lower than the next value of a for
which ΔQg vanishes) correspond to a well-behaved first-order tran-
sition line, yet with a critical endpoint characterized by ΔQc < 0
and βcϵc < 0.

We illustrate this feature for a value of the cutoff parameter
a = 0.73σ. In Fig. 10(a), we plot the FP potential, which has the same
behavior as in Fig. 2 except that all its noticeable characteristics are
located in the range ΔQ < 0. In particular, a critical point is indeed
found with βcϵc < 0 and ΔQc < 0, as illustrated in Fig. 10(b).

V. COMPUTER SIMULATIONS
To complement the detailed but approximate analysis obtained

through the HNC treatment, we have studied a three-dimensional
glass-forming liquid model of soft spheres by computer simulation,
in which we rely on the recently developed swap algorithm.58,59

We consider a polydisperse mixture of spherical particles of diam-
eters σi distributed according to the distribution p(σi) ∝ σ−3

i for
σi ∈ [σmin; σmax], with σmin = 0.726σ and σmax = 1.6095σ, where
σ is the average diameter, as in Refs. 27 and 60. In addition, the
interaction potential has the same analytical form as in the soft-
sphere model studied in the above HNC treatment, but the cross-
diameters σij are nonadditive to prevent crystallization and demix-
ing:59σij = 0.5(σi + σj)(1 − 0.2∣σi − σj∣). We have already studied in
detail the critical endpoint of this liquid57 with the specific choice
a = 0.22σ; most of the simulations were done when the temper-
ature T0 of the reference replica 0 is different from the tempera-
ture T of the constrained replicas and fixed to a low value T0 =
0.06v0 ≳ Tg (with Tg being the estimated laboratory glass-transition
temperature).

In Ref. 57, by using extensive computer simulations, we have
studied the size and temperature dependences of the so-called “con-
nected susceptibility” χcon = Nβ[⟨Q2⟩ − ⟨Q⟩2] (with ⟨⋯⟩ denoting
the thermal average and ⋯ denoting the average over the quenched
disorder represented by the reference configuration) and of the so-

called “disconnected susceptibility” χdis = Nβ[⟨Q⟩2 − ⟨Q⟩
2
], as usual

for random-field-like systems. The former quantifies thermal fluctu-
ations, and the latter quantifies disorder-induced fluctuations. Both
are expected to diverge at the critical point in the thermodynamic
limit, when ϵ goes to ϵc and T to Tc. In finite-size systems, the sus-
ceptibilities should instead behave as power laws of the linear size
of the system, with the exponents characterizing the universality
class of the critical point. In Ref. 57, we have performed a finite-size
scaling analysis, and we have shown that when temperature and sus-
ceptibilities are properly rescaled with system-size dependent pref-
actors and the known critical exponents of the three-dimensional
random-field Ising model (RFIM), data from different sizes and
temperatures all collapse on a single master-curve. This shows that
the critical point survives in a three-dimensional glass-forming
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liquid, in spite of the presence of finite-dimensional fluctuations on
all scales, and belongs to the universality class of the RFIM. Here,
we build on this study to investigate the influence of the cutoff
parameter a on the position of the critical point in the (ϵ, T) phase
diagram.

For computational efficiency (these studies are highly demand-
ing in terms of computer time), instead of looking at the case where
the reference and the constrained liquid configurations are at the
same temperature T, we focus on the situation where the tempera-
ture T0 is fixed to a low value 0.06v0 (at which reference configura-
tions can nonetheless be equilibrated, thanks to the swap algorithm).
Then, the critical endpoint moves up in temperature compared to
the situation T0 = T, for all values of a, which results in a consid-
erable speedup of the simulations.7 To allow for a comparison with
HNC predictions, we have repeated the HNC treatment for the case
where T0 ≠ T and the single-component soft-sphere liquid. To be
quantitatively similar with the choice in the simulations, we have
chosen a T0 intermediate between Td and TK and then solved the
equations of the HNC approximation.

