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ABSTRACT

We numerically study the equilibrium relaxation dynamics of a two-dimensional Mari-Kurchan glass model. The tree-like structure of parti-
cle interactions forbids both nontrivial structural motifs and the emergence of a complex free-energy landscape leading to a thermodynamic
glass transition, while the finite-dimensional nature of the model prevents the existence of a mode-coupling singularity. Nevertheless, the
equilibrium relaxation dynamics is shown to be in excellent agreement with simulations performed in conventional glass-formers. Averaged
time correlation functions display a phenomenology typical of supercooled liquids, including the emergence of an excess signal in relaxation
spectra at intermediate frequencies. We show that this evolution is accompanied by strong signatures of collective and heterogeneous dynam-
ics that cannot be interpreted in terms of single particle hopping and emerge from dynamic facilitation. Our study demonstrates that an
off-lattice interacting particle model with extremely simple structural correlations displays quantitatively realistic glassy dynamics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096356

I. INTRODUCTION

Glasses are disordered solids formed by cooling a liquid across
the glass transition.! The resulting amorphous nature of glasses
yields physical properties fundamentally different from the ones
of crystals.” The dynamics of liquids approaching the glass transi-
tion is also different from the one of simple liquids, although their
structures appear quite similar. The drastic increase in the struc-
tural relaxation time with a slight decrease in the temperature is
accompanied by remarkable dynamic signatures.” Research on the
glass transition aims at determining the microscopic origin of these
unique dynamics in order to find the best theoretical framework to
interpret them.®

Various theoretical approaches have attempted to interpret
the glassy dynamics using thermodynamics, starting with the
Adam-Gibbs theory.” The random first-order transition (RFOT)
theory, which is constructed upon the mean-field theory for the glass
transition’ ' suggests similarly that the evolution of a complex free-
energy landscape controls glassy dynamics. In the mean-field limit,
a dynamic transition takes place when long-lived metastable states

first appear, which bears similarity with the transition predicted by
mode-coupling theory (MCT).*'>'* In finite dimensions, infinitely
long-lived metastable states cannot exist, and the MCT transition is
avoided.”'” Below this crossover, RFOT theory proposes that coop-
erative thermally activated events take place over a lengthscale of
thermodynamic origin that grows at low temperatures and pos-
sibly diverges at the Kauzmann transition.”"” In other structural
approaches, real space structures'® and geometric frustration'”'”
play preponderant roles in the description of glassy dynamics.

A different physical picture is provided by dynamical facili-
tation theory,'” *' which explains glassy dynamics from a purely
kinetic perspective based on particle motion. In this view, the
relaxation of supercooled liquids is controlled by a population of
dynamical defects, defined as particles that are much more mobile
than the bulk. In addition, mobile particles facilitate the displace-
ment of their neighbors to create, at much later times, a mobility field
that is correlated over a lengthscale that grows upon lowering the
temperature.'””>*’ Here, no static lengthscale is invoked to explain
the correlated relaxation dynamics. This view is largely inspired by
kinetically constrained glass models.”"
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Despite their different underlying microscopic pictures, these
viewpoints provide reasonable descriptions of a range of experi-
mental and numerical data. It has repeatedly proven difficult to
detect experimental signatures which can sharply favor one view
against another. As a result, a complete and unified theoretical
understanding of glassy dynamics is still lacking,””**

Computer simulations are by definition well suited to test
these theoretical concepts as the motion of all particles can be
followed at all times. However, it is difficult to simulate systems
at low enough temperatures to cleanly disentangle the role of
local structures, mode-coupling crossover, thermodynamic fluctu-
ations, and dynamic facilitation in the simulated trajectories for
finite-dimensional glass-formers.

This problematic situation changed recently with the develop-
ment of the swap Monte Carlo algorithm,” > which permits easy
access to equilibrated configurations at essentially any of the tem-
peratures that experiments can also explore. Whereas several novel
features of ultrastable glasses have been revealed,” " the remark-
able speedup offered by swap Monte Carlo also provoked a debate
regarding the relative role played by kinetic constraints and thermo-
dynamics in glassy dynamics.” "' Swap Monte Carlo also opens a
new window into the dynamics of deeply supercooled liquids, but
again support for both thermodynamic*? and kinetic** pictures has
been recently reported.

Another approach is to intentionally engineer artificial situa-
tions where only some of the ingredients assumed by theory survive
or dominate. One can then ask whether and how the dynamics is
affected. If the dynamics is truly different from the one of conven-
tional glass models, this suggests that the excluded factor plays an
important role in realistic situations. There are many previous exam-
ples of this strategy where, for instance, the curvature of space, 44,45
the number of space dimensions,”* ** the number and geometry
of freely moving particles,” ™" or the range and strength of pair
interactions”””" " has been varied in some arbitrary way to inform
the physics.

