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Glossary

We start with a few concise definitions of the most
important concepts discussed in this entry.

Glass transition For molecular liquids, the
glass transition denotes a crossover from a
viscous liquid to an amorphous solid. Experi-
mentally, the crossover takes place at the glass

temperature, Tg, conventionally defined as the
temperature where the liquid’s viscosity
reaches the arbitrary value of 1012 Pa.s. The
glass transition more generally applies to many
different condensed matter systems where a
crossover or, less frequently, a true phase tran-
sition takes place between an ergodic phase
and a frozen, amorphous glassy phase.

Aging In the glass phase, disordered materials
are characterized by relaxation times that
exceed common observation timescales, so
that a material quenched in its glass phase
never reaches equilibrium (neither a metastable
equilibrium). It exhibits instead an aging
behavior during which its physical properties
keep evolving with time.

Dynamic heterogeneity Relaxation spectra of
dynamical observables, for example, the
dynamical structure factor, are very broad in
supercooled liquids. This is associated to a
spatial distribution of timescales: at any given
time, different regions in the liquid relax at
different rates. Since the supercooled liquid is
ergodic, slow regions eventually become fast,
and vice versa. Dynamic heterogeneity refers
to the existence of these nontrivial spatiotem-
poral fluctuations in the local dynamical
behavior, a phenomenon observed in virtually
all disordered systems with slow dynamics.

Effective temperature An aging material relaxes
very slowly, trying (in vain) to reach its equilib-
rium state. During this process, the system pro-
bes states that do not correspond to
thermodynamic equilibrium, so that its thermo-
dynamic properties cannot be rigorously defined.
Any practical measurement of its temperature
becomes a frequency-dependent operation.
A “slow” thermometer tuned to the relaxation
timescale of the aging system measures an effec-
tive temperature corresponding to the ratio
between spontaneous fluctuations (correlation)
and linear response (susceptibility). This corre-
sponds to a generalized form of the fluctuation-
dissipation theorem for off-equilibrium
materials.
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Frustration Impossibility of simultaneously
minimizing all the interaction terms in the
energy function of the system. Frustration
might arise from quenched disorder (as in the
spin glass models), from competing interac-
tions (as in geometrically frustrated magnets),
or from competition between a “locally pre-
ferred order,” and global, for example, geomet-
ric, constraints (as in hard spheres packing
problems).

Marginal Stability Systems are marginally sta-
ble when the number of external inputs con-
trolling their stability is just enough to
constrain all their degrees of freedom (think
of a table with three legs). Marginally stable
systems display an excess of zero-energy
modes which makes them highly susceptible
to external perturbations, and prone to exten-
sive rearrangements.

Definition of the Subject

Glasses belong to a seemingly well-known state
of matter: we easily design glasses with desired
mechanical or optical properties on an industrial
scale, and they are widely present in our daily life.
Yet, a deep microscopic understanding of the
glassy state of matter remains a challenge for
condensed matter physicists (Angell 1995;
Debenedetti and Stillinger 2001; Berthier and
Biroli 2011). Glasses share similarities with crys-
talline solids (they are both mechanically rigid),
but also with liquids (they both have similar dis-
ordered structures at the molecular level). It is
mainly this mixed character that makes them fas-
cinating objects, even to nonscientists.

A glass can be obtained by cooling the temper-
ature of a liquid below its glass temperature, Tg.
The quench must be fast enough, such that the
more standard first-order phase transition toward
the crystalline phase is avoided. The glass “tran-
sition” is not a thermodynamic transition at all,
since Tg is only empirically defined as the temper-
ature below which the material has become too
viscous to flow on a “reasonable” timescale (and it
is hard to define the word “reasonable” in any
reasonable manner). Therefore, Tg cannot play a

very fundamental role, as a phase transition tem-
perature would. It is simply the temperature below
which the material looks solid on the timescale of
the observer. When quenched in the glass phase
below Tg, liquids slowly evolve toward an equi-
librium state they will never reach on experimen-
tal timescales. Physical properties are then found
to evolve slowly with time in far from equilibrium
states, a process known as “aging” (Struik 1977).

Describing theoretically and quantifying
experimentally the physical mechanisms respon-
sible for the viscosity increase of liquids
approaching the glass transition and for aging
phenomena below the glass transition certainly
stand as central open challenges in condensed
matter physics. Since statistical mechanics aims
at understanding the collective behavior of large
assemblies of interacting objects, it comes as no
surprise that it is a central tool in the glass field.
We shall therefore summarize the understanding
gained from statistical mechanics perspectives
into the problem of glasses and aging.