The statistical properties of the overlap are computed in
the simulations, thanks to umbrella sampling and a subsequent
reweighting.57 This strategy enables us to compute not only the
Franz–Parisi potential but also all the thermodynamic properties of
the liquid when coupled to the quenched reference with an arbi-
trary applied source ϵ. In particular, for each temperature of the
simulation, we can find the probability distribution Pϵ(Q) of the
overlap for the value of the source ϵ = ϵ∗(T) that maximizes the total
susceptibility, defined as the sum of χcon and χdis. (This defines the
analog of the “Widom line” above the standard gas–liquid critical
point.) These distributions are shown in Fig. 11 for a system of size
N = 600 particles with a = 0.22σ. In Ref. 57, we have estimated
that for the same value of a, Tc ≈ 0.167. Consequently, the proba-
bility distribution of the overlap becomes bimodal for temperatures
significantly above the critical temperature Tc, and at these temper-
atures, one can study overlap fluctuations restricted either to the
low-overlap peak or to the high-overlap peak. In the following, we

FIG. 11. Probability distribution of the overlap Pϵ∗(Q) when a source ϵ∗(T) lin-
early coupled to the overlap is applied. The field ϵ∗(T) corresponds to the locus
of the maximum of total susceptibility χcon + χdis at fixed temperature. These distri-
butions were obtained from computer simulations of a polydisperse mixture of N =
600 soft spheres with a = 0.22σ using umbrella sampling and reweighting. For this
value of a, the critical point is located at Tc ≈ 0.167v0.57

focus on the connected susceptibility in the low-overlap phase χlow
con

measured at ϵ∗(T) for each temperature.
Rigorously, as already mentioned, the location of the crit-

ical point in a simulation study can only be found through a
finite-size scaling analysis. For instance, taking into account the a-
dependence, the low-overlap connected susceptibility χlow

con should

FIG. 12. Comparison between the results of a computer simulation of a polydis-
perse mixture of N = L3 = 600 soft spheres with a reference configuration at a
low temperature T0 = 0.06v0 and the HNC calculation of a single-component soft-
sphere liquid with a reference configuration at temperature TK < T0 = 0.0499v0 <

Td . (a) Location of the maximum of the low-overlap connected susceptibility T∗(a,
L) for the simulation and of the critical temperature Tc(a) for the HNC calculation.
[(b) and (c)] Estimate of the critical source (βcϵc)(a) and of the overlap differ-
ence with the random limit at criticality ΔQc(a) from the simulation and the HNC
approximation.
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scale as χlow
con(T, L, a) = BaLγ/νχ̃(yatL1/ν

), with t = T/Tc(a) − 1
being the reduced temperature, L ∝ N1/3 being the linear size
of the system, γ and ν being the critical exponents of the 3d-
RFIM, χ̃(x) being a universal scaling function, and Ba and ya
a-being dependent constants. The scaling function has a maxi-
mum for x = x∗, which corresponds to a temperature T∗(a, L)
= Tc(a)(1 + x∗L−1/ν

/ya). Assuming that ya depends only slightly
on a, the measure of T∗(a, L) at fixed system size gives a reason-
able proxy for the evolution of the critical temperature with a in this
system (but the absolute value of the temperature itself is still too
high).

A comparison between the results of the simulation and the
HNC ones is shown in Fig. 12. The trends as a decreases are very
similar. The HNC prediction for the critical temperature Tc(a)
passes through a maximum around a/σ ≈ 0.09, whereas the simula-
tion data appear to plateau at the lowest studied values. (It is unclear
if this difference would persist at even lower values of a in the sim-
ulation or with a better determination of the critical temperature;
studying such small values of a, however, becomes computationally
prohibitively costly.) The agreement is also good when comparing
the evolution of the critical value of the source βϵ: for both simu-
lation and HNC results, this quantity first decreases with increas-
ing a. The HNC prediction for (βcϵc) reaches a minimum for a/σ
≈ 0.35 and subsequently increases with a slowly, while it seems to
plateau in the simulations. However, for the latter, the critical point
falls in a temperature range for which equilibration becomes dif-
ficult to ensure, even with the swap algorithm. Consequently, we
cannot state whether the quantity (βcϵc) would eventually increase
when a gets even larger (or whether this tendency would remain
with a better determination of the critical point). The evolution of
ΔQc(a) strengthens the agreement between the simulation and the
HNC calculations: in both cases, we observe an increase with a at
small values of a, followed by a maximum for a/σ ≈ 0.35, and a
subsequent decrease. All in all, and in spite of expected discrepan-
cies due to the difference in polydispersity, a possible dependence
on a of the finite-size effects in the simulations, and the absence
of nontrivial long-range fluctuations in the HNC calculations, the
evolutions with a seen in the simulation and in the HNC treat-
ment of a 3-dimensional glass-forming liquid are thus in qualitative
agreement.