Here we follow this general strategy and analyze the dynam-
ics of a two-dimensional Mari-Kurchan (MK) model’®”’ over a
broad range of temperatures. The MK model is characterized by
short-range pair interactions in a continuous space in finite dimen-
sion similar to conventional models, but interparticle distances are
defined using an infinite-range random shift that suppresses many-
body correlations.”””* This produces an artificial off-lattice particle
model with short-range interactions in finite dimensions where (1)
the dynamic mode-coupling transition is strongly avoided,” (2)
the thermodynamics is very simple and the model cannot display
a Kauzmann transition,”” (3) there is no crystalline and locally
favored structures and geometric frustration should play a limited
role, and (4) equilibrium configurations of the model can eas-
ily be produced numerically at any temperature using a planting
technique.”” Among the aforementioned physical ingredients, only
dynamic facilitation can a priori survive in the MK model. Of course,
new relaxation channels with no finite-dimensional analog could
also emerge. It has in particular been argued that single particle hop-
ping could become the relevant pathway for structural relaxation in
the MK model.” '

We find that the glassy dynamics of the MK model is extremely
similar to results obtained in conventional models. It displays
for instance a super-Arrhenius increase of the relaxation time,
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heterogeneous dynamics, and time correlation functions nearly
indistinguishable from conventional glass-formers. We find, in par-
ticular, that particle mobility becomes increasingly correlated as the
dynamics slows down, in a way that is incompatible with single par-
ticle hopping. We conclude that dynamic facilitation plays a central
role in this model and that dynamic facilitation alone can then lead
to consistent physical behavior.

The rest of the paper is organized as follows: In Sec. II, we intro-
duce the model and describe our simulation methods. We discuss
time correlation functions, relaxation times, and relaxation spectra
in Sec. I11. We then discuss the heterogeneous dynamics at the single
particle level in Sec. I'V. In Sec. V, we report the dynamical sus-
ceptibility and spatial correlation functions characterizing correlated
particle dynamics. We summarize and discuss our results in Sec. V1.

Il. MODEL AND METHODS

We study a two-dimensional Mari-Kurchan model with
Hamiltonian®’ given by

H({ri}) = 3 V(Iri - 1 - Ay]), M

i<j

where r; is the position of particle i and A is a real antisymmet-
ric matrix with components drawn from a uniform distribution
Unif(0, Ly ), which we call the random shifts throughout the paper.
We denote by Lyox the linear dimension of the system and fix the
volume fraction, ¢ = N7(0/2)?/LE,, = 2, with N the number of par-
ticles and o the particle diameter. We use a soft-sphere repulsive
power-law potential given by

V(r)/€=(g)n+c<>+62(£)2+q(£)4 )

r

if r<reo and V(r) =0 otherwise. Here, we set n=4 and
the constant values ¢; (i=0,2,4) are chosen so that V(r) =V’
(r) = V"(r) = 0 at the cutoff distance 7o = 2.50. With these para-
meters, mean-field replica theory™*” yields the dynamical transition
temperature T; ~ 0.5940. We show numerical data of the system
with N = 1024 particles in all figures, unless the system size is
explicitly mentioned.

We simulate the underdamped Langevin dynamics at tempera-
ture T,

mdvi*—aH—m Vi +
dt ~ or VY

2myTn, (1), (3)

with v; being the velocity of particle i, m being the particle mass,
y being the friction coefficient, and #; being the random force act-
ing on particle i having (#,(t)) = 0 and (1, (0)m;, (£)) = 86,v0 (1),
where 7, (t) is the y-component of #,(t) (4 = x,y). We measure

time in the time unit of the dynamics, i.e., 7o = \/mo?/e, temper-
atures in the unit of ¢, and distances in the unit of o, thus they
are dimensionless in the following. We set y7, = 0.1, which allows
a stable numerical solution. In Eq. (3), the average particle veloc-
ity scales as ~ T"2, and the microscopic timescale obviously slows
down as ~ T~ We, thus, rescale the time ¢ by T"? and plot
time-dependent quantities as a function of T"?t when comparing
different temperatures.
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We can easily generate equilibrium configurations of the MK
model at arbitrary temperature using the planting technique.”
In practice, this amounts to sampling the matrix A; for a given
particle configuration {r;} so that it becomes an equilibrium con-
figuration of the Hamiltonian Eq. (1). The mismatch between the
isotropic soft-sphere potential and the square box in which the par-
ticles reside complicates direct sampling of A;; from the Boltzmann
distribution. To deal with this complication, we use a Markov-chain
Monte Carlo method with a simple Metropolis algorithm to sam-
ple A;;.°> We perform 200 Monte Carlo sweeps per pair of particles
to ensure convergence to the Boltzmann distribution, and take the
last configuration of A as the random shift for the chosen particle
configuration.