The subject has quite broad implications.
A material is said to be “glassy” when its typical
relaxation timescale becomes of the order of, and
often much larger than, the typical duration of an
experiment or a numerical simulation. Under this
generic definition, a large number of systems can
be considered as glassy (Young 1998). One can be
interested in the physics of liquids (window
glasses are then the archetype), in “hard” con-
densed matter (for instance type II superconduc-
tors in the presence of disorder such as high-Tc
superconductors), charge density waves or spin
glasses, “soft” condensed matter with numerous
complex fluids such as colloidal assemblies,
emulsions, foams, but also granular materials,
proteins, etc. All these materials exhibit, in a part
of their phase diagrams, some sort of glassy
dynamics characterized by a very rich phenome-
nology with effects such as aging, hysteresis,
creep, memory, effective temperatures, rejuvena-
tion, dynamic heterogeneity, and nonlinear
response.

This long list explains why this research field
has received increasing attention from physicists
in the last four decades. “Glassy” topics now go
much beyond the physics of simple liquids (glass
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transition physics), and models and concepts
developed for one system often find applications
elsewhere in physics, from algorithmics to bio-
physics (Bouchaud et al. 2011). Motivations to
study glassy materials are numerous. Glassy
materials are everywhere around us and therefore
obviously attract interest beyond academic
research. At the same time, the glass conundrum
provides theoretical physicists with deep funda-
mental questions since classical tools are some-
times not sufficient to properly account for the
glass state. Moreover, numerically simulating the
dynamics of microscopically realistic material on
timescales that are experimentally relevant
remains a difficult challenge, even with modern
computers.

Studies on glassy materials constitute an excit-
ing research area where experiments, simulations,
and theoretical calculations can meet, and where
both applied and fundamental problems are con-
sidered. How can one observe, understand, and
theoretically describe the rich phenomenology of
glassy materials? What are the fundamental quan-
tities and concepts that emerge from these
descriptions?

The outline of the entry is as follows. In section
“Phenomenology” the phenomenology of glass-
forming liquids is discussed. In section “Taxon-
omy of “Glasses” in Science” different types of
glasses are described. We then describe how com-
puter simulations can provide deep insights into
the glass problem in section “Numerical Simula-
tions.” The issue of dynamic heterogeneity is
tackled in section “Dynamic Heterogeneity.” The
main theoretical perspectives currently available
in the field are then summarized in section “The-
ory of the Glass Transition.” The mean-field anal-
ysis of the amorphous solid phase is reviewed in
section “Mean-Field Theory of the Amorphous
Phase.” In section “New Computational
Methods,” we discuss novel developments in
computational studies. Aging and off-equilibrium
phenomena occupy section “Aging and Off-
Equilibrium Dynamics.” Finally, issues that
seem important for future research are discussed
in section “Future Directions.”

Phenomenology

Basic Facts
A vast majority of liquids (molecular liquids,
polymeric liquids, etc.) form a glass if cooled
fast enough in order to avoid the crystallization
transition (Angell 1995). Typical values of
cooling rate in laboratory experiments are
0.1–100 K/min. The metastable phase reached in
this way is called “supercooled liquid.” In this
regime the typical timescales increase in a dra-
matic way and they end up to be many orders of
magnitudes larger than microscopic timescales at
Tg, the glass transition temperature.

For example, around the melting temperature
Tm, the typical timescale Tα on which density
fluctuations relax is of the order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ma2=KBT

p
,

which corresponds to few picoseconds (m is the
molecular mass, T the temperature, Kb the
Boltzmann constant, and a is a typical distance
between molecules). At Tg, which as a rule of
thumb is about 2

3
Tm, this timescale tα has become

of the order of 100 s, that is, 14 orders of magni-
tude larger! This phenomenon is accompanied by
a concomitant increase of the shear viscosity �.
This can be understood by a simple Maxwell
model in which � and t are related by
� ¼ G1tα, where G1 is the instantaneous
(elastic) shear modulus which does not vary con-
siderably in the supercooled regime. In fact, vis-
cosities at the glass transition temperature are of
the order of 1012 Pa.s. In order to grasp how
viscous this is, recall that the typical viscosity of
water (or wine) at ambient temperature is of the
order of 10�2 Pa.s. How long would one have to
wait to drink a glass of wine with a viscosity 1014