VI. CONCLUSION
The similarity or overlap between pairs of configurations has

proven to be a powerful concept to describe the complex free-energy
landscape of glassy systems. Furthermore, it provides the order
parameter for the glass transition at the mean-field level. Whereas
for lattice spin models, the definition of the overlap is rather straight-
forward, it is somehow ambiguous in the case of glass-forming liq-
uids. The overlap or similarity must then be defined up to some
tolerance, typically a fraction a/σ of the inter-particle distance. In
this paper, we have systematically investigated the dependence of
the overlap fluctuations and of the phase diagram obtained by lin-
early coupling the overlap to an applied source on the parameter a/σ
in three-dimensional models of glass-forming liquids.

Within a general framework based on liquid-state theory and
using for illustration the hypernetted-chain (HNC) approximation,

we show that while the dynamical and thermodynamic glass tran-
sitions found in this mean-field-like approximation of a three-
dimensional glass-forming liquid are independent of a/σ, the whole
extended phase diagram involving a transition between a low-
overlap phase and a high-overlap one in the presence of an applied
source (or coupling) strongly depends on the value of a/σ. In the
theoretical framework, this can be understood by noting that the
singular features of the underlying functional of the correlation
functions (the so-called Morita-Hiroike functional) are indepen-
dent of a/σ but that the precise choice of the order parameter that
requires fixing the value of a/σ influences the phase diagram, except
for the minima obtained in zero source. We are able to rational-
ize through analytical and numerical arguments the evolution of
the location of the critical point (ending the transition line between
low-overlap and high-overlap phases) for small and large values
of a/σ, and we also confirm the theoretical predictions by com-
puter simulations of a three-dimensional polydisperse glass-forming
liquid.

At the level of the HNC approximation, we find, in particular,
that the location of the terminal critical point obtained for a nonzero
applied source follows a nonmonotonic behavior in temperature,
density, or coupling strength as a function of a/σ. The most inter-
esting feature for a practical application to computer simulations is
that the critical temperature Tc is pushed up by a factor of 2 or more
for values of a/σ that are significantly lower than the values, a/σ ≈
0.2–0.3, systematically taken in previous studies involving overlaps
in glass-forming liquids. The critical point then appears in the liquid
region where viscosity is low and equilibration may be significantly
faster. (A similar effect is found when density is the control parame-
ter, but the relative change is, of course, smaller although still of the
order of 10%.) However, there are practical limitations to taking too
small values of a/σ. In molecular-dynamics simulations, the magni-
tude of the forces exerted by the reference configuration when ϵ > 0
increases with decreasing a, forcing one to reduce the time step in the
integration of the equations of motion. On the other hand, in Monte
Carlo simulations, significant variations of the overlap are triggered
by smaller amplitudes of the particle displacements as a/σ is reduced,
which requires trial moves of smaller size. The trade-off between
shifting up the critical temperature and maximizing the algorithmic
efficiency (simulated physical time vs computer time) therefore leads
to an operational optimum value of a, which is around 0.1σ. [This is
valid whether a true maximum or a plateau exists in the curve Tc(a)
for small values of a.]