The numerical method used to prepare equilibrium config-
urations is efficient and easy, so that preparing initial conditions
remains extremely fast compared to the time needed to numerically
study the low-temperature dynamics of the system. Our numerical
strategy is, thus, to prepare a large number of independent initial
conditions at each temperature, typically a hundred, from which we
run the equilibrium dynamics. This allows us to analyze the equilib-
rium dynamics of the model down to arbitrarily low temperatures,
including conditions where the equilibrium relaxation time is much
longer than the simulated time. Conceptually, the planting tech-
nique advantageously replaces for the MK model the swap Monte
Carlo technique’”' used in finite-dimensional models to analyze
the low-temperature equilibrium dynamics.*

A drawback of the MK model is the long-range nature of the
matrix A;;. While this is key to endow the MK model with mean-
field structure, this also penalizes the numerical integration of the
equations of motion Eq. (3) in two key places. First, it slows down
the creation of neighbor lists which requires the entries of the large
matrix A;; to be accessed. Second, storing the matrix itself may create
memory problems for very large systems.

Finally, the random shifts in the Hamiltonian (1) imply that a
snapshot of the system using the actual particle positions r; would
faithfully represent the positions of each particle, but would incor-
rectly represent interparticle distances that are not given by r; — r;
but instead by the shifted quantities r; — r; — Aj. It is, therefore,
impossible to visualize all particle interactions simultaneously in
real space. In particular, we will not be able to propose meaning-
ful visual illustrations of the spatially heterogeneous dynamics of the
MK model.

Ill. CORRELATION FUNCTIONS IN TIME
AND FOURIER DOMAINS

We first discuss the averaged dynamic behavior of the MK
model by following the evolution of correlation functions in both
time and Fourier domains.

A. Time correlation functions

To study the glassy dynamics of the model, we measure the
overlap between an initial configuration at ¢ = 0 and a configuration
at time ¢ > 0 later as follows:

(cw) - (y Zaw) @
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where Ci(t) = 0(|ri(t) —ri(0)| - £) with 6(x) the Heaviside step
function. We also measure the self-intermediate scattering function
given by

(B(0) = | g XS coslk(ral) - raO))]). )

where d =2 is the spatial dimension, k is a wavevector set to
k = n/(2¢), and rix denotes the a-component (« = x, y) of the posi-
tion of particle i. We denote the average over initial equilibrium
configurations by the brackets (---). We shall take particles hav-
ing displacements larger than 1 as “mobile” throughout this paper,
which will be justified below in terms of the cage size observed in the
mean-squared displacements and the van Hove distribution func-
tions. Accordingly, we set £ =1 for the overlap function C;(¢) in
Eq. (4) and for the choice of wavevector in the self-intermediate
scattering function in Eq. (5).

We show in Fig. 1 the overlap (C(t)) and the self-intermediate
scattering function (Fs(t)) of the MK model over a broad range of
temperatures. At low temperatures, both (C(t)) and (Fs(t)) show a
clear two-step relaxation while they decay quickly at high tempera-
tures. At T < Ty, the time correlation functions have a clear plateau,
just as observed in finite-dimensional glass-formers. Closer inspec-
tion reveals that this is not strictly a constant plateau, as (C(¢)) and
(Fs(t)) decay very slowly at intermediate times between microscopic
relaxation and structural relaxation. We observe the same slow decay
in a larger system size N = 4096, and conclude that this is not a
finite size effect. This slow decay much before the structural relax-
ation indicates that a small fraction of particles are not well confined
in cages and escape their initial position much before the majority
of particles. This observation already suggests that the dynamics of
the MK should be highly heterogeneous. A similar slow decay in
the plateau region has recently been observed in finite-dimensional
models* and associated with the emergence of excess wings in the
relaxation spectra.

We also measure the mean-squared displacement (MSD)
given by

(Az(t)) = %Z\ri(t) —r(0)}); (6)

see Fig. 1(c). The overall evolution is again consistent with finite-
dimensional systems with a diffusive regime at long times that
becomes very slow at low temperatures and with the development
of a plateau at intermediate times. In agreement with the overlap
and self-intermediate scattering function, the MSD also shows a
slow increase with time in the plateau region. Again, this slow time
dependence is observed in the larger system and should exist in the
thermodynamic limit. The plateau height of the MSD at T ~ T} is
(Az) ~ 0.4 corresponding to a cage size ~ 0.63, justifying our choice
for the value ¢ = 1 above for the definition of the overlap and the
self-intermediate scattering function.

