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We combine an analytically solvable mean-field elasto-plastic
model with molecular dynamics simulations of a generic glass
former to demonstrate that, depending on their preparation pro-
tocol, amorphous materials can yield in two qualitatively distinct
ways. We show that well-annealed systems yield in a discontin-
uous brittle way, as metallic and molecular glasses do. Yielding
corresponds in this case to a first-order nonequilibrium phase
transition. As the degree of annealing decreases, the first-order
character becomes weaker and the transition terminates in a
second-order critical point in the universality class of an Ising
model in a random field. For even more poorly annealed sys-
tems, yielding becomes a smooth crossover, representative of the
ductile rheological behavior generically observed in foams, emul-
sions, and colloidal glasses. Our results show that the variety of
yielding behaviors found in amorphous materials does not nec-
essarily result from the diversity of particle interactions or micro-
scopic dynamics but is instead unified by carefully considering the
role of the initial stability of the system.
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In amorphous solids, yielding generically signals a macroscopic
change of the global mechanical response from an appar-

ent elastic–solid regime at small deformation to a plastic–flow
regime at large deformation (1–3). Yielding can occur smoothly,
as when one spreads cream cheese on a bagel, or can be
abrupt and catastrophic, as when a smartphone screen breaks.
Yielding is observed in soft glasses such as emulsions, colloidal
suspensions, and foams (1) but also in molecular and metal-
lic glasses (3). It represents a central problem in statistical
physics (2) (Can yielding be described as a nonequilibrium phase
transition?), soft condensed matter (1) (How do soft glasses
flow?), and materials science (3) (Can one predict material fail-
ure?). Understanding the fate of an amorphous material that
is mechanically driven very slowly from an initial disordered
configuration represents the core challenge, and its solution
would directly allow one to understand steady-state flows (1),
oscillatory deformations (4), shear-band formation (5), and per-
haps most importantly, the catastrophic failure of amorphous
solids (3).

Failure and flow of a disordered solid is such a ubiquitous
phenomenon in nature and technological applications that it has
stimulated an intensive search for universal explanations (6–8).
One such explanation is based on elasto-plastic models (2, 9–
11) and their analogy with the depinning of a manifold in a
random environment (12, 13); it has recently allowed a clarifi-
cation of the critical nature of the steady-flow regime observed
at very large deformation. In this stationary regime, the stress
undergoes a succession of elastic charges interrupted by sudden
plastic drops. Microscopically, plasticity corresponds to localized
particle rearrangements, called shear transformations (14, 15),
which release the accumulated stress and induce long-range reor-
ganization triggering system-spanning avalanches. Universality
emerges because the stress drops display scale-free statistics,

similar to the Gutenberg–Richter law for earthquakes (12, 13,
16–19).

The above studies are focused on “ductile” rheological re-
sponses observed in most soft glassy materials (such as cream
cheese), which do reach a steady state. However, many amor-
phous solids (such as smartphone screens) are instead “brittle”
and fail macroscopically after a finite deformation. For both duc-
tile and brittle materials, the nature of the yielding transition
between an elastic-like and a plastic behavior is an actively stud-
ied and vigorously debated question. Different views have been
proposed. Yielding has been first described as a spinodal (i.e.,
a limit of stability) in ref. 20 on the basis of random first-order
transition theory. Later, in agreement with infinite dimensional
computations (21–23), yielding has been interpreted as a discon-
tinuous transition (24) and then, later on, associated to a critical
spinodal (25), independently of the initial preparation. In addi-
tion to the specific characterization of the yielding transition,
a crucial open question is why, despite their strong structural
similarities, are some materials brittle and others ductile?

Here we show that yielding and brittleness are two facets
of the same problem, which we describe at once.∗ We provide
a theoretical and numerical analysis of the transient response
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to an athermal shear deformation starting from the disordered
solid. Our main finding is that there are two different universal
behaviors, depending on the degree of annealing of the initial
configuration but not on the detailed nature of the material per
se. We show that the evolution of the stress caused by quasi-static
deformations qualitatively changes from a sharp discontinuous
transition when the material is initially well annealed, and there-
fore very stable, to a smooth crossover as the degree of annealing
decreases and the material is initially less stable. These two
regimes are separated by a random critical point, by which we
denote a critical point controlled by the presence of quenched
disorder. It is reached for a critical value of the degree of anneal-
ing. Our analysis suggests that this criticality is related to the
universality class of an Ising model in a random field [generically
denoted by RFIM (26)]. In this picture, the yielding of ductile
materials, which are viewed as rather poorly annealed systems,
does not correspond to a genuine phase transition.

The starting point of our work is the idea, inspired by ran-
dom first-order transition theory (20) and mean-field calcula-
tions (21–23), that yielding corresponds to a spinodal instability,
but we additionally take into account several important fea-
tures that can change the picture drastically: (i) the presence
of quenched disorder, physically corresponding to the intrin-
sic structural heterogeneity present in amorphous materials; (ii)
the possible disappearance of the spinodal that can be replaced
by a smooth crossover; and (iii) finite-dimensional fluctuations,
which are generically expected to destroy the criticality asso-
ciated to a mean-field spinodal instability. In the following,
we first support our claims by studying an analytically solvable
mean-field elasto-plastic model that we devise to capture the
brittle-to-ductile transition through a random critical point. We
then use molecular dynamics simulations of a glass-former pre-
pared over an unprecedented range of initial stability, building
on very recent computational developments (27). The simula-
tions fully confirm the theoretical scenario and provide direct
evidence for a random critical point controlling the brittleness of
amorphous solids.

Mean-Field Theory
To substantiate our proposal, we develop a simple analysis, which
is inspired by the description of sheared materials in terms of
elasto-plastic models (2). This widespread mesoscopic approach
successfully reproduces the key phenomenology of deformation
and flow in amorphous materials. Our main focus is on the role
of the initial preparation, which has received much less attention
(see, however, refs. 28–31).

In this approach, the system is decomposed in mesoscopic
blocks i = 1, · · · ,Nb, in which elastic behavior is interrupted
by sudden shear transformations. At each block is assigned a
local stress, σi , drawn from an initial distribution Pini(σ), which
encodes the degree of annealing. In the absence of plastic events,
the response is purely elastic, and a small deformation incre-
ment, δγ, loads all of the blocks as σi→σi + 2µ2δγ, with µ2 the
shear modulus. However, when the local stress becomes larger
than a threshold value σth

i (that for simplicity we consider uni-
form σth

i =σth), the block yields and the local stress drops by a
random quantity x ≥ 0 sampled from a given distribution g(x ).
After the drop, the stress is redistributed to the other sites as
σj →σj +Gij x . The elastic kernel Gij is generally taken of the
Eshelby form, which corresponds to the far-field solution of elas-
ticity (it decays as 1/|i − j |d , where d is the spatial dimension,
but changes sign and displays a quadrupolar symmetry) (32).
There is no straightforward and generally accepted way to han-
dle the nonlocal Eshelby interaction kernel at a mean-field level
(33–35). Here we consider a mean-field approximation that con-
sists of replacing this nonlocal interaction by a fully connected
kernel Gij = µ2

Nb(µ1+µ2)
, with µ1> 0. This description overlooks

the effect of the anisotropic and nonpositive form of the Eshelby
interaction kernel. Nonetheless, we expect that it provides a cor-
rect qualitative description of the yielding transition itself. [A
similar behavior is indeed found by analyzing more involved
mean-field models (36).] Below we discuss its limitations and
how to go beyond them. Note that this model also has a natu-
ral interpretation as a mean-field model of depinning† as well as
earthquake statistics (38, 39).