Choosing a around 0.1σ would then significantly accelerate
computer simulations in the context of the study of the (ϵ, T) phase
diagram, offering the opportunity to consider larger system sizes
than considered so far. In addition, this choice could prove useful for
glass-forming liquid models for which the swap algorithm is inef-
ficient and cannot provide reference equilibrium configurations at
a low temperature T0 to shift up the critical temperature. Indeed,
almost all previous simulation attempts7,37,38,61 to study the critical
point in 3d model glass-formers, with the typical choice a/σ ≈ 0.2–0.3
and both the reference and the constrained replicas at the same tem-
perature, have been limited, in practice, to temperatures above the
putative critical temperature Tc and to rather small system sizes.
Indeed, Tc seems to fall close to the mode-coupling crossover, which
represents the lowest temperature for which equilibration can be
ensured in a reasonable computer wall-time without using the swap
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algorithm. By choosing an optimized value of a for the definition of
the overlap, one could more convincingly study the existence and the
properties of the critical point in a variety of models of glass-forming
liquids.

Before concluding, let us comment on why the issue of the crit-
ical point at Tc is an important one for the theory of the glass transi-
tion. As already stressed, the whole construction involving coupling
equilibrium configurations of a liquid to a reference configuration
of the same liquid is a tool to investigate the statistical properties of
the liquid landscape in configurational space, thereby going beyond
the description in terms of standard structural and thermodynamic
quantities. While the construction seems difficult to reproduce in
actual experiments on molecular glass-forming liquids, it can be
implemented in computer simulations of glass-forming liquid mod-
els. One can then hope to assess whether the mean-field description
of glass formation based on the complexity of the underlying free-
energy landscape and the multitude of metastable states keep some
relevance in three-dimensional glass-formers. To stay at the level
of static properties (dynamics is not considered here), the Franz–
Parisi potential is a quantity of choice to look for vestiges of the
mean-field scenario, as illustrated in Fig. 1. The hypothetical glass
transition at the Kauzmann temperature TK is unreachable and the
spinodal/dynamical transition at Td is avoided, but the persistence
of the mean-field scenario in finite dimensions requires the presence
of the critical endpoint Tc in the extended phase diagram: if there
is no Tc, there is no TK . Being able to more thoroughly investigate,
through a large span of system sizes and a finite-size scaling analy-
sis, the presence of a critical point in a variety of liquid models and
check its universality class is therefore a worthwhile endeavor, which
the outcome of the present study should facilitate.

To conclude, we address the physical meaning, if any, of
the dependence that we have found on the tolerance parameter a
involved in the definition of the similarity between liquid configu-
rations. As the theoretical framework aims at unfolding key prop-
erties of the rather abstract liquid configurational space, rather than
studying structural and thermodynamic indicators that are directly
accessible to experiments, it is hard to provide a simple interpreta-
tion, even more so beyond the mean-field setting. The advantage of
the overlap order parameter is to define some sort of metric between
configurations that allows one to sort them in “metastable states,”
when the liquid is in equilibrium at a temperature T. It is expected
that the distinguishing property of such states is not their free-energy
density and that their number is an important factor. However,
how exactly similar should two liquid configurations be to be con-
sidered as belonging to the same state in the complex landscape?
Varying the tolerance a is a way to check how the properties of the
coarse-grained landscape depend on the more or less strict defini-
tion of the similarity, hence on the coarse-graining length. (Note
that this question is connected to, but is different from, the issue
of the lifetime of a metastable state, which must be finite in a finite-
dimensional liquid and therefore imposes a timescale threshold on
the definition of metastability; it is also different from the role of
the tolerance in the dynamic overlap, which was discussed in the
Introduction.)

We find that the overall physics, summarized by the form of
the extended phase diagram in the (ϵ, T) plane, is robust to the
choice of the tolerance (or, equivalently, coarse-graining length) a.
The existence of a first-order transition between a low-overlap phase

and a high-overlap one and of a terminal critical point does not
depend on the choice of a, or equivalently on how exactly similar
should two configurations be to belong to the same state. Neither
the limit of small a nor that of large a appears to be singular in this
respect. This being said, the nonmonotonic dependence of the loca-
tion of the first-order line (except TK ) and of its critical endpoint
implies, for instance, that at a given temperature between TK and
Tmax

c = maxa{Tc(a)}, there is a range of tolerance a for which one
always finds a value of the applied source/coupling at which coexis-
tence between low-overlap and high-overlap phases exists, whereas
for the complementary domain of a, one is above the critical point
and a unique phase is found whatever the applied source. The distri-
bution of overlaps (in the presence of the proper value of the source)
is therefore bimodal in the former case and unimodal in the latter.
Above Tmax