times larger?
As a matter of fact, the temperature at which

the liquid does not flow anymore and becomes an
amorphous solid, called a “glass,” is protocol
dependent. It depends on the cooling rate and on
the patience of the person carrying out the exper-
iment: solidity is a timescale-dependent notion.
Pragmatically, Tg is defined as the temperature at
which the shear viscosity is equal to 1013 Poise
(also 1012 Pa.s).
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The increase of the relaxation timescale of
supercooled liquids is remarkable not only
because of the large number of decades involved
but also because of its temperature dependence.
This is vividly demonstrated by plotting the loga-
rithm of the viscosity (or of the relaxation time) as
a function of Tg/T, as in Fig. 1. This is called the
“Angell” plot (Angell 1995), which is very help-
ful in classifying supercooled liquids. A liquid is
called strong or fragile depending on its position
in the Angell plot. Straight lines correspond to
“strong” glass-formers and to an Arrhenius
behavior. In this case, one can extract from the
plot an effective activation energy, suggesting
quite a simple mechanism for relaxation, for
instance by “breaking” locally a chemical bond.
The typical relaxation time is then dominated by
the energy barrier to activate this process and,
hence, has an Arrhenius behavior. Window
glasses fall in this category. (The terminology
“strong” and “fragile” is not related to the
mechanical properties of the glass but to the evo-
lution of the short-range order close to Tg. Strong
liquids, such as SiO2, have a locally tetrahedric
structure which persists both below and above the
glass transition contrary to fragile liquids whose
short-range amorphous structure disappears rap-
idly upon heating above Tg.) If one tries to define
an effective activation energy for fragile glass-
formers using the slope of the curve in Fig. 1,
then one finds that this energy scale increases
when the temperature decreases, a “super-
Arrhenius” behavior. This increase of energy bar-
riers immediately suggests that glass formation is
a collective phenomenon for fragile supercooled
liquids. Support for this interpretation is provided
by the fact that a good fit of the relaxation time or
the viscosity is given by the Vogel-Fulcher-
Tamman law (VFT):

ta ¼ t0 exp
DT 0

T � T0ð Þ
� �

, ð1Þ

which suggests a divergence of the relaxation
time, and therefore a phase transition of some
kind, at a finite temperature T0. A smaller D in
the VFT law corresponds to a more fragile glass.
Note that there are other comparably good fits of

these curves, such as the Bässler law (Bässler
1987),

ta ¼ t0 exp K
T�
T

� �2
� �

, ð2Þ

that only lead to a divergence at zero temperature.
Actually, although the relaxation time increases
by 14 orders of magnitude, the increase of its
logarithm, and therefore of the effective activation
energy is very modest, and experimental data do
not allow one to unambiguously determine the
true underlying functional law without any rea-
sonable doubt. For this and other reasons, physi-
cal interpretations in terms of a finite temperature
phase transition must always be taken with a grain
of salt.

However, there are other experimental facts
that shed some light and reinforce this interpreta-
tion. Among them is an empirical connection
found between kinetic and thermodynamic behav-
iors. Consider the part of the entropy of liquids,

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 1 Arrhenius plot of the viscosity of several
glass-forming liquids approaching the glass temperature Tg
(Debenedetti and Stillinger 2001). For “strong” glasses, the
viscosity increases in an Arrhenius manner as temperature
is decreased, log � ~ E/(KBT ), where E is an activation
energy and the plot is a straight line, as for silica. For
“fragile” liquids, the plot is bent and the effective activation
energy increases when T is decreased toward Tg, as for
ortho-terphenyl
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Sexc, which is in excess compared to the entropy of
the corresponding crystal. Once this quantity, nor-
malized by its value at the melting temperature, is
plotted as a function of T, a remarkable connection
with the dynamics emerges. As for the relaxation
time one cannot follow this curve below Tg in
thermal equilibrium. However, extrapolating the
curve below Tg apparently indicates that the
excess entropy vanishes at some finite tempera-
ture, called TK, which is very close to zero for
strong glasses and, generically, very close to T0,
the temperature at which a VFT fit diverges. This
coincidence is quite remarkable: for materials
with glass transition temperatures that vary from
50 K to 1000 K the ratio TK/T0 remains close to 1,
up to a few percent. Examples reported in Richert
and Angell (1998) are provided in Table 1.

The chosen subscript for TK stands for
Kauzmann (1948), who recognized TK as an
important temperature scale for glasses.
Kauzmann further claimed that some change of
behavior (phase transition, crystal nucleation,
etc.) must take place above TK, because below
TK the entropy of the liquid, a disordered state of
matter, becomes less than the entropy of the crys-
tal, an ordered state of matter. The situation that
seemed paradoxical at that time is actually not a
serious conceptual problem (Berthier and Biroli
2011; Berthier et al. 2019a). There is no general
principle that constrains the entropy of the liquid
to be larger than that of the crystal. As a matter of
fact, the crystallization transition for hard spheres
takes place precisely because the crystal becomes
the state with the largest entropy at sufficiently
high density (Hołyst 2001).