The key quantity in this approach is the distribution Pγ(x )

of the distances xi =σth−σi from the threshold stress. In the
following, we study its macroscopic evolution with strain γ. As
detailed in SI Appendix, it is governed by the equation

∂Pγ(x )

∂γ
=

2µ2

1− xcPγ(0)

[
∂Pγ(x )

∂x
+Pγ(0)g(x )

]
, [1]

where xc = (µ2/[µ1 +µ2])x̄ and x̄ =
∫∞

0
dxxg(x ) represent

material-dependent parameters (here, we have xc < x̄ < 1 as we
set σth = 1 as the stress unit). The degree of annealing of the
material is fully encoded in the initial distribution Pγ=0(x ),
which contains the same information as Pini(σ).

The properties of the macroscopic stress–strain curves can be
obtained through Eq. 1 and the relation 〈σ〉= 1−〈x 〉, which is
derived by taking the average of the equation defining xi . Our
results, which hold for a generic g(x ) (see SI Appendix), are
shown in Fig. 1 for the explicit case g(x ) = exp(−x/x̄ )/x̄ and
Pγ=0(x ) =

(
e−x/A− e−x/(1−A)

)
/(2A− 1), 1/2<A< 1. With

this choice, A is the unique parameter controlling the degree
of annealing, with smaller values of A corresponding to better
annealed samples.

For a poor annealing, the stress–strain curve is monotonically
increasing and yielding is a mere crossover. As one increases
the degree of annealing, a stress overshoot first appears, but
yielding remains a crossover, still not a bona fide phase tran-
sition. For the best annealing, the overshoot is followed by a
spinodal and a sharp discontinous jump of the average stress.
Mathematically, this occurs when, increasing γ, Pγ(0) reaches
x−1
c , thus inducing a singular behavior of Pγ(x ) via Eq. 1. In

this case, yielding takes place as a nonequilibrium first-order
transition. Crucially, a critical point Ac separates the first-order
regime from the smooth one. From Fig. 1, it is clear that
an appropriate order parameter distinguishing the two regimes
of yielding is the macroscopic stress drop ∆〈σ〉. As shown in
Fig. 1, Inset, ∆〈σ〉 vanishes at large A, but it grows continu-
ously by decreasing A below Ac . This critical point is therefore
reached not only for a specific value of the strain and stress
but also by tuning the degree of annealing of the material.
The stress overshoot, frequently observed in colloidal materi-
als (40, 41), yield stress fluids (42), and computer simulations
(43), is simply a vestige of this critical point at larger disorder
strength.

When a spinodal, followed by a discontinuity, is present, the
stress displays a square-root singularity as the yield strain γY is
approached from below, and the distribution of the avalanche
size S becomes for large S

〈σ〉−σsp ∝ (γY − γ)1/2, [2]

P(S)∼S−3/2e−C(γY−γ)S , [3]

where C > 0 is a constant and γ→ γ−Y . The discontinuous stress
drop decreases as annealing becomes poorer, and it eventually

†A narrower initial distribution, different from the stationary one, corresponds to aging
in the quenched disordered (28, 37)—that is, to a stronger pinning at initial times.
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Fig. 1. The different yielding regimes in the mean-field elasto-plastic
model. Stress 〈σ〉 versus strain γ for increasing degree of annealing (decreas-
ing A values) from bottom to top, using xc = 0.9, x̄ = 0.92. The monotonic
flow curve (black) transforms into a smooth stress overshoot (red), and
above a critical point with infinite slope (blue) becomes a discontinuous
transition (green) of increasing amplitude (dark blue). (Inset) Stress discon-
tinuity ∆〈σ〉 versus the degree of annealing [here, the initial distribution
Pγ=0(x) is parametrized by a single parameter A, which plays the same role
as the preparation temperature in the simulations].

vanishes with a square-root singularity at the critical point
(γYc ,σc), where a different behavior emerges:

〈σ〉−σc ∝ sgn(γ− γYc )|γ− γYc |
1/3, [4]

P(S)∼S−3/2e−C ′|γ−γYc |
4/3S , [5]

with C ′> 0 and γ→ γ±Yc
. All these scaling behaviors coin-

cide with those found for the RFIM‡ within the mean-field
theory (45).

The presence of an annealing-controlled random critical point
is the main finding of our mean-field approach. We stress that
its presence, as well as that of the different regimes of yield-
ing, does not require the introduction of any additional physical
mechanism, such as dynamical weakening (37–39, 46–48). It only
depends on the initial preparation of the amorphous material
before shearing, in combination with the basic rules of elasto-
plastic models. In finite dimensions, the above scaling behaviors
will be modified. Whereas a spinodal instability can still be
present in athermal conditions, it will likely not be associated to
any critical behavior (49). On the other hand, the random critical
point should always be in the universality class of the athermally
driven RFIM, but this class is presumably distinct from that of
the conventional model with only short-ranged ferromagnetic
interactions.

This mean-field description is not meant to reproduce all
aspects of the deformation-and-flow phenomenology. In partic-
ular, it does not allow criticality of the sheared system along the
elastic and plastic branches (29, 50), nor can it describe spatial
flow inhomogeneities, such as shear bands. Nonetheless, as we
now show by computer simulations, the model correctly captures
the preparation dependence of the yielding transition, the central
question addressed by our work.

‡More precisely, in the present context, one should consider the out-of-equilibrium
behavior of the RFIM when quasi-statically driven at zero temperature by a change
of the applied magnetic field (44). At the mean-field level, this critical behavior is the
same as that of the RFIM in equilibrium.

Atomistic Model and Numerical Procedures
We have numerically studied the yielding transition in a 3D
atomistic glass model for different degrees of annealing, with
our mean-field predictions as a guideline. We have used a size-
polydisperse model with a soft repulsive potential (27). Glass
samples have been prepared by first equilibrating liquid con-
figurations at a finite temperature, Tini, and then performing a
rapid quench to T = 0, the temperature at which the samples are
subsequently deformed. The preparation temperature Tini then
uniquely controls the glass stability, and we consider a wide range
of preparation temperatures, Tini = 0.062− 0.200. To obtain
well-annealed systems, we have used the swap Monte Carlo
(SWAP) algorithm, which allows equilibration at extremely low
temperatures (27). The considered range of Tini describes very
poorly annealed glasses (Tini≈ 0.2, corresponding to wet foam
experiments), ordinary computer glasses (Tini≈ 0.12, corre-
sponding to colloidal experiments), well-annealed glasses (Tini≈
0.085− 0.075, corresponding to metallic-glass experiments), as
well as ultrastable glasses (Tini≈ 0.062, see ref. 51). No previ-
ous numerical work has ever accessed such a large range of glass
stability.