c , there are no more signatures of a complex landscape,
whatever the choice of a, and this temperature is therefore a can-
didate for a purely static definition, namely, one only based on the
statistical properties of the configurational space of the liquid, of
the “onset temperature” below which glassy features starts to set in.
Then, the value of a for which this maximum is achieved should
represent the typical displacement magnitude of particles in order
for the system to fall in another “metastable” state, and hence might
be rationalized, for instance, by looking at the change in the poten-
tial energy in the so-called inherent structure as a function of the
mean-squared displacement.

The above observation leads us to discuss the notion of config-
urational entropy as a measure of the number of metastable states,
more precisely, of its logarithm divided by the number of particles, in
a glass-former. (This definition of the configurational entropy does
not exactly correspond to another definition that is associated with
the number of minima of the potential-energy hypersurface.62–64)
In a mean-field setting, as already mentioned, the configurational
entropy is obtained as the difference in the Franz–Parisi (FP) poten-
tial between the metastable and the stable minima, for tempera-
tures between Td and TK . Above Td, a metastable minimum only
occurs in rare instances, no longer in typical ones, and the situa-
tion can be described through a large-deviation function.65 In any
case, there are no ambiguities in counting metastable states from
the properties of the minima. As also already discussed, the con-
figurational entropy is then independent of the choice of a/σ. On
the other hand, in a three-dimensional glass-former in the ther-
modynamic limit, there are no Td and no metastable minimum.
However, as seen in Fig. 1, there is still a special point, the high-
overlap limit of the straight segment, that can serve as a proxy for
the latter, and one can tentatively define a configurational entropy
as the difference in the FP potential between this point and the sta-
ble minimum: for instance, see Refs. 27 and 44. What our work
shows is that this estimate of the configurational entropy depends
on the choice of a/σ because the nature or the size of the states that
are counted may change with it. In other words, the FP potential
is no longer singular in finite dimensions, and the choice of the
overlap value to compute the difference in the FP potential with
respect to the stable minimum is now a-dependent. One may invoke
at this point a physical constraint to fix the value of a and provide
the “most reasonable” counting by setting a equal to some typical
vibrational length (as obtained, for instance, from the height of the
plateau in the mean-squared displacement, at least at temperatures
for which the plateau is indeed observed). However, and as practical
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measurements of the configurational entropy in computer simu-
lations of glass-forming liquid models are currently an important
research topic,19,20,27,66–69 the question should certainly be investi-
gated more thoroughly.
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APPENDIX: ANALYSIS OF THE HNC EQUATIONS
WHEN a → 0+

When a/σ → 0+, the correlation functions should vary on two
very different scales. On the scale r/σ, one expects a perturbation of
the case a = 0, whereas a singular behavior should appear on the scale
r/a. One then considers the following ansatz at the critical point (for
convenience, we omit the subscript c on all the quantities evaluated
at this critical point):

h01(r) = f̂1(a)ĥ01(r/a) + f̃1(a)h̃01(r/σ),

h12(r) = f̂2(a)ĥ12(r/a) + f̃2(a)h̃12(r/σ),

h11(r) = h̃11(r/σ) = h̃(0)11 (r/σ) + f̃3(a)h̃(1)11 (r/σ),

h00(r) = h̃00(r/σ),

(A1)

where the hat and tilde functions h have an amplitude and a range
of O(1) (see Fig. 13). Except for h̃00, which is independent of a, they
could still have subdominant terms in a as we have shown explicitly
forh̃11.

In Fourier space, the above expressions translate into

h01(q) = a3 f̂1(a)ĥ01(qa) + f̃1(a)σ3h̃01(qσ),

h12(q) = a3 f̂2(a)ĥ12(qa) + f̃2(a)σ3h̃12(qσ),

h11(q) = σ3h̃(0)11 (qσ) + f̃3(a)σ3h̃(1)11 (qσ),

h00(q) = σ3h̃00(qσ),

(A2)

where for simplicity we keep the same notation for the functions in
real and Fourier spaces.