B. Relaxation times and characteristic temperatures

We now extract the a-relaxation time 74, which we define as
the time where (C(t)) reaches 1/e. For the lowest temperatures at
which (C(t)) clearly decays from its plateau but does not reach 1/e
in our simulation time window, we assume that time-temperature

J. Chem. Phys. 156, 244503 (2022); doi: 10.1063/5.0096356
Published under an exclusive license by AIP Publishing

156, 244503-3


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

Overlap (C(2))

(F(t))

MSD (A%(r))

Time T1/2t

FIG. 1. Time dependence of the overlap (C(t)) (a), the self-intermediate scat-
tering function (Fs(t)) (b), and the MSD (A%(t)) (c) for various temperatures
at thermal equilibrium. All functions develop a clear two-step decay below the
onset temperature Tonset ~ 1.2. A slow plateau dynamics can be observed at
intermediate timescales in all cases.

superposition (TTS) holds to estimate 7,.°° We report the results of
this analysis in Fig. 2(a).

At low temperatures where the two-step relaxation becomes
pronounced, we observe that 7, increases rapidly and shows a
super-Arrhenius dependence on the temperature. Fitting the high-
temperature regime to an Arrhenius law provides an estimate of
the onset of glassy dynamics for this system near Tonser ~ 1.2, below
which the Arrhenius description does not hold.

We recall that the mean-field replica theory yields the dynam-
ical transition temperature Ty ~ 0.5940. The mean-field theory of
the glass transition predicts that the relaxation time shows a critical
divergence at T;. However, around this temperature, the relaxation
time is almost independent of the system size and no critical diver-
gence is observed, see Fig. 2(a). This indicates the MCT transition is
strongly avoided for this system.”

On the other hand, the relaxation time is well fitted by
the parabolic law’"?! with an onset temperature T, ~ 1.49, which
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FIG. 2. (a) Temperature evolution of the normalized relaxation time, together with
various fits. High-temperature Arrhenius regime, ~ exp(AE/T) with AE = 5.3;
power-law divergence ~ (T — Ty)~? with T4 = 0.5940 and y = 2.97. Low tem-
peratures are equally well fitted with the parabolic law ~ exp((To/T — 1)?) with

o = 1.49, and the VFT law ~ exp(A/(T — Ty)) with To = 0.22. Using (C(t))
at temperature T < 0.6, we estimate the relaxation time using time-temperature
superposition, see black circles. (b) Temperature evolution of the stretching
exponents B for (C(t)) and (Fs(t)), converging to B ~ 0.6 at low T (dashed
ling).

appears consistent with a dynamic facilitation description. Interest-
ingly, even though the MK model has no Kauzmann transition at
any finite temperature, the Vogel-Fulcher-Tammann (VFT) law”®’
with a critical temperature T ~ 0.22 fits the relaxation time just as
well as the parabolic law, see Fig. 2(a). This implies that, similar to
finite-dimensional systems, it is impossible to distinguish between
these two functional forms reliably by solely using the temperature
dependence of the relaxation time.**

We also characterize the shape of the a-relaxation observed
in the functions (C(t)) and (Fs(t)) by fitting their long-time
decay to a stretched exponential form ~ exp(—(t/7)?). As shown
in Fig. 2(b), the measured exponent B(T) for these two correla-
tions converges to a similar low-temperature value 8 ~ 0.6 when
the temperature decreases below Tonset. A common interpretation
for the stretching exponent f$ <1 is that the underlying dynam-
ics is highly heterogeneous.” Note that in the high-temperature
limit where the dynamics is expected to be homogeneous and
diffusive, the self-intermediate function becomes a simple expo-
nential with S~ 1, but the overlap (C(t)) is never a simple
exponential. This is a direct consequence of its mathematical
definition involving the Heaviside function 6(x), which leads to a
power-law decay for pure Fickian dynamics, explaining the low f
values extracted at high temperatures for the overlap. Both func-
tions become, however, equivalent when they are controlled by a
broad underlying distribution of relaxation times. Also, the con-
vergence of the stretching exponent 3 at low temperatures to a
nearly constant value justifies our use of time-temperature super-
position to extrapolate the relaxation time at lower temperatures,
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as shown in Fig.
several glass-forming models.

2(a). Similar findings were recently reported for
12,43,66

C. Spectra in the frequency domain

To analyze more precisely the plateau dynamics detected in the
time correlation functions, it is convenient to perform this analy-
sis in the frequency domain because the large constant value of the
plateau automatically disappears and only the small, interesting time
dependence contributes.