We have performed strain-controlled athermal quasi-static
shear (AQS) deformation using Lees–Edwards boundary condi-
tions (18). Note that during the AQS deformation, the system is
always located in a potential energy minimum, such that inertia
and thermal fluctuations play no role. This method is consid-
ered as the zero-strain rate limit, γ̇→ 0, which bypasses the
time scale gap between simulation and experiments (43). Thus,
our simulation setting (SWAP/AQS) fully overcomes the time
scale gap in both glass preparation and mechanical deformation
between simulations and experiments. To study the finite-size
effect, we have varied the number of particles N over a con-
siderable range, N = 1500− 96000. More details are given in
SI Appendix.

The Two Regimes of Yielding
In Fig. 2A, we show the evolution of typical stress–strain curves
for large individual samples with N = 96000. For a high Tini, the
usual jerky succession of stress drops is found with no overshoot
for Tini = 0.200 [akin to wet foam experiments (52, 53)] and with
a stress overshoot for Tini = 0.120 [akin to colloids experiments
(40, 41)]. Note that previous simulation studies about effects
of annealing on yielding behavior would be restricted by this
regime (43, 54, 55). Strikingly, the stress overshoot transforms
into a sharp stress discontinuity for Tini . 0.1 near the yield strain
γY ≈ 0.12. This large stress drop is distinct from the smaller
stress drops observed at other strain values. This is confirmed
in Fig. 2D, where we plot for increasing values of N the averaged
stress 〈σ〉 (obtained by averaging over many independent sam-
ples) for Tini = 0.062. The stress discontinuity at yielding is the
only one surviving after the average and it becomes sharper and
better resolved as N increases. These data strongly suggest that,
in the thermodynamic limit, the averaged stress–strain curve
has a sharp discontinuity at yielding and is smooth everywhere
else. This discontinuity is a signature of a nonequilibrium first-
order transition, as confirmed by the growth of the associated
susceptibilities, the so-called “connected” susceptibility χcon =

− d〈σ〉
dγ

and “disconnected” susceptibility χdis =N (〈σ2〉− 〈σ〉2).
The peaks of the susceptibilities become sharper and their ampli-
tude, χpeak

con and χpeak
dis , increases with N with exponents expected

for a first-order transition in the presence of quenched disorder,
as discussed below. This is illustrated for χdis in Fig. 2E, and we
find that χpeak

dis ∼N (Inset) and χpeak
con ∼

√
N (see SI Appendix) at

large N .
The similarity between the mean-field theory in Fig. 1 and

the data in Fig. 2A is patent. In agreement with the mean-
field theory, we indeed find two distinct types of yielding: a
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Fig. 2. From ductile to brittle behavior. (A) The yielding regimes in the
simulation of a sheared glass for different degrees of annealing. Shown is
stress σ as a function of the strain γ for several preparation temperatures
Tini. For each Tini, three independent samples are shown. (B and C) Snap-
shots of nonaffine displacements between γ= 0 and yielding at γ= 0.13
for Tini = 0.120 (B) and at γ= 0.119 for Tini = 0.062 (C). (D and E) Evidence
of a first-order yielding transition for well-annealed glasses. Shown is a
system-size dependence of the averaged stress–strain curve for Tini = 0.062,
showing a sharper stress drop for larger N (D). The associated susceptibil-
ity, χdis = N(〈σ2〉− 〈σ〉2), becomes sharper as N increases (E). (Inset) The
divergence of the maximum of χdis is proportional to N shown with the
straight line.

discontinuous one for well-annealed glasses, which is associated
with a first-order transition that becomes weaker as the degree
of annealing decreases, and a continuous one, corresponding to
a smooth crossover, for poorly annealed materials. As discussed
in the next section, we also find a critical point at Tini,c ≈ 0.095
that marks the limit between the two regimes.

In addition, the simulations give direct real-space insight into
the nature of yielding. We illustrate the prominent difference
between the two yielding regimes in the snapshots of nonaffine
displacements measured at yielding in Fig. 2 B and C (see SI
Appendix for corresponding movies). For a smooth yielding, we
find in Fig. 2B that the nonaffine displacements gradually fill
the box as γ increases, and concomitantly the stress displays an
overshoot, as recently explored (56, 57). For the discontinuous

case, the sharp stress drop corresponds to the sudden emer-
gence of a system spanning shear band. By contrast with earlier
work on shear-banding materials (58, 59), the shear band in
Fig. 2C appears suddenly in a single infinitesimal strain incre-
ment and does not result from the accumulation of many stress
drops at large deformation. For an intermediate regime between
the discontinuous and continuous yielding (Tini≈ 0.1), strong
sample-to-sample fluctuations are observed. Some samples show
a sharp discontinuous yielding with a conspicuous shear band
(similar to Fig. 2C), whereas other samples show smooth yielding
with rather homogeneous deformation (similar to Fig. 2B). Such
large sample-to-sample fluctuations are typical for systems with
random critical points.

The Random Critical Point
Having identified a regime where yielding takes place through
a first-order discontinuity and a regime where it is a smooth
crossover, we now provide quantitative support for the exis-
tence of a critical point separating them, as one would indeed
expect on general grounds. The mean-field theory presented
above supports this scenario and suggests that the critical point
is in the universality class of an Ising model in a random
field. This criticality should not be confused with the marginal-
ity predicted to be present in sheared amorphous solids irre-
spective of the degree of annealing and of the value of the
strain (29, 50). This issue is discussed separately below and in
SI Appendix.

As shown in Fig. 1, the order parameter distinguishing the two
regimes of yielding is the macroscopic stress drop. In the simu-
lations, we measure its evolution by recording for each sample
the maximum stress drop ∆σmax observed in the strain win-
dow γ ∈ [0, 0.3]. We have measured the mean value 〈∆σmax〉 as
a function of the preparation temperature Tini for several sys-
tem sizes N . At the largest temperature, no macroscopic stress
drop exists: 〈∆σmax〉 simply reflects stress drops along the plas-
tic branch and vanishes as 〈∆σmax〉|Tini=0.2∼N−0.4, as shown in
Fig. 3A, Inset. In the main panel of Fig. 3A, we subtract this trivial
behavior from 〈∆σmax〉. We find that the maximum stress drop is
zero above Tini≈ 0.1 and nonzero for lower temperatures. The
system-size dependence confirms that this temperature evolu-
tion becomes crisp in the large-N limit, and we locate the critical
point at Tini,c ≈ 0.095. Complementary information is provided
by studying the fluctuations of the maximum stress drop, which
can be quantified through their variance N (〈∆σ2

max〉− 〈∆σmax〉2)
[not to be confused with the disconnected susceptibility χdis =

N (〈σ2〉− 〈σ〉2)], shown in Fig. 3B. One finds that the variance

A B C

Fig. 3. Evidence of a random critical point. Mean (A) and variance (B) of ∆σmax versus the preparation temperature Tini for several system sizes N. In A, we
plot 〈∆σmax〉∗≡〈∆σmax〉− 〈∆σmax〉|Tini=0.2 to subtract the trivial high-temperature dependence that vanishes at large N, as shown in Inset. The critical
temperature Tini,c≈ 0.095 is determined from the vanishing of the order parameter 〈∆σmax〉∗ in A and the growth of the maximum of the susceptibility
N(〈∆σ2

max〉− 〈∆σmax〉2) in B. (C) Parametric plot of the connected and disconnected susceptibilities for all system sizes and several preparation temperatures.
The straight line corresponds to the scaling χdis ∝χ2

con, as found in the RFIM.