On the other hand, the importance of TK stands,
partially because it is experimentally very close to
T0. Additionally, the quantity Sexc which vanishes
at TK is thought to be a proxy for the so-called

configurational entropy, Sc, which quantifies the
number of metastable states. A popular physical
picture due to Goldstein (1969) is that close to Tg
the system explores a part of the energy landscape
(or configuration space) which is full of minima
separated by barriers that increase when tempera-
ture decreases. The dynamic evolution in the
energy landscape would then consist in a rather
short equilibration inside a minimum followed by
infrequent “jumps” between different minima. At
Tg the barriers between states become so large that
the system remains trapped in one minimum,
identified as one of the possible microscopic
amorphous configurations of a glass. Following
this interpretation, one can split the entropy into
two parts. A first contribution is due to the fast
relaxation inside one minimum and a second one,
called the “configurational” entropy, counts the
number of metastable states: Sc ¼ log Nmetastable.
Assuming that the contribution to the entropy due
to the “vibrations” around an amorphous glass
configuration is not very different from the
entropy of the crystal, one finds that Sexc ≈ Sc. In
that case, TKwould correspond to a temperature at
which the configurational entropy vanishes. This
in turn would lead to a discontinuity (a downward
jump) of the specific heat and would truly corre-
spond to a thermodynamic phase transition.

Static and Dynamic Correlation Functions
At this point the reader might have reached the
conclusion that the glass transition may not be
such a difficult problem: there are experimental
indications of a diverging timescale and a con-
comitant singularity in the thermodynamics. It
simply remains to find static correlation functions
displaying a diverging correlation length related
to the emergence of “amorphous order,” which
would indeed classify the glass transition as a

A Statistical Mechanics Perspective on Glasses and Aging, Table 1 Values of glass transition temperature, VFT
singularity and Kauzmann temperatures for four supercooled liquids (Richert and Angell 1998)

Substance o-terphenyl 2-methyltetra-hydrofuran n-propanol 3-bromopentane

Tg 246 91 97 108

T0 202.4 69.6 70.2 82.9

TK 204.2 69.3 72.2 82.5

TK/T0 1.009 0.996 1.028 0.995

A Statistical Mechanics Perspective on Glasses and Aging 5



standard second-order phase transition. Remark-
ably, this conclusion remains an open and debated
question despite several decades of research. Sim-
ple static correlation functions are quite feature-
less in the supercooled regime, notwithstanding
the dramatic changes in the dynamics. A simple
static quantity is the structure factor defined by

S qð Þ ¼ 1

N
drqdr�q

D E
, ð3Þ

where the Fourier component of the density reads

drq ¼
XN
i¼1

eiq:ri � N
V
dq,0, ð4Þ

with N the number of particles, V the volume, and
ri the position of particle i. The structure factor
measures the spatial correlations of particle posi-
tions, but it does not show any diverging peak in
contrast to what happens, for example, at the
liquid-gas critical point where there is a diver-
gence at small q. More complicated static corre-
lation functions have been studied (Debenedetti
1996), especially in numerical work, but until now
there are no strong indications of a diverging, or at
least substantially growing, static lengthscale
(Menon and Nagel 1995; Fernández et al. 2006;
Cavagna et al. 2007). A snapshot of a supercooled
liquid configuration in fact just looks like a glass
configuration, despite their widely different
dynamic properties (Berthier et al. 2019a). What
happens then at the glass transition? Is it a transi-
tion or simply a dynamic crossover? A more
refined understanding can be gained by studying
dynamic correlations or response functions.

A dynamic observable studied in light and
neutron scattering experiments is the intermediate
scattering function,

F q, tð Þ ¼ 1

N
drq tð Þdr�q 0ð Þ

D E
: ð5Þ

Different F(q, t) measured by neutron scatter-
ing in supercooled glycerol (Wuttke et al. 1996)
are shown for different temperatures in Fig. 2.
These curves show a first, rather fast, relaxation
to a plateau followed by a second, much slower,

relaxation. The plateau is due to the fraction of
density fluctuations that are frozen on intermedi-
ate timescales, but eventually relax during the
second relaxation. The latter is called “alpha-
relaxation,” and corresponds to the structural
relaxation of the liquid. This plateau is akin to
the Edwards-Anderson order parameter qEA
defined for spin glasses, which measures the frac-
tion of frozen spin fluctuations (Binder and Kob
2011). Note that qEA continuously increases from
zero at the spin glass transition. Instead, for struc-
tural glasses, a finite plateau value already appears
above any transition.