We calculate the analog of the imaginary part of the dielectric
loss, i.e., the relaxation spectrum,m‘—[J

¥ (w) = / d log 7G(log ‘r) (7)

( )’
where G(log 7) is a timescale distribution satisfying
(C(t)) = f d log 7G(log 1) exp(—i). (8)
T
Unfortunately, estimating G(log ) directly from (C(t)) requires an

inverse Laplace transform, which is notoriously difficult to compute
and numerically unstable. In the same vein, direct Fourier trans-

form of (C (t)) is plagued by important statistical noise.”” Following
earlier work,”’" we make the assumption that
d(C(7))
1 oot
Gllog 7) =~ ©)
and calculate
d(C(r))  wr
" dl —, 10
¥ (@)= / 8 dlgrl+(wr)2 (10)

which is an excellent approximation to the desired relaxation spec-
trum. We numerically checked the approximation works quite well
by comparing Eqgs. (7) and (10) at small w. In addition, since we
only collect data in a finite window of maximum duration ts|m, it
is obvious that the precision of Eq. (10) is limited to w > t5,. At
low temperatures T = 0.575, 0.6, and 0.65 where (C(t)) reached 1/e
within the simulation time and the exponent f§ is well approximated
as f3 = 0.6, we concatenate (C(t)) and the fitted stretched exponen-
tial decay to obtain y"” down to w = 10~°. For the other temperatures,
we show the numerical data over a range limited to w > 10% [tsim.

In Fig. 3, we show x”'(w) at several temperatures. As a refer-
ence, we also plot x”'(w) at much lower w by applying Eq. (10) to
the stretched exponential fits of (C(#)) used to estimate the relax-
ation times at very low temperatures. The two-step decay of the
time correlation functions gives rise to relaxation spectra in the fre-
quency domain characterized by two well-separated peaks. The first
peak at large frequency w ~ 1 corresponds to the fast relaxation at
microscopic times. The second peak shifts to lower frequencies at
lower temperatures and corresponds to the structural a-relaxation
occurring near w = 7, ' (T).”

In the frequency domain intermediate between these two peaks,
the spectra at low temperatures are significantly larger than the
linear superposition of these two processes. In particular, when com-
paring the measured spectra with the high-frequency extrapolation
of the structural relaxation peak, we observe that all measured spec-
tra show a signal that is significantly in “excess” of the main peak, see
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Relaxation spectra x”(w)

Frequency

FIG. 3. Relaxation spectra "’ (w) obtained from the overlap (C(t)) and Eq. (10).
The peaks at @ ~1 and lower w ~ 7;'(T) correspond to microscopic and
structural relaxations, respectively. Dashed lines are obtained using stretched
exponential fits to the overlap (C(t)) in Eq. (10). A clear excess signal appears at
intermediate frequencies at low temperatures.

Fig. 3. This intermediate frequency regime corresponds, in the time
domain, to the plateau regime where (C(t)) decays very slowly on
timescales that are much shorter than the structural relaxation fitted
with a stretched exponential decay. These measurements confirm
that in the plateau regime at times t << Tq, there is considerably more
relaxation dynamics than expected from the short-time expansion of
the stretched exponential fit to the a-relaxation.

Although the signal that we measure at intermediate frequen-
cies does not have a simple power-law dependence on w at low
temperatures, this excess signal is qualitatively similar to the excess
wing observed in various experiments in molecular liquids’”"* and
very recently detected numerically in glass-formers in two and three
dimensions.” From Fig. 3, we observe that the excess signal could
be fit with a very small power law that would seem to decrease
with decreasing temperature, as observed in experiments.”””* This
is maybe consistent with the power-law distribution of escape times
measured numerically in Ref. 59. For the lowest temperature, the
time evolution on the plateau of (C(#)) becomes nearly logarith-
mic, which would correspond to a nearly flat spectrum, as indeed
observed in Fig. 3. One would need to simulate lower temperatures
for longer times to fully assess the frequency dependence and tem-
perature evolution of the excess signal in the relaxation spectra of
the MK model.

IV. DYNAMIC HETEROGENEITY: SINGLE
PARTICLE DYNAMICS

We now move to the analysis of the heterogeneous nature
of the dynamics, starting at the single particle level. To this end,
we measure the probability distribution function of single particle
displacements, which is the self-part of the van Hove distribution
function,”

Pi(8x) = {0 - (ra()) - ()]}, (A1)

At very high temperatures, where the system behaves as a simple
fluid with diffusive behavior, we expect P;(Ax) to be Gaussian with
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a variance increasing linearly with time. In glass-formers, deviations
from this Gaussian behavior typically indicate that the system is
dynamically heterogeneous.” **

We show the van Hove function P;(Ax) in Fig. 4 at temper-
atures T = 0.675 and 0.5. Measuring the variance A*(t) of these
distributions, we also replot AP; as a function of AAx in the insets
of Fig. 4. These rescaled distributions become the normal distribu-
tion whenever P;(Ax) is Gaussian. This is the case at all timescales
at high temperatures, T > 1, as expected.