We expect that the prefactors expressing the dependence on
a→ 0+ satisfy

f̂1(a), f̂2(a)→ +∞,

a3 f̂1(a), a3 f̂2(a)→ 0,

f̃1(a), f̃2(a), f̃3(a)→ 0.

(A3)

Recall also that the function hcon is the difference between h11 and
h12. The tilde functions varying on the scale σ should keep track of
the liquid structure and peak in Fourier space around 2π/σ. On the
other hand, the hat functions are expected to behave roughly as the
function w and decay in Fourier space on a scale q ∼ 1/a: see Fig. 13.

FIG. 13. Log–log plot of the HNC total correlation functions h01 (a) and h12 (b) vs
r /σ at criticality for a/σ = 0.04 in the case of hard spheres. Note the decoupling
of scales between the range r ∼ a where a monotonic decrease is observed and
the range r ∼ σ where oscillations due to the underlying liquid structure occur (the
dashed line marks r = a).

As a result, a complete separation of scales between the hat and tilde
functions requires 2π/σ≪ 1/a. This is, of course, verified in the limit
a → 0+ but is more difficult to achieve in the numerical solution
of the HNC equations: for instance, when a/σ = 0.06, 2πa/σ is still
about 0.38, which is smaller but not much smaller than 1, and cor-
rections to the asymptotic analysis of the functions should then be
expected.

By using the separation of the scales a and σ, the HNC closure in
Eq. (19) then leads to direct correlation functions that have a similar
structure as their counterparts in Eq. (A1). They are given at the first
dominant orders by

c01(r) = {f̂1(a)ĥ01(r/a) − ln[1 + f̂1(a)ĥ01(r/a)]

+ f̂3(a)β̂ϵw(r/a)} + f̃1(a)2c̃01(r/σ),

c12(r) = {f̂2(a)ĥ12(r/a) − ln[1 + f̂2(a)ĥ12(r/a)]}

+ f̃2(a)2c̃12(r/σ),
(A4)

c11(r) = c̃(0)11 (r/σ) + f̃3(a)c̃(1)11 (r/σ),
c00(r) = c̃00(r/σ),

where c̃01(r/σ) = h̃01(r/σ)2
/2, c̃12(r/σ) = h̃12(r/σ)2

/2, c̃(0)11 (r/σ)
= −βv(r)+ h̃(0)11 (r/σ)− ln[1 + h̃(0)11 (r/σ)], c̃(1)11 (r/σ) = h̃(1)11 (r/σ)h̃

(0)
11
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(r/σ)/[1 + h̃(0)11 (r/σ)], c̃00(r/σ) = −βv(r) + h̃00(r/σ) − ln[1
+ h̃00(r/σ)], and we have assumed that at criticality, when a→ 0+,

βϵ = f̂3(a)β̂ϵ with f̂3(a)→ +∞. (A5)

As mentioned above, the functions ĥ01(r/a) and ĥ12(r/a) are
expected to behave roughly as w(r/a), i.e., to decay essentially
monotonically on a scale of O(1). As a result, one can rewrite

ln[1 + f̂1(a)ĥ01(r/a)] ≈ ln[f̂1(a)]F̂1(r/a),

ln[1 + f̂2(a)ĥ01(r/a)] ≈ ln[f̂2(a)]F̂2(r/a),
(A6)

where the functions F̂1,2 have an amplitude and a range of O(1) [e.g.,
if the function, say, ĥ01(r/a) is approximated by a step function, the
function F̂1(r/a) verifies F̂1(r/a) ≈ ĥ01(r/a)/ĥ01(0)].

In Fourier space, the expressions in Eq. (A4) become

c01(q) = {a3 f̂1(a)ĥ01(qa) − a3 ln[f̂1(a)]F̂1(qa)

+ a3 f̂3(a)β̂ϵw(qa)} + f̃1(a)2σ3c̃01(qσ),

c12(q) = {a3 f̂2(a)ĥ12(qa) − a3 ln[f̂2(a)]F̂2(qa)}

+ f̃2(a)2σ3c̃12(qσ),
(A7)

c11(q) = σ3c̃(0)11 (qσ) + f̃3(a)σ3c̃(1)11 (qσ),

c00(q) = σ3c̃00(qσ).