Ozawa et al. PNAS | June 26, 2018 | vol. 115 | no. 26 | 6659

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806156115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806156115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1806156115/-/DCSupplemental


goes through a maximum that increases with system size around
Tini,c ≈ 0.095.

These results provide strong evidence of a critical point sep-
arating ductile from brittle behavior, with the mean stress drop
〈∆σmax〉 playing the role of an order parameter. Additional sup-
port comes from the study of the overlap function q introduced
in ref. 24. We find that the finite-size analysis of q and of the
overlap jump ∆qmax at yielding follows the same pattern as σ and
∆σmax qualitatively. This points toward a macroscopic disconti-
nuity for well-annealed glasses and a mere crossover for poorly
annealed cases (see SI Appendix). Contrary to what was found in
ref. 60, we find that the first-order transition behavior terminates
at a temperature Tini,c , above which a smooth stress overshoot is
instead observed.

Our findings are also corroborated by the analysis of the
criticality of the sheared glass. As previously shown (29, 61),
an amorphous material quasi-statically sheared at zero tem-
perature is marginal at all values of the strain. The physical
reason is the presence of a pseudogap in the density of ele-
mentary excitation (50), which is characterized by a critical
exponent θ > 0. This criticality implies a scale-free distribution
of avalanche sizes, and by carefully analyzing the stress-drop
statistics, we have extracted the exponent θ as a function of γ
and Tini. As shown in SI Appendix, we find that the discontinu-
ous transition is associated with a discontinuous variation of θ
and that large fluctuations of the stress drops associated with
criticality generate a rapid change in θ versus γ with the pres-
ence of a large maximum for temperatures Tini close to the
critical point.

Our data do not allow us to measure the critical exponents
associated to the RFIM critical point in a robust way. Yet it is
possible to obtain a strong indication that the critical point and
the first-order transition are governed by the universality class of
an Ising model in a random field. In this case indeed, the pres-
ence of quenched disorder leads to two distinct susceptibilities,
χcon and χdis. A key signature of the presence of random-field
disorder is that χdis ∝χ

2
con. This scaling relation, which is exact in

the mean-field limit, is valid in finite dimensions at the first-order
transition and is also approximately verified by the conventional
RFIM at the critical point (26). It indicates that disorder-induced
sample-to-sample fluctuations provide the dominant source of
fluctuations. By looking at the parametric plot of the maximum
of χdis versus the maximum of χcon, which is shown in Fig. 3C
for all system sizes and several preparation temperatures, one
finds that the relation is indeed observed in our simulations, at
least at and below a temperature Tini = 0.100&Tini,c and for
large N .

Discussion and Conclusion
Our analysis shows that irrespective of the nature of the amor-
phous material, yielding can come with two qualitatively different
types of behavior, corresponding either to a discontinuous tran-
sition or to a smooth crossover. The transition between these
two regimes occurs at a random critical point related to the
RFIM, which naturally explains the large sample-to-sample fluc-
tuations observed in simulations. The type of yielding that a
given material displays depends on its degree of annealing, a
mechanism that differs dramatically from the processes at play

in crystalline solids (62). Conceptually, increasing the annealing
for a given particle interaction implies that the initial amor-
phous configuration is drawn from a deeper location of the glassy
energy landscape, in which the local environments fluctuate less
(lower disorder in the RFIM analogy). In practice, the degree
of annealing can be tuned for some materials such as metallic
and molecular glasses (48, 63–65) but would be more difficult
to vary for others like emulsions and wet foams. Our approach
shows that given the particle size (for colloids), the prepara-
tion protocol (for emulsions), and the cooling rate (for metallic
glasses), a given amorphous material must belong to either one
of the two yielding regimes. We suggest that colloids with a
well-chosen range of particle sizes could be used to experimen-
tally probe the random critical point separating the two yielding
regimes.

Our work is focused on the two possible yielding scenarios
rather than on the stationary state reached at large deformation.
In ductile glasses, one expects a stationary state independent of
the initial condition as shear transformations are quickly healed
so that plasticity can spread homogeneously. In the materi-
als we dubbed brittle in the present work, large deformations
would trigger cracks or shear bands that may remain well-
localized in the sample (as we indeed find numerically). Our
study does not allow us to study the propagation of the cracks
themselves.

There are several directions worth further studies to extend
our results. On the theoretical side it is important to intro-
duce nonlocal elastic interactions mediated by an Eshelby-like
kernel in the proposed framework of an effective random-field
Ising theory, which could potentially yield anisotropic avalanches
that are not described by the traditional RFIM. This is essen-
tial to describe the role of nonperturbative and non-mean field
effects that have been argued to be important for the spinodal
behavior of disordered finite-dimensional systems at zero tem-
perature (49). These correspond physically to rare regions that
are able to trigger the failure in the material and are related
to the shear bands found in simulations. We present numer-
ical evidence already supporting this scenario in SI Appendix
(see also ref. 36). On the simulation side, it is interesting to
study how the rheological setting affects the yielding scenario
proposed in this work. Considering uniaxial tension or compres-
sion tests would be useful for a further detailed comparison
between simulations and experiments. In addition, investigat-
ing the influence of a finite temperature and/or a finite strain
rate on the simple situation studied here would also be a worth-
while extension. Finally, one would like to understand better
how the evolution of ductility with the initial disorder impacts
the deformation and failure of glasses at larger length scales
and make a connection with studies of macroscopic fracture
in glasses. Because controlling ductility in amorphous solids is
desirable for practical applications (3, 66), our theoretical stud-
ies will hopefully lead to design-principle of more ductile glassy
materials.
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Mean-field model of yielding

Derivation of the mean-field equations
In order to obtain the mean-field equation on Pγ(x) let us

start from a mechanically stable state such that all mesoscopic
blocks have a local stress σi below the threshold value σth

that we set equal to one. It is useful to introduce the distance
from threshold xi = σth−σi = 1−σi. When a xi vanishes the
block becomes unstable and jumps at a new value x, all the
other blocks become closer to instability by the same amount