The intermediate scattering function can be
probed only on a relatively small regime of tem-
peratures. In order to track the dynamic slowing
down from microscopic to macroscopic time-
scales, other correlators have been studied.
A popular one is obtained from the dielectric
susceptibility, which is related by the fluctuation-
dissipation theorem to the time correlation of
polarization fluctuations. It is generally admitted
that different dynamic probes reveal similar tem-
perature dependencies of the relaxation time. The
temperature evolution of the imaginary part of the
dielectric susceptibility, ϵ00(o), is shown in Fig. 3,
which covers a very wide temperature window
(Pardo et al. 2007). At high temperature, a good
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 2 Temperature evolution of the intermediate
scattering function normalized by its value at time equal to
zero for supercooled glycerol (Wuttke et al. 1996). Tem-
peratures decrease from 413 K to 270 K from right to left.
The solid lines are fit with a stretched exponential with
exponent β ¼ 0.7. The dotted line represents another fit
with β ¼ 0.82
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representation of the data is given by a Debye law,
ϵ(o)¼ ϵ(1)þ Δϵ/(1þ iotα), which corresponds
to an exponential relaxation in the time domain.
When temperature is decreased, however, the
relaxation spectra become very broad and
strongly non-Debye. One particularly well-
known feature of the spectra is that they are well
fitted, in the time domain, for times corresponding
to the alpha relaxation with a stretched exponen-
tial, exp(�(t/tα)

β). In the Fourier domain, forms
such as the Havriliak-Negami law are used,
ϵ(o) ¼ ϵ(1) þ Δϵ/(1 þ (iotα)

α)γ, which general-
ize the Debye law. The exponents β, α, and γ
depend in general on temperature and on the par-
ticular dynamic probe chosen, but they capture the
fact that relaxation is increasingly non-
exponential when T decreases toward Tg.
A connection was empirically established
between fragility and degree of non-
exponentiality, more fragile liquids being charac-
terized by broader relaxation spectra (Debenedetti
and Stillinger 2001).

To sum up, there are many remarkable phe-
nomena that take place when a supercooled liquid
approaches the glass transition. Striking ones have
been presented, but many others have been left out
for lack of space (Angell 1995; Debenedetti and
Stillinger 2001; Debenedetti 1996; Binder and
Kob 2011; Berthier and Ediger 2016). We have
discussed physical behaviors, relationships, or
empirical correlations observed in a broad class
of materials. This is quite remarkable and suggests
that there is some physics (and not only chemis-
try) to the problem of the glass transition, which
we see as a collective (critical?) phenomenon
which should be relatively independent of micro-
scopic details. This justifies our statistical
mechanics perspective on this problem.

Taxonomy of “Glasses” in Science

We now introduce a wider range of systems whose
phenomenological behavior is close or related to the
one of glass-forming liquids, showing that

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 3 Temperature evolution of the dielectric
susceptibility of the glass-former benzophenone measured
over more than 10 decades of relaxation times (Pardo et al.

2007). Dynamics slows down dramatically as temperature
is decreased and relaxation spectra become very broad at
low temperature

A Statistical Mechanics Perspective on Glasses and Aging 7



glassiness is truly ubiquitous. It does not only appear
in many different physical situations but also in
more abstract contexts, such as computer science.

Colloidal Glass Transition
Colloidal suspensions consist of large particles
suspended in a solvent (Larson 1999). The typical
radii of the particles are in the range of R ¼
1–500 nm. The solvent, which is at equilibrium
at temperature T, renders the short-time dynamics
of the particles Brownian. The microscopic time-
scale for this diffusion is given by t¼R2/D, where
D is the short-time self-diffusion coefficient.
A typical value is of the order of t ~ 1 ms, which
is thus much larger than microscopic timescales
for molecular liquids (in the picosecond regime).
The interaction potential between particles
depends on the systems, and this large tunability
makes colloids very attractive objects for techni-
cal applications. A particularly relevant case, on
which we will focus in the following, is a purely
hard sphere potential, which is zero when particles
do not overlap and infinite otherwise. In this case
the temperature scale becomes an irrelevant num-
ber, apart from a trivial rescaling of the micro-
scopic timescale. Colloidal hard sphere systems
have been intensively studied (Larson 1999) in
experiments, simulations, and theory, varying
their density r, or their volume fraction
’ ¼ 4

3
pR3r . Hard spheres display a fluid phase

from ’ ¼ 0 to intermediate volume fractions, a
freezing-crystallization transition at ’ ’ 0.494,
and a melting transition at ’ ’ 0.545. Above
this latter value the system can be compressed
until the close packing point ’ ’ 0.74, which
corresponds to the FCC crystal. Interestingly for
our purposes, a small amount of size polydisper-
sity can suppress crystallization. In this case, the
system can be “supercompressed” above the
freezing transition without nucleating the crystal,
at least on experimental timescales. In this regime
the relaxation timescale increases very fast (Pusey
and VanMegen 1986). At a packing fraction
’g ’ 0.58 � 0.60 it becomes so large compared
to typical experimental timescales that the system
does not relax anymore: it is frozen. This “colloi-
dal glass transition” is obviously reminiscent of

the glass transition of molecular systems. In par-
ticular, the location ’g of the colloidal glass tran-
sition is as ill-defined as the glass temperature Tg.