At low temperatures instead, the distributions exhibit broad
tails except at very small and very large times. Qualitatively, the
van Hove distributions develop nearly exponential tails already in
the plateau region, see Fig. 4. Such exponential tails decay much
more slowly than the Gaussian prediction for Fickian dynamics,
which reveals the existence of a small concentration of particles
that have moved much farther than the majority after a given time.
This non-Gaussian shape and exponentially decaying tails in the van
Hove function have been universally observed in finite-dimensional
glass-forming liquids.*

For the lowest temperature, T = 0.5, the largest time ¢ = 10° is
much shorter than the estimated relaxation time, 7o ~ 5 x 107, and
most of these distributions, thus, correspond to the very extended
plateau regime seen at this temperature. In this plateau regime,
the distribution is almost invariant in its nearly Gaussian core, but
the tails become broader and more populated with increasing time.
The population of faster than average particles, thus, increases with
time and moves, on average, over larger distances. This population
of very fast particles is, therefore, responsible for the slow time decay
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FIG. 4. The van Hove distribution function P;(Ax) at (a) T =0.675 and
(b) T = 0.5. Insets show the distributions scaled using the measured variance with
the dashed line indicating the normal distribution. The structural relaxation time is
T, ~25x10%at T=0675and ~5x 107 at T = 0.5.
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of (C(t)) in the plateau time region and of the excess relaxation
signal detected in the relaxation spectra. This observation is again
consistent with the microscopic interpretation of excess wings in
finite-dimensional glass-formers.">**

V. DYNAMIC HETEROGENEITY: COLLECTIVE
DYNAMICS

A. Four-point dynamic susceptibility

The analysis of the van Hove distributions in Sec. I'V shows the
coexistence of fast and slow-moving particles at any given time. As
is well known, however, the distribution of single particle displace-
ments contains no information about possible correlations between
particle displacements. Here, we analyze observables that can reveal
this information and allow us to discuss the collective nature of the
relaxation dynamics in the MK model.

Using multiple independent trajectories, we can calculate the
four-point dynamical susceptibility defined by the variance of the

spontaneous fluctuations of the dynamic overlap:*

{c’(n) - (c(n))
(CH)a-(C®))
In Eq. (12), x,(t) is normalized such that y,(t) =1 when the

dynamics of all pairs of particles is completely uncorrelated.
In Fig. 5, we show the dynamical susceptibility x,(t) at sev-

xa(t) =N (12)

eral temperatures. At very short time Tt~ 1, x,(t) = 1, consistent
with uncorrelated microscopic motion at microscopic times. On the
timescale where time correlation functions have a plateau, x,(t)
grows monotonically with time, possibly as a power law with a small
exponent near 0.2. Therefore, the increasing number of mobile par-
ticles at intermediate times revealed by the van Hove distribution
cannot be interpreted as the independent hopping of particles out
of their respective cages. Instead, the dynamics of mobile particles
become increasingly correlated with time, and particle hopping is
actually a correlated, many-body process.

At times, t = 7,(T), x,(t) reaches a maximum value y; (T),
which is significantly larger than 1, before decreasing toward unity

25 ‘ ‘ ‘ ‘
20 ol A=49Q) 5477}

3 /@_I/@“i
15 F 5T

(=]

W

(=]

Dynamical susceptibility x,(f)

FIG. 5. Dynamical susceptibility y, (t) at several temperatures. The dashed line
corresponds to x, () = 1, the trivial value observed for uncorrelated dynamics.

Inset: maximal value y;" as a function of rescaled structural relaxation time T"2z,,

with dashed line indicating the power law y;* ~ (T'/27,)"/* fitted to the numerical
data with A = 4.9(2).
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at much longer timescales t > 7,. This time dependence is in
agreement with the typical behavior observed in finite-dimensional
glass-forming liquids.®” This similarity implies that the dynamics of
the MK model is just as collective as the one of conventional glass
models. Remarkably, even below the avoided dynamical transition
temperature T, x,(t) grows with time and becomes much larger
than 1, contrary to the proposed picture of a relaxation process
governed by the independent hopping of individual particles.*

In the inset of Fig. 5, we show the parametric evolution of
x4 (T) with the rescaled relaxation time T"7,(T) together with an

. % 2 \V/A
algebraic dependence y; ~ (T Ta) with A = 4.9(2). The expo-
nent A is somewhat larger than that reported for finite-dimensional
models,”**°"¥% A ~ 2.5, but close to that of the hard-sphere MK

model,”” A ~4.5. This may be due to the fact that the mode-

coupling crossover, which would yield the prediction y; ~ WY s

very strongly suppressed in the present MK model. As a result, the
growth of y; may be solely due to collective activated events for
which much slower growth, possibly logarithmic, is expected on
general grounds®” and indeed found in several cases.”"*’ In any case,
the present data unambiguously reveal that the low-temperature
dynamics of the MK model is actually governed by strong many-
body correlations that do not stem from (avoided) mode-coupling
criticality.