µ2
Nb(µ1+µ2)x. Changing γ in γ + δγ shifts down all xi’s by an
amount 2µ2δγ. In consequence, a fraction 2µ2δγPγ(0) of them
become negative and undergo plastic reorganization ∗, which
leads, independently for each block, to a new value x drawn
from the probability density g(x). The corresponding change
of Pγ(x) is therefore

dPγ(x) = 2µ2δγ

[
∂Pγ(x)
∂x

+ Pγ(0)g(x)
]
. [1]

However, this is not the only contribution since due to the
reinsertion in the pool of a fraction Pγ(0)δγ of xi’s, the
mean-field interaction shifts down again all xi by an amount
µ2

µ1+µ2
x̄Pγ(0)δγ, where x̄ =

∫∞
0 dxxg(x), and gives rise to a

contribution, akin to the one considered above, but with δγ
now replaced by xcPγ(0)δγ and xc = µ2

µ1+µ2
x̄. This process is

iterated and leads to an infinite number of contributions:

dPγ(x) = 2µ2δγ

∞∑
n=0

(xcPγ(0))n
[
∂Pγ(x)
∂x

+ Pγ(0)g(x)
]
. [2]

By summing up the series, and dividing by δγ, one obtains
the equation reported in the main text, which is an improved
version of the equation studied in Ref. (1).

General analysis
We now show that the mean-field equations naturally lead

to the yielding regimes discussed in the main text (see also
the explicit solution below).

Using the equations defining σi and xi and taking their
average, one obtains

〈σ〉 = 1− 〈x〉 = 1−
∫ ∞

0
dxxPγ(x) . [3]

∗From now on we neglect all sub-leading corrections in 1/Nb .

Multiplying the equation on Pγ(x) by x, integrating over x
and inserting the resulting expression obtained for d〈x〉

dγ
in

Eq. (3) leads to

d〈σ〉
dγ

= 2µ2
1− x̄Pγ(0)
1− xcPγ(0) . [4]

The analysis of this equation points to two special values
of Pγ(0): Pγ(0) = 1/x̄ at which d〈σ〉

dγ
= 0 so that the steady

state is reached and Pγ(0) = 1/xc at which d〈σ〉
dγ

diverges.
We have now all we need to discuss the existence of three

regimes depending on the initial distribution Pγ=0(x). In the
following we discuss our results, that hold for generic g(x)’s,
and illustrate them in the special case already discussed in the
main text.

• Monotonic yielding curve. This regime corresponds to
a Pγ(0) that remains always below 1/x̄, value reached
monotonically only for γ →∞ (1). This case corresponds
to the largest A = 0.95 (black line) in Figs. 1 (main text)
and 1 in which 〈σ〉 increases monotonically towards its
asymptotic value.

• Overshoot. In this case Pγ(0) is small for small strain,
increases and crosses the value 1/x̄ at a finite value γ =
γmax. By increasing γ more it reaches a maximum, whose
value is smaller than 1/xc, and then it starts decreasing
and asymptotically converges from above to 1/x̄. In
this case, the curve 〈σ〉 versus γ displays a maximum at
γ = γmax but no singular behavior since d〈σ〉

dγ
remains

bounded (A = 0.9 (red line) in Figs. 1 (main text) and
1).

• Discontinuous yielding. This is similar to the previous
case except that Pγ(0) keeps increasing after γmax and
eventually reaches the value 1/xc for γ = γY . This means
that the curve 〈σ〉 versus γ first goes though a maximum
and then has an infinite negative derivative at γ = γY
(A = 0.8 and 0.84 (dark blue and green line, respectively)
in Figs. 1 (main text) and 1). At this point, which can be
considered as a spinodal point, the distribution Pγ(x) has
a discontinuous transition due to the divergence of the
right-hand side of its evolution equation. Due to Eq. (3),
this also leads to a discontinuity in the macroscopic stress
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Fig. 1. Effect of the degree of annealing described by the parameter A in Eq. (13): (i)
discontinuous regime (dark blue, A = 0.8, and green, A = 0.84), (ii) continuous
regime with overshoot (red, A = 0.9) and (iii) monotonic regime (black , A = 0.95).
The the critical point (blue) is identified at Ac = 0.87675. (a) The initial distribution
Pγ=0(x) and (b) the evolution of Pγ(x = 0) are shown in the different regimes.

〈σ〉. The behavior of Pγ(0) can be understood by studying
its evolution equation,

∂Pγ(0)
∂γ

= 2µ2

1− xcPγ(0)

[
∂Pγ(0)
∂x

+ Pγ(0)g(0)
]
. [5]

At γ = γ−Y its right-hand side is positively divergent since
generically

[
∂Pγ(0)
∂x

+ Pγ(0)g(0)
]
> 0. Then, a macro-

scopic avalanche takes place. At the same time, Pγ(0)
jumps to a value that is less than 1/xc, and at γ = γ+

Y

the right-hand side of Eq. (5) is no longer singular. When
approaching the spinodal point, for γ → γ−Y , one expects
that Pγ(0) ≈ 1/xc −A(γY − γ)α− . Inserting this ansatz
in the equation for Pγ(0) one finds α− = 1/2. On the
other hand for γ → γ+

Y the behavior is regular. This in
turn implies

〈σ〉 − σsp ∝ (γY − γ)1/2, γ < γY , [6]
σ+ − 〈σ〉 ∝ (γ − γY ), γ > γY , [7]

where σsp = 〈σ〉(γ−Y ) > σ+ = 〈σ〉(γ+
Y ) due to the disconti-

nuity. As shown in Fig. 1 (main text) this corresponds to
a singular behavior with a square-root singularity before
the discontinuity of 〈σ〉 and a regular behavior after.

We now focus on the critical point separating the overshoot
and discontinuous regimes. It takes place when, for γ = γYc ,
both

[
∂Pγ(0)
∂x

+ Pγ(0)g(0)
]

= 0 and Pγ(0) = 1/xc are satisfied.
In this case the right-hand side of Eq. (5) does not diverge
anymore. To study the critical point, it is useful to focus on
the evolution equation of ∂Pγ(0)

∂x
:

∂

∂γ

∂Pγ(0)
∂x

= 2µ2

1− xcPγ(0)

[
∂2Pγ(0)
∂x2 + Pγ(0)g′(0)

]
. [8]

Inserting in Eq. (8) the ansatz Pγ(0) ≈ 1/xc + A|γYc − γ|α
and assuming that the term within the square brackets is
generically different from zero for γ = γYc , one finds that
∂Pγ(0)
∂x

+ Pγ(0)g(0) ∝ sgn(γYc − γ)|γYc − γ|1−α. Using this
result in Eq. (5) one finally obtains α = 2/3. Due to Eq. (3),
this leads to a critical behavior of 〈σ〉 for γ near γYc with

〈σ〉 ≈ σc +B sgn(γYc − γ)|γYc − γ|1/3 ,

where B is a constant and σc = 〈σ〉(γYc).
By using the results of Ref. (1) one can also determine the

behavior of the avalanche size distribution,

P(S) ∼ S−τe−
S

2Scut ,

where it is found that τ = 3/2 and Scut = 1/[1 − xcPγ(0)]2.
The latter relation leads to Scut ∼ (γY − γ)−1 for γ < γY
near the spinodal point of the discontinuous yielding and
Scut ∼ |γYc − γ|−4/3 near the critical point.