Actually, the phenomena that take place when
increasing the volume fraction are analogous to
the ones seen in molecular supercooled liquid
when decreasing temperature: the relaxation time-
scales increases very fast and can be fitted (Cheng
et al. 2002; Berthier and Witten 2009) by a VFT
law in density similar to Eq. (1), dynamical cor-
relation functions display a broad spectrum of
timescales and develop a plateau, no static grow-
ing correlation length has been found, etc. Also
the phenomenon of dynamic heterogeneity that
will be addressed in section “Dynamic Heteroge-
neity” is also observed in colloids (Kegel and van
Blaaderen 2000; Weeks et al. 2000). However, it
is important to underline a major difference:
because the microscopic timescale for colloids is
so large, experiments can only track the first five
decades of slowing down. Amajor consequence is
that the comparison between the glass and colloi-
dal transitions must be performed by focusing in
both cases on the first five decades of the slowing
down, which corresponds to relatively high tem-
peratures in molecular liquids (Brambilla et al.
2009). Understanding how much and to what
extent the glassiness of colloidal suspensions is
related to the one of molecular liquids remains an
active domain of research. Recently, by using
colloids of smaller size and hence decreasing the
microscopic timescale t, it has been possible to
explore a larger range of relaxation times (Hallett
et al. 2018). This is a very promising research
direction to explore the colloidal glassy regime.

Jamming Transition
Every day life offers many examples of jammed
solids: grains and beans poured into a container,
foams and emulsions produced by a large shear
stress, sand and colloidal particles under very high
pressure. Depending on how compressed they are,
these materials behave as fluids or solids: a hand-
ful of sand will flow from our open hand, while we
experience rigidity when closing the fist. For-
mally, the jamming transition is reached at infinite
pressure when all the droplets, bubbles, or col-
loids are forced to come into enduring kissing
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contact with one another (Donev et al. 2004,
2005). All these systems share a fundamental
feature: they can be considered athermal in the
sense that thermal fluctuations at room tempera-
ture are, by far, not able to allow the system to
explore its phase space.

As an immediate consequence, the glass and
jamming transitions are of a very different nature.
The former describes a fluid-to-solid transition in
a system controlled by thermal fluctuations, and
its location depends on the cooling or compres-
sion rate. The latter is a purely geometrical tran-
sition happening at T ¼ 0 in the absence of any
dynamics, but it also corresponds to the change
between a viscous liquid to a solid mechanical
response (Liu and Nagel 1998). In recent years,
the connection between the two phenomena has
been elucidated (Charbonneau et al. 2017), and
both transitions can be observed under different
physical conditions in the hard spheres model.

Granular Glass Transition
Driven granular media represent another family of
systems that have recently been studied from the
point of view of their glassiness. Grains are mac-
roscopic objects and, as a consequence, are not
affected by thermal fluctuations. A granular mate-
rial is therefore frozen in a given configuration if
no energy is injected into the system (Jaeger et al.
1996). However, it can be forced in a steady state
by an external drive, such as shearing or tapping.
The dynamics in this steady state shows remark-
able similarities (and differences) with simple
fluids. The physics of granular materials is a
very wide subject (Jaeger et al. 1996). In the
following we only address briefly what happens
to a polydisperse granular fluid at very high pack-
ing fractions. As for colloids, the timescales for
relaxation or diffusion increase very fast when
density is increased, without any noticeable
change in structural properties. It is now
established (D’Anna and Grémaud 2001; Marty
and Dauchot 2005; Keys et al. 2007) that many
phenomenological properties of the glass and
jamming transitions also occur in granular assem-
blies. Going beyond the mere analogy and under-
standing how much colloids and granular

materials are related is a very active domain of
research.