We now consider the Ornstein–Zernike equations [Eq. (18)]
that can be studied for q ∼ 1/a≫ 2π/σ and for q ∼ 2π/σ ≪ 1/a sep-
arately. The decoupling between the two scales in Fourier space is
achieved when a → 0+ if all the h̃αγ(qσ)’s go to zero fast enough
when qσ →∞: one expects that they indeed do so at least as fast as
1/(qσ)2 (as in the Ornstein–Zernike approximation).

The relation between h01(q) and c01(q) reads

a3 f̂1(a)ĥ01(qa) + f̃1(a)σ3h̃01(qσ)

= [1 + σ3ρh̃00(qσ)][1 + σ3ρh̃(0)11 (qσ) + f̃3(a)σ3ρh̃(1)11 (qσ)

− a3 f̂2(a)ρĥ12(qa) − f̃2(a)σ3ρh̃12(qσ)]

{a3 f̂1(a)ĥ01(qa) − a3 ln[f̂1(a)]F̂1(qa)

+ a3 f̂3(a)β̂ϵw(qa) + O(f̃1(a)2
)}. (A8)

When q ∼ 1/a, one can neglect the contributions of the tilde
functions and the above equation implies that

a3 f̂1(a)f̂2(a)ρĥ12(qa)ĥ01(qa) + ln[f̂1(a)]F̂1(qa) = f̂3(a)β̂ϵw(qa).
(A9)

On the other hand, when q ∼ 2π/σ, one has

a3 f̂1(a)ĥ01(q = 0){1 − [1 + σ3ρh̃00(qσ)][1 + σ3ρh̃(0)11 (qσ)]}

+ f̃1(a)σ3h̃01(qσ) = o(a3 f̂1(a), f̃1(a)), (A10)

where the right-hand side only contains terms that are subdominant
compared to a3 f̂1(a) and/or f̃1(a). The above equation therefore
implies that

f̃1(a) = a3 f̂1(a) (A11)

and that

σ3h̃01(qσ) = ĥ01(q = 0){[1 + σ3ρh̃00(qσ)][1 + σ3ρh̃(0)11 (qσ)] − 1},
(A12)

with an unimportant choice of normalization of the functions.
We now proceed in a similar way for the Ornstein–Zernike

equation that relates h12(q) and c12(q). It reads

a3 f̂2(a)ĥ12(qa) + f̃2(a)σ3h̃12(qσ)

= [1 + σ3ρh̃(0)11 (qσ) + f̃3(a)σ3ρh̃(1)11 (qσ)

− a3 f̂2(a)ρĥ12(qa) − f̃2(a)σ3ρh̃12(qσ)]
2

× {a3 f̂2(a)ĥ12(qa) − a3 ln[f̂2(a)]F̂2(qa) + O(f̃2(a)2
)

+ ρ[1 + σ3ρh̃00(qσ)][a3 f̂1(a)ĥ01(qa) +⋯]
2
}, (A13)

where ⋯ denotes terms that, following Eqs. (A9), (A11), and (A12),
are subdominant compared to a3 f̂1(a).

When q ∼ 1/a, one can neglect the contributions of the tilde
functions again and one finds

a3 f̂1(a)2ρĥ01(qa)2
= 2a3 f̂2(a)2ρĥ12(qa)2 + ln[f̂2(a)]F̂2(qa). (A14)

When q ∼ 2π/σ, after using some of the already obtained relations,
one obtains

a3 f̂2(a)ĥ12(q = 0){1 − [1 + σ3ρh̃(0)11 (qσ)]
2
} + f̃2(a)σ3h̃12(qσ)