These results for the scaling behavior near the spinodal
point and near the critical point are identical to those obtained
for the RFIM quasi-statically driven at zero temperature
within the mean-field theory (2). In the correspondence
between yielding of an amorphous solid and hysteresis of
the RFIM, the discontinuous yielding corresponds to the
discontinuous jump of the magnetization that takes place
for weak disorder, the continuous yielding with an overshoot
is analog to the smooth behavior of the magnetization
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found for strong disorder, and the critical point at γ = γYc
is the counterpart of the critical point of the RFIM and
corresponds to plain old criticality (3). Note that the case
of a monotonic yielding curve has no counterpart in the RFIM.

Exact solution in the exponential case
The above general analysis is supported by the explicit

solution of the model for a specific choice of the distribution
g(x) and setting 2µ2 = 1. This solution is shown in Fig. 1
(main text) and Fig. 1.

To obtain the solution of the mean-field equation for Pγ(x)
[Eq. (1) of the main text], it is convenient to introduce the
auxiliary variable y such that

dy

dγ
= 1

1− xcPγ(0) .

This variable plays the role of the so-called plastic strain in
elasto-plastic models. One then easily derives that the solution
satisfies

Py(x) = P0(x+ y) +
∫ x+y

x

dy′g(y′)Px+y−y′(0) , [9]

where Py(x) ≡ Pγ(y)(x) and

γ(y) = y − xc
∫ y

0
dy′Py′(0) . [10]

Rather than pursuing formal developments, we illustrate the
solution for the special case where the distribution g(x) is
exponential:

g(x) = 1
x̄
e−x/x̄ .

The solution of Eq. (9) is now easily found to be

Py(x) = P0(x+ y) + 1
x̄
e−

x
x̄

∫ y

0
dy′P0(y′) . [11]

One is more specifically interested by the macroscopic stress
〈σ〉 and Pγ(0). For a given initial distribution P0(x), they can
be obtained from parametric plots of the following equations:

γ(y) = y − xc
x̄

[∫ y

0
dy′(y − y′ + x̄)P0(y′)

]
,

〈σ〉(y) = y

[
1−

∫ y

0
dy′P0(y′)

]
+
∫ y

0
dy′(y′ − x̄)P0(y′),

Py(0) = P0(y) + 1
x̄

∫ y

0
dy′P0(y′) .

[12]
The above expressions are valid for any initial distribution
P0(x) that satisfies some constraints (on top of normalization):
(i) for γ = 0 we have 〈σ〉 = 0, setting σth = 1 this imposes
that

∫∞
0 dxxP0(x) = 1, (ii) the slope of 〈σ〉 versus γ is positive

at the origin, leading to P0(0) < 1/x̄. Finally, note that by
construction xc < x̄, and from the physical requirement that
〈σ〉(y →∞) > 0 one must have x̄ < 1.

It is straightforward to show that the above solution be-
haves near the spinodal point and the critical point exactly as
predicted by the preceding general analysis. Furthermore, to
illustrate the outcome of the mean-field description of yielding
in the main text we have chosen for P0(x) a combination of
two exponential functions,

Pγ=0(x) =
(
e−x/A − e−x/(1−A)) /(2A− 1) , [13]

which has the merit of having only a single control parameter,
A (with 1/2 < A < 1), which characterizes in the model the
degree of annealing of the glass sample.

Simulation methods

We consider a three-dimensional atomistic model with a contin-
uous size polydispersity, where the particle diameter d of each
particle is randomly drawn from the following particle-size
distribution: f(d) = Cd−3 for d ∈ [dmin, dmax], where C is a
normalization constant. We choose a polydispersity parameter
δ =

√
d2 − d2

/d = 0.23, where (· · · ) =
∫
f(d)(· · · )dd, with

dmin/dmax = 0.45. We use d as the unit length. We simulate
systems composed of N particles in a cubic cell of volume V
with periodic boundary conditions (4). The following pairwise
soft-sphere potential is used:

vij(r) = v0

(
dij
r

)12
+ c0 + c1

(
r

dij

)2

+ c2

(
r

dij

)4

,

with
dij = (di + dj)

2 (1− 0.2|di − dj |),

where v0 is the unit of energy. Nonadditivity of the diameters
is introduced for convenience, as it prevents crystallization
more efficiently and thus enhances the glass-forming ability of
the numerical model. The constants, c0, c1 and c2, are chosen
so that the first and second derivatives of vij(r) become zero
at the cut-off rcut = 1.25dij . We set the number density
ρ = N/V = 1.02.

We employ a swap Monte-Carlo method (5). This approach
is a very efficient thermalization algorithm which enables us
to obtain very deep supercooled liquids. Details concerning
these efficient simulations are provided in Ref. (5). To perform
the quench of the system down to zero temperature, we use a
conjugate-gradient method (6).

The athermal quasi-static shear method (7, 8) consists of a
succession of tiny uniform shear deformations with ∆γ = 10−4

followed by energy minimization via the conjugate-gradient
method. We perform these simulations using Lees-Edwards
boundary conditions (4). We have varied ∆γ systematically
from ∆γ = 10−3 to ∆γ = 3 × 10−6 for some N = 12000
samples at Tini = 0.062 and found that below ∆γ = 3× 10−4,
the location of yielding hardly changes. Thus we conclude
that ∆γ = 10−4 is a good choice for our purpose.

To obtain the averaged value 〈(· · · )〉 in simulations, we
average over 800, 400, 200, 100, 100, 50, and 25−50 samples for
N = 1500, 3000, 6000, 12000, 24000, 48000, and 96000 systems,
respectively.

Glass preparation

We summarize our glass preparation in the potential energy
e versus temperature T plot of Fig. 2. Thanks to the swap
Monte Carlo simulation, we can equilibrate supercooled liquids
down to, and even below, the estimated experimental glass
transition temperature Tg = 0.072 (5). To prepare the glass
samples to be sheared in athermal quasi-static conditions, we
rapidly quench equilibrated supercooled liquid configurations
down to zero temperature by using the conjugate-gradient
method (6).
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Fig. 2. Potential energy of equilibrium supercooled liquids (circles) and associated
glass states (diamonds). The dashed lines illustrate the rapid quench from the liquid
states at Tini to the corresponding glass states. The arrows denote representative
reference temperatures: Onset of slow dynamics Tonset, mode-coupling crossover
Tmct, and experimental glass-transition temperature estimated from the parabolic
law (9) (see the details in Ref. (5)). This plot illustrates the unprecedented range of
glass stability achieved in the present work.