Active Glasses
Active matter has recently emerged as a new field
in physics (Marchetti et al. 2013; Bechinger et al.
2016), fueled by the observation that systems such
as a school fish, bacterial colonies, and biological
tissues display physical properties and phase tran-
sitions which can be described by statistical phys-
ics tools, and captured by simplified theoretical
models. Physical systems mimicking the behavior
of natural systems have also been developed to
perform controlled experiments on model systems
of active materials. In particular, colloidal parti-
cles and macroscopic objects similar to the sys-
tems displaying a granular glass transition have
also been developed so that these particles can
become “active” (Deseigne et al. 2010;
Theurkauff et al. 2012; Buttinoni et al. 2013),
that is, self-motile objects that can move in the
absence of thermal fluctuations, similar to ani-
mals, cells, or bacteria.

It is natural to expect that dense assemblies of
active particles will undergo some form of
dynamic arrest (Henkes et al. 2011; Angelini
et al. 2011). As human beings, we are well
aware that it becomes difficult to walk very fast
in a dense crowd, as observed in the streets of
large cities or in subway corridors at peak times.
Indeed, there are several indications from experi-
mental observations that a transition from a fluid-
like state to an arrested glassy state can be
observed in active materials (Angelini et al.
2011; Garcia et al. 2015; Mongera et al. 2018;
Klongvessa et al. 2019).

From a conceptual viewpoint, the main differ-
ence between these observations and the glass
transition observed in molecular and colloidal
systems is that the driving force for single particle
motion is not of thermal origin, but is instead
chemical, mechanical, or biological. This means
that any theoretical model for dense active mate-
rials must include some sort of nonequilibrium
sources of microscopic motion and consequently
the glassy phenomena that will be described must
necessarily occur far from equilibrium (Berthier
and Kurchan 2013). In that sense, the situation is
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conceptually not very different from the phenom-
enon of the granular glass transition discussed in
the previous paragraph. The difference between
the two essentially lies in the details of the driving
motion, which very much resembles a quasi-
equilibrium thermal bath in granular glasses
(Keys et al. 2007).

Several numerical and theoretical studies of the
glass transition in active materials have been
recently published, see Berthier et al. (2019b) for
a specific review on this topic. In particular, the
glassy dynamics of so-called self-propelled parti-
cles have received considerable attention (Ni et al.
2013; Berthier 2014; Mandal et al. 2016; Bi et al.
2016; Berthier et al. 2017a; Matoz-Fernandez
et al. 2017). In these models, particles interacting
with simple pair interactions (similar to the ones
studied to model the equilibrium glass transition)
are driven by active forces that tend to displace the
particles in straight lines over a finite persistence
length.

It is now understood that for dense active
fluids, due to these nonequilibrium driving forces
both the structure and the dynamics are very dif-
ferent from their equilibrium counterparts
(Berthier et al. 2019b). It is observed that a large
persistence length has a profound influence on the
static correlations of the fluid since both density-
density (as in Eq. (3)) and velocity-velocity cor-
relation functions develop non trivial non-
equilibrium features (Berthier et al. 2017a). As
particle crowding is increased, slow dynamics
develop and is accompanied by a phenomenology
similar to that of equilibrium glassy materials,
with motion becoming gradually arrested at large
enough density or small enough activity. Dynamic
arrest in dense active materials is therefore called
a nonequilibrium glass transition (Berthier and
Kurchan 2013). Understanding this new class of
glassy dynamics is an exciting new direction for
research.

Random Pinning Glass Transition
The standard control parameters used to induce a
glass transition are temperature and pressure.
A new way introduced in the 2000s is “random
pinning” (Scheidler et al. 2002; Kim 2003), which
consists in freezing the positions of a fraction c of

particles from an equilibrium configuration of a
supercooled liquid. Theoretical arguments
(Cammarota and Biroli 2012) and numerical sim-
ulations (Berthier and Kob 2012; Karmakar and
Procaccia 2011) suggested that the dynamics of
the remaining free particles slow down and
undergo a glass transition by increasing c. The
study of the random pinning glass transition has
been the focus of several theoretical analyses
(Cammarota and Biroli 2013; Krakoviack 2011,
2014; Szamel and Flenner 2013; Franz and Parisi
2013; Cammarota 2013; Franz et al. 2013; Phan
and Schweizer 2018; Cammarota and Seoane
2016; Ikeda et al. 2017a) and numerical simula-
tions (Berthier and Kob 2012; Kob and Berthier
2013; Charbonneau and Tarjus 2013; Karmakar
and Parisi 2013; Chakrabarty et al. 2015, 2016;
Kob and Coslovich 2014; Jack and Fullerton
2013; Fullerton and Jack 2014; Li et al. 2015;
Angelani et al. 2018; Ozawa et al. 2018a; Niblett
et al. 2018) in the decade 2005–2015. It has also
been studied in experiments, in particular in col-
loidal glasses by optical microscopy (Gokhale
et al. 2014, 2016; Ganapathi et al. 2018; Williams
et al. 2018).