= o(a3 f̂2(a), f̃2(a)), (A15)

where the right-hand side is subdominant compared to a3 f̂2(a) and
f̃2(a). This implies that

f̃2(a) = a3 f̂2(a) (A16)

and that

σ3h̃12(qσ) = ĥ12(q = 0){[1 + σ3ρh̃(0)11 (qσ)]
2
− 1}, (A17)

with an unimportant choice of normalization of the functions.
Although Eqs. (A9) and (A14) could have several possible solu-

tions, a nontrivial solution is obtained by assuming that in each of
these equations all terms are of the same order. This gives
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a3 f̂1(a)f̂2(a) ∼ f̂3(a) ∼ ln[f̂1(a)],

a3 f̂1(a)2
∼ a3 f̂2(a)2

∼ ln[f̂2(a)],
(A18)

whose solution is then, at leading order when a→ 0+,

f̂1(a) ∼ f̂2(a) ∼ a−3/2√
∣ ln a∣,

f̂3(a) ∼ ∣ ln a∣.
(A19)

Finally, we consider the Ornstein–Zernike equation relating
hcon(q) and ccon(q),

1 + σ3ρh̃(0)11 (qσ) + f̃3(a)σ3ρh̃(1)11 (qσ) − f̃2(a)ρ[ĥ12(qa)

+ σ3h̃12(qσ)] = {1 − σ3ρc̃(0)11 (qσ) − f̃3(a)σ3ρc̃(1)11 (qσ)

+ f̃2(a)ρĥ12(qa) − a3 ln[f̂2(a)]ρF̂2(qa) + O(f̃2(a)2
)}
−1

,
(A20)

where we have used Eq. (A16). At leading order, this immediately
leads to

1 + σ3ρh̃(0)11 (qσ) =
1

1 − σ3ρc̃(0)11 (qσ)
, (A21)

and since the HNC closures for c̃(0)11 and c̃00 have the same form,
and to

h̃(0)11 (qσ) = h̃00(qσ), (A22)

which is well verified by our numerical solution of the HNC equa-
tions (see Fig. 14).

In addition, by using Eq. (A22) as well as Eq. (A17), one finds
at the next-to-leading orders and when q ∼ 2π/σ that

f̃3(a)σ3
{h̃(1)11 (qσ) − [1 + σ3ρh̃00(qσ)]2c̃(1)11 (qσ)}

= a3 ln[f̂2(a)]F̂2(q = 0)[1 + σ3ρh̃00(qσ)]2.
(A23)

Assuming that the terms on both sides of the equation are of the
same order, Eq. (A23) leads to

f̃3(a) = a3 ln[f̂2(a)] ∼ a3
∣ ln a∣, (A24)

FIG. 14. HNC total correlation functions h11 and h00 vs r /σ at criticality for
a/σ = 0.04 in the case of hard spheres. The two functions nearly coincide.

at the leading order when a→ 0+, and

σ3h̃(1)11 (qσ) = [1 + σ3ρh̃00(qσ)]
2
[σ3c̃(1)11 (qσ) + F̂2(q = 0)]. (A25)

The above derivation provides the expressions given in the main
text.

To conclude this appendix, we consider the FP potential and
assume that it follows a scaling form when a→ 0+,

Va(ΔQ)
Va(ΔQc(a))

→ ϕ(
ΔQ

ΔQc(a)
), (A26)

with ϕ(x) being a scaling function. (As usual, we consider the FP
potential to be zero at the absolute minimum corresponding to
decoupled replicas.) This scaling behavior is indeed supported by
the data in Fig. 15(a). By definition of the critical point, ϕ′′(1)
= ϕ′′′(1) = 0 and (βcϵc)(a) = ϕ′(1)Va(ΔQc(a))/ΔQc(a) [see Eqs. (16)
and (17)]. From the behavior of (βcϵc)(a) and ΔQc(a) (see the main
text), one then predicts that Va(ΔQc(a)) ∼ (βcϵc)(a)ΔQc(a) goes to
zero as a → 0+ as (a|ln a|)3/2. This is compatible with the data in
Fig. 15(b).

FIG. 15. Rescaled FP potential in the limit a → 0+ for hard spheres in the
HNC approximation: (a) Va(ΔQ)/Va(ΔQc(a)) vs ΔQ/ΔQc(a) for several values of
a ≤ 0.12; (b) Va(ΔQc(a)) vs a: when a decreases, the value first passes through a
maximum but then steadily decreases in a manner compatible with the prediction
(a|ln a|)3/2 (full line).
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