Non-affine displacements

Here we explain the definition of the non-affine displace-
ment used in the color bar of the snapshots (main text) and
movies (SI). The position of the i-th particle at the strain
γ is ri(γ) = (xi(γ), yi(γ), zi(γ)). We introduce the modified
position obtained by subtracting the displacement due to affine
deformation: rNA

i (γ) = (xNA
i (γ), yi(γ), zi(γ)), where

xNA
i (γ) = xi(γ)−

∫ γ

0
dγ′yi(γ′). [14]

Trivially, we get rNA
i (0) = ri(0). We then define the non-affine

displacement as |rNA
i (γ)−ri(0)|, which we use to detect mobile

regions in snapshots and movies.

Stress and overlap

Derivative of the stress
To compute χcon = −d〈σ〉/dγ, direct numerical differ-

entiation of 〈σ〉 with respect to γ is too noisy as there are
significant fluctuations between two successive data points
separated by the small chosen interval ∆γ. Thus, we first
smooth the data by averaging over 10 adjacent data points.
We also perform the same smoothing procedure for the
variance, χdis = N(〈σ2〉 − 〈σ〉2). We have checked that our
conclusions do not change when choosing the number of
adjacent data points in the range between 5 and 20. For
each averaged data point k, we compute the derivative via
(d〈σ〉/dγ)k = (〈σ〉k+1 − 〈σ〉k−1)/(γk+1 − γk−1). We show the
result for the lowest preparation temperature in Fig. 3. Simi-
larly to the disconnected susceptibility χdis shown in the main
text, χcon has a peak and it steadily grows with increasing N ,
which supports the existence of a sharp first-order yielding
transition in the thermodynamic limit. Note that χpeak

con and
χpeak

dis increase as
√
N and N , respectively as shown in the inset

of Fig. 3 and inset of Fig. 2E (main text), which is a signa-
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Fig. 3. The derivative of 〈σ〉 with respect to γ for Tini = 0.062. Inset: The
divergence of the maximum of χcon is proportional to

√
N shown with the straight

line.

ture of a first-order transition in the presence of a random field.

Analysis in terms of the overlap
In the main text, we use the stress σ to discuss the nature of

yielding. A very similar conclusion is reached by using instead
the overlap function. The collective overlap q is defined as (10):

q(γ) = 1
N

∑
i,j

θ(a− |rNA
i (γ)− rj(0)|), [15]

where θ(x) is the step function. We have set a = 0.23. Note
that we have also analyzed the “self” version of Eq. (15) (where
the sum is over a single particle), but the difference between
the self and collective functions is found to be negligible.

As shown in Fig. 4, we observe a sharp drop of 〈q〉 (Fig. 4(a))
and the associated divergence of χdis (Fig. 4(b)) and χcon
(Fig. 4(c)). Finally, we also find that χdis ∝ χ2

con around and
below Tini,c as predicted for an Ising model in a random field
(Fig. 4(d)).

It has been recently argued that the finite-size effect of 〈q〉 is
always a signature of a discontinuous yielding transition (11).
At variance with this claim, we show here that a different
finite-size behavior is observed at higher Tini where yielding is
simply a smooth crossover. We display the system-size depen-
dence of 〈σ〉 and 〈q〉 for Tini = 0.120 and 0.200 in Figs. 5(a-d).
Clearly, 〈q〉 has a stronger dependence on system size than
〈σ〉 for the sizes studied. A possible explanation for this fact
is that the relative change of 〈q〉 during yielding (from 1 to
nearly 0) is much larger than that of 〈σ〉 (from the maximum
stress to the steady state value). Nonetheless, as shown by the
behavior of the maximum of the susceptibilities χcon and χdis
in Fig. 5(e), χpeak

con and χpeak
dis are suppressed significantly for

high Tini. Furthermore, the growth of χpeak
con with N tends to

saturate at large system size, thereby indicating that yielding
is a mere crossover above the critical point. The same behav-
ior is therefore found with the stress and the overlap order
parameters.

Avalanche statistics

Determination of the stress drops
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The athermal quasi-static shear simulation consists of dis-
crete steps, producing a sequence of values of the stress, σi
(i = 1, 2, · · · ). To obtain a precise determination of the stress
drops, the back-tracking method that proceeds by reducing
∆γ around each stress drop is often used (12). However, this
method is computationally demanding because of the iterative
back-trackings. In this paper we use an alternative way to
determine the stress drops precisely with fixed ∆γ (13). We
define the i-th stress drop by

∆σi = σi − (σi−1 + µ∆γ), [16]

where µ is the locally determined shear modulus (13). In the
above equation, σi−1 + µ∆γ is what the stress would be after
the strain increment ∆γ if there were no stress drop.

We define a threshold for the stress drops as
∆σ = −c/N (14). We use c = 0.1. We have checked
that the scaling behavior does not change in a range between
c = 0.03 and 3.

Avalanche-size distribution and mean size
We define the avalanche size S in terms of the stress drop

through S = N |∆σ| (15). We measure the distribution P(S)
for a given interval of γ to see the effect of yielding on the
avalanche behavior (12, 16). In Fig. 6 we show P(S) for
temperatures above (Tini = 0.120) and below (Tini = 0.062)
the critical point, and in each case for deformations before
and after yielding. After yielding (γ ∈ [0.20, 0.30]) for both
Tini = 0.062 and 0.120 (see Figs. 6(b) and (d)), P(S) behaves
as a power-law with a system-size dependent cutoff Scut,

P(S) ∼ S−τf(S/Scut), [17]
Scut ∼ Ndf/d, [18]

where f(x) is a monotonically decreasing function and df is a
fractal dimension. We find that a scaling collapse of the data
can be obtained with Eqs. (17) and (18) with τ ≈ 1.2 and
df ≈ 1.5 for this steady-state regime, where the effect of the
initial condition has disappeared. These values of τ and df
are compatible with other studies (17).

Interestingly, a qualitatively different behavior is observed
for Tini = 0.062 and 0.120 before yielding (see Figs. 6(a) and
(c)). For Tini = 0.062 a significant suppression of the mean
value and of the finite-size dependence is found. In Fig. 6(a)
we show two strain intervals to see the evolution of P(S) when
approaching yielding. P(S) extends to higher S values while
keeping the power-law exponent τ ≈ 1.2.

The mean avalanche size 〈S〉 contains essential informa-
tion to determine the pseudo-gap exponent θ. According to
Refs. (18, 19), the system-size dependence of 〈S〉 scales as

〈S〉 ∼ N
θ

1+θ , [19]

at least away from a critical point where the connected sus-
ceptibility diverges with system size (20). (This additional
divergence, however, has no consequence for the way we nu-
merically determine the exponent θ.) This scaling behavior
has been confirmed both in steady-state conditions (18) and
before yielding (19). We show 〈S〉 versus N as a function
of the interval of γ for Tini = 0.062 and 0.120 in Fig. 7. To
compute 〈S〉 we remove the largest stress drop, ∆σmax. We
can see how 〈S〉 approaches the known asymptotic behav-
ior, 〈S〉 ∼ N1/3 (12, 16). Whereas the data for Tini = 0.120
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Fig. 6. Distribution of the avalanche size S. Top: Before (a) and after (b) yielding
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essentially follow the same scaling behavior N1/3 from the
beginning of shearing, those for Tini = 0.062 appear roughly
constant at small deformation up to very large system sizes.