B. Spatial correlation functions

The dynamic susceptibility x,(¢) can also be represented as the
integral of the four-point correlation function G4(r, t) over space as
follows:

B [ drGu(r,t)
xa(t) = W) (13)
where
Ga(r,1) :% $6Ci(1)0C;(1)8(r - 2 (0)) ), (14)
iyj

with 8C;(t) = Ci(t) — (C(t)) and rj}‘(t) = |ri(t) — rj(t) — Ajl. Thus,
a large value of y,(t) implies the existence of large correlations
between local fluctuations of the dynamics, (8C;(#)0C;j(t)). Recall,
however, that the spatial variable  in Eq. (14) does not have the ordi-
nary interpretation as in conventional models due to the long-range
random shifts in the definition of the Hamiltonian Eq. (1).

Even if they are difficult to visualize, correlations between the
dynamics of individual particles are anyway directly revealed in
the four-point correlation G4(r,t). We show Gu(r,t)/27r in Fig. 6
at T = 0.575. As shown in Fig. 6(a), G4(r,t) develops a clear peak
at r ~ 2 that changes with time and temperature. At the temper-
ature shown in Fig. 6(a), the relaxation time is 74 ~ 10°, which is
also roughly the time when y,(t) becomes maximum. The time
dependence of G4(r, t) is compatible with this evolution.

However, G4(r,t) displays two features that are not seen in
finite-dimensional models. First, G4(r, t) has a negative dip at short
distance r $ 1 at any time ¢. This may naively suggest that particles in
very close contact have anticorrelated mobility, which appears coun-
terintuitive at first sight. Second, G4(r,t) does not decay at large
distances. We discuss these two points in the following.
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FIG. 6. Four-point correlation function (a) G4(r,t)/2nr for different times and

(b) GS™ (r, t) /2nr at t = 10°, around which y, (t) is maximum. The temperature
is T = 0.575 in both panels.

To understand the physical origin of the anticorrelation and the
negative dip at small r, we decompose Gs(r,t) into two indepen-
dent parts, viz. mobile and immobile contributions to G4(r,t). Let
us define

G (r,t) = %(Zai(t)éCi(t)(SCj(t)(S(r—rg(t)) . (1)
b

where a;(t) = Ci(t) if m=mobile and o;=1-Ci(t) if
m = immobile. Then by definition, we have Gu(r,t)
= Gim(’b'le)(r,t) + Gi‘mm(’blle)(r, t). We remind that particles
with displacement larger than 1 are defined as mobile and the
rest as immobile. We show the result of this decomposition in
Fig. 6(b) at T = 0.575. Clearly, at r ~ 1, the immobile contribution
is negative while the mobile one is positive, meaning that the
anticorrelation observed for the total function comes solely from
immobile particles.

The clear difference between mobile and immobile contri-
butions to Gui(r,t) suggests that particle mobility originates, on
average, from the local structure formed by the surrounding par-
ticles. To test this idea, we measure the static radial distribution
function separately for mobile and immobile particles:

(T ai(t)d(r—rj (1))
Vp(ptm (1))

g™ (rt) = , (16)

where p™(t) is the number density of mobile (immobile) par-
ticles if m = mobile(immobile). This radial distribution function
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characterizes the average surrounding structure of mobile or immo-
bile particles. We normalize g™ (r,t) by the bulk pair correlation
function g(r),

14
g(r) = {5z 20(Iri =i = Ay ). (17)

so that differences between the local structure and the average one
are directly revealed by a ratio that differs from unity. The results
are shown in Fig. 7. We can see that mobile particles have more
neighbors on average at short distances » < 1, but fewer the at large
distances, r ~ 2. By contrast, immobile particles have less neighbors
at short distances r < 1, and slightly more at r ~ 2. We finally under-
stand that the negative dip in the immobile contribution to G4(r, f),
thus, comes from the fact that immobile particles have less neighbors
at short distances, and this, indeed, does not point to the existence
of unphysical mobility anticorrelations.

Let us offer some physical interpretation of these findings.
In supercooled liquids, particles are confined within a cage com-
prised of neighboring particles, and a particle becomes mobile by
escaping this cage. In this view, the radial distributions for mobile
particles indicating that they have more neighbors at short distance
and are, thus, more confined than average appears counterintuitive.
We believe that the reason is that particles interacting with their
neighbors at short distances are then subject to large forces, which
potentially leads to a stronger force imbalance capable of inducing
rapid displacements. In addition, Fig. 7(a) shows that mobile parti-
cles have less particles at r ~ 2. Thus, once they escape their first shell
of neighbors r < 1, they are not efficiently pushed back to their orig-
inal position by particles further away. The opposite effects apply to
the immobile particles, see Fig. 7(b).

g™ p/e(r)

g(immobile) (r, 1) /g (r)