Marginality of the sheared glass

As shown in the main text, for well annealed glasses, a dis-
continuous yielding transition separates two distinct regimes.
The behavior of the individual samples illustrated in Fig. 2(a)
(main text) reveals that the statistics of stress drops is qual-
itatively different before and after yielding, with fewer and
smaller stress drops taking place before yielding. Larger (yet
not macroscopic) stress drops seem to appear before yielding
as Tini increases. Lin et al. have recently predicted that an
amorphous material quasi-statically sheared at zero tempera-
ture in a strain-controlled protocol is marginal at all values
of the strain (19). The physical reason is the presence of a
pseudo-gap in the density of elementary excitations, which
means that the distribution Pγ(x) introduced above behaves
as Pγ(x) ∼ xθ at x → 0, where θ > 0 is an exponent that
depends on the strain and reaches a well studied steady-state
value (θ ≈ 0.5− 0.6 in 3d (12, 17)). This marginality implies
a scale-free distribution of avalanche sizes and, in particular,
a scaling of the average stress drop as (18, 19, 21) (see also
the comment below Eq. (19))

N〈∆σ〉 ∼ Nθ/(1+θ). [20]

We have performed a careful analysis of the stress-drop
statistics and used Eq. (20) to extract the exponent θ as a
function of γ and Tini. As expected from the above qualitative
observations, we observe that θ takes different values before
and after yielding (it is smaller before yielding) and that it
depends strongly on the preparation temperature Tini before
yielding (it is smaller for more stable glasses) (12, 16, 19): see
Fig. 8. We always find θ > 0, which implies that all the states
that we can access display system-spanning plastic events
leading to a nontrivial size dependence of the stress drops.
However, for the most stable glasses, θ becomes very small
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Fig. 7. Mean avalanche size versus N as a function of the interval of γ for Tini =
0.062 (a) and 0.120 (b). (a): The upper and lower straight lines correspond to 〈S〉 ∼
N1/3 and N0, respectively. (b): Both straight lines correspond to 〈S〉 ∼ N1/3.

at small deformation, θ ∼ 0.1, indicating that criticality is
very weak in these samples, which are thus very close to being
perfect elastic solids (16).

These findings fit well in our analysis, since we expect
the discontinuous yielding transition to be associated with
a discontinuous variation of θ (16, 22) across yielding. Our
data for the lowest Tini are consistent with this expectation.
The discontinuous jump of θ can be evinced if θ is measured
together with γ − γY , where γY is the location of ∆σmax
determined for each sample. Determining θ as a function of
the fluctuating distance to yielding, as shown in the inset of
Fig. 8, provides strong support for a discontinuity in θ at
low Tini. By contrast, θ evolves smoothly with γ toward its
steady-state value for large Tini. Interestingly, between these
two extreme situations, for the two intermediate temperatures
close to the critical point, Tini = 0.085 and Tini = 0.100,
the value of θ changes rapidly in the region of the yielding
transition where it passes through a large maximum. The
latter arises due to the large fluctuations of the stress drops,
likely associated with the criticality analyzed in the main text.
This behavior provides additional evidence for the presence of
an annealing-controlled random critical point.
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Fig. 8. Critical exponent θ versus strain γ for various degrees of annealing. The
inset show θ measured as a function of the fluctuating distance to yielding γY for
Tini = 0.062, which displays a clear discontinuous jump at yielding.

Importance of rare fluctuations

An important consequence of the scenario proposed to account
for the brittle yielding phase is that it is similar to the physics of
spinodal instabilities in the presence of quenched disorder and
finite dimensions, a situation recently explored in the context
of the RFIM (23). A key aspect is the crucial role played
by rare regions of the sample that may trigger the instability.
As a result, very large finite-size effects are expected. It is
possible to investigate the influence of these rare fluctuations
numerically, by inserting in the sample "defects" or "seeds"
that would otherwise be rare if spontaneously nucleated. For
the present paper we simply report the following preliminary
numerical experiment.

To create a defect (soft region) of a given geometry and size
inside a well-annealed glass sample prepared at a temperature
Tini = 0.062, we reheat by Monte Carlo simulation the parti-
cles belonging to the defect at a high temperature T = 0.3,
leaving fixed the position of all other particles, as illustrated
in Fig. 9(a). After this step, the system is quenched down to
zero temperature again by the conjugate-gradient method. We
then use these glass samples with a defect as initial condition
for the deformation protocol conducted as before. We typically
find that the presence of such a defect shifts the location of
the yielding transition. This is illustrated in Fig. 9(b), where
we show the stress-strain curve for a seed of L/2×L/2× 2 flat
plate inside a sample of volume V = L3. Our data suggest that
as one increases the system size, the location of the yielding
transition changes, in qualitative agreement with the analysis
in Ref. (23). More work along these lines is in progress.

Movies

Five movies of some representative samples are available online.
The sample size isN = 96000. The color bar corresponds to the
non-affine displacement from the origin, |rNA

i (γ)− ri(0)|, and
we show four preparation temperatures. The corresponding
stress-strain curves for all movies are shown in Fig. 10.

1) Tini0062.mp4 The preparation temperature is Tini =
0.062, and the system has a sharp discontinous yielding tran-
sition.
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Fig. 9. (a) A snapshot (N = 24000) describing the idea of inserting a defect (here
an essentially planar seed of size L/2× L/2× 2) of poorly annealed material (red
particles) inside a well annealed sample (blue particles with decreased diameter).
The defect is inserted with its short side perpendicular to the shear direction. (b) Shift
of the yielding transition for a defect of L/2× L/2× 2 inserted in glass samples of
increasing system size at Tini = 0.062. The original (without defect) stress-strain
curves for N = 12000− 96000 are shown in grey.
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Fig. 10. Stress-strain curves for the samples shown in the movies. For Tini =
0.100 we show two samples with relatively brittle (Sample 1) and ductile (Sample 2)
behaviors.

2) Tini0100_sample1.mp4 The preparation temperature is
Tini = 0.100, close to the critical point, and the system has a
sharp discontinous yielding transition.

3) Tini0100_sample2.mp4 The preparation temperature is
Tini = 0.100, close to the critical point and the system has a
smooth ductile yielding transition.

4) Tini0120.mp4 The preparation temperature is Tini =
0.120, and the system has a smooth stress overshoot.

5) Tini0200.mp4 The preparation temperature is Tini =
0.200, and the system has a monotonic stress strain curve.

1. Jagla EA, Landes FP, Rosso A (2014) Viscoelastic effects in avalanche dynamics: A key to
earthquake statistics. Physical review letters 112(17):174301.

2. Dahmen K, Sethna JP (1996) Hysteresis, avalanches, and disorder-induced critical scaling:
A renormalization-group approach. Physical Review B 53(22):14872.
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