FIG. 7. Radial distribution functions for (a) mobile and (b) immobile particles at
T = 0.575 and different times. Mobile particles have more neighbors at small dis-
tances r ~ 1 and fewer neighbors at r ~ 2, while immobile particles have fewer
neighbors at r ~ 1 and more at r ~ 2. This indicates a clear correlation between
structure and dynamics.
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Regarding the absence of decay at large r, we recall that the
distance r used in the definition of G4(r,t) is meaningful for neigh-
boring particles which effectively interact at short shifted distances
rf; However, the physical meaning of large shifted distances is lost.
In particular, it is not possible to extract a dynamic correlation length
from the four-point function G4(r, t). Still, the large value in G4(r, t)
at large distances is consistent with the large value of y,(t), and it
proves that dynamics is collective and involves multi-body corre-
lations. This implies that the two-particle correlations detected by
Ga(r,t) at short distances must propagate in space and time to form
large correlated clusters at ¢t ~ 74, even though we cannot visualize
them in real space.

To discuss the correlations to second and third neighbors and
extract a dynamic correlation length, a more advanced analysis con-
sidering the tree-like structure of interactions would be needed,
which we leave for future work.

VI. SUMMARY AND DISCUSSION

To summarize, we studied the equilibrium dynamics of a
two-dimensional Mari-Kurchan model over a wide range of tem-
peratures. Using the planting technique, we prepared equilibrium
configurations down to arbitrarily low temperatures at essentially no
cost, well below the MCT crossover temperature, and studied several
time correlation functions and their fluctuations.

We have shown that both (C(¢)) and (F;(¢)) develop a two-
step decay separated by a plateau regime when the glassy dynamics
emerges. The final decay occurs even far below the mode-coupling
crossover T, as observed in finite-dimensional glass-formers. The
MCT transition is thus strongly avoided in the MK model. Since a
Kauzmann transition does not occur either, the RFOT theory has
little to say about the glassy dynamics in that model, even though it
was initially introduced as a glass model with mean-field character.

Overall, the observed glassy dynamics is quantitatively consis-
tent with the phenomenology of supercooled liquids. The final decay
of time correlation functions can be described by a stretched expo-
nential, and a clear excess signal appears at intermediate frequencies
that resembles the excess wings found in molecular and simulated
liquids. Finally, structural relaxation is accompanied by increasing
multipoint dynamic correlations characterizing the emergence of
collective dynamics at low temperatures.

Our results show that the MK model displays dynamical prop-
erties that are extremely similar to the ones of finite-dimensional
systems despite the mean-field nature of its local structure. Because
the MK model has no MCT transition, the emergence of collec-
tive dynamics cannot be described or attributed to the dynamic
criticality. In addition, the thermodynamic Kauzmann transition is
forbidden by the random nature of the MK interactions, and it is also
impossible to invoke collective activated dynamics over a correla-
tion lengthscale controlled by a decreasing configurational entropy,
as envisioned in the RFOT theory.

The sole candidate to explain the emergence of correlated
dynamics in the MK model is dynamic facilitation. We expect that
the most mobile particles are able to escape their initial position
much before the bulk, and this motion then helps the neighboring
particles (in the shifted representation) to relax more easily them-
selves. If this process repeats itself, it directly leads to the emergence
of dynamic correlations that become very large when structural
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relaxation finally takes place. In fact, the existence of a small popula-
tion of particles that relax much faster than the bulk naturally opens
a broad time window where dynamic correlations can be built via
dynamic facilitation. Moreover, our results suggest that the particles
playing the role of the localized defects hypothesized in kinetically
constrained models can be statistically identified in the MK model
based on their local structure, which is, on average, different from
the bulk.

The MK model then emerges as an interacting particle model
with short-range interactions, which, in effect, captures the physics
of kinetically constrained models very well. It appears more realis-
tic than the original constrained models themselves, which have no
Hamiltonian and where defects are introduced by hand. Here, the
defects are instead an emergent physical property. The MK model
is also different from plaquette models” where interactions do not
resemble the ones found in liquids, and the interactions in the MK
model are also much less artificial than in models of infinitely thin
hard needles.”"””

Since the MK model so closely resembles conventional glass-
forming models, it could become a useful tool to better understand
how dynamic facilitation can operate in off-lattice models and how
to best quantify its consequences. However, it could be that despite
the similarities revealed by our work, some more subtle differences
emerge after more careful examination. For instance, it is possi-
ble that the nature of the particle motion observed at times much
shorter than the bulk is simpler in the MK model than in finite-
dimensional models where nontrivial thermodynamic fluctuations
exist that can influence the slow dynamics. Future efforts should aim
at determining whether such differences exist.

In future work, it would also be interesting to test whether the
correlation that we have revealed between structure and dynamics
is only obeyed at the average level, or whether it applies particle
by particle at the microscopic level. Due to the simplified nature of
the structure in the MK model, it again appears as a good model
to test current efforts aimed at identifying at the microscopic level
the correlation between structure and dynamics, which has seen a
surge of interest recently due to the advent of machine learning
techniques.”
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