The interest in the “random-pinning glass tran-
sition” has been twofold. First, it represents a new
way to test theories of the glass transition. In fact,
RFOT theory and MCT (see section “Theory of
the Glass Transition”) predict that it should have
the same properties as the usual glass transition
(Cammarota and Biroli 2012; Szamel and Flenner
2013), that is, increasing the pinned fraction c
plays the same role as lowering the temperature.
This phenomenon was studied and confirmed in
Kob and Berthier (2013), where the equilibrium
phase diagram of a randomly pinned glass-former
was fully characterized. The dynamical behavior
is not as well understood. Although it is clear that
dynamics dramatically slows down when increas-
ing c, hence the name “random-pinning glass
transition,” it has proven difficult to disentangle
trivial effects due to steric constraints from collec-
tive ones. In consequence, numerical simulations
could not validate or disprove the competing pre-
dictions from dynamical facilitation theories (Jack
and Berthier 2012) and RFOT theory (Cammarota
and Biroli 2012). The other reason for the random
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pinning procedure was to produce configurations
equilibrated very close to the glass transition (just
after pinning, the remaining unpinned particles
are in an equilibrium configuration for the
constrained systems (Krakoviack 2010)). This
allowed to perform the first computational study
of ultrastable glasses (Hocky et al. 2014), see
below.

The random pinning procedure has interesting
connections, similarities, and differences with
other ways to constrain the dynamics of glassy
liquids introduced in recent years. Those can be
grouped in three main categories: modifications of
the Hamiltonian (ϵ-coupling, see section “Franz-
Parisi Potential”), in the dynamical rules
(s-ensemble dynamics, see section “s-Ensemble
and Large Deviations”), and in the space available
to the system (liquids in quenched environments
(Thalmann et al. 2000)).

Ultrastable Glasses
Glassy materials are typically prepared by slowly
cooling or compressing a dense fluid across the
glass transition described above. The glass transi-
tion temperature or density is set by the competi-
tion between an extrinsic time scale imposed by
the experimentalist (for instance the duration of
the experiment, or the cooling rate), and an intrin-
sic timescale of the material, such as the structural
relaxation time. The degree of supercooling
observed in most glassy materials is then set by
the typical duration of an experiment, which cor-
responds to an intrinsic timescale of about 100 s in
molecular liquids.

It has recently become possible to prepare
“ultrastable” glasses (Swallen et al. 2007; Ediger
2017), namely glassy materials which reach a
degree of supercooling which is equivalent to
cooling glasses at rates that are 105–1010 times
slower than usual. Ultrastable glasses are not pre-
pared by cooling bulk liquids across the glass
transition, but using a completely different route
called physical vapor deposition. In this proce-
dure, the glassy material is prepared directly at
the desired temperature (there is no cooling
involved) by the slow deposition of individual
molecules suspended in a gas phase onto a glassy

film whose height increases slowly as more mol-
ecules are deposited.

The degree of supercooling that can be
achieved by physical vapor deposition is again
set by the competition between two timescales
(Swallen et al. 2007; Berthier et al. 2017b). The
extrinsic timescale is now related to the deposition
rate of the molecules, whereas the intrinsic time-
scale is set by the relaxation time of molecules
diffusing at the free surface of the glassy film. It is
known that bulk and surface dynamics may differ
by many orders of magnitude in glasses (Zhu et al.
2011), because the molecular mobility at a free
surface is much less constrained than in the bulk.
Therefore, for a similar extrinsic timescale
imposed by the experimental setup, a much
deeper degree of supercooling is achieved by the
vapor deposition process.

Ultrastable glasses prepared using physical
vapor deposition are thus expected to behave as
extraordinarily slowly cooled supercooled liq-
uids, with a cooling rate or a preparation time
that is impractically large. As such, theses glasses
have physical properties that can differ rather
drastically from ordinary glassy materials. In par-
ticular, it was shown that their mechanical, ther-
modynamic, and kinetic properties differ
quantitatively from ordinary glasses, and display
specific dynamic phenomena (Kearns et al. 2010;
Chen et al. 2013; Pérez-Castañeda et al. 2014;
Sepúlveda et al. 2014; Ràfols-Ribé et al. 2018;
Vila-Costa et al. 2020). As such, they are currently
the subject of intense theoretical investigations as
well (Wolynes 2009; Léonard and Harrowell
2010; Lyubimov et al. 2013; Jack and Berthier
2016; Gutiérrez and Garrahan 2016; Fullerton
and Berthier 2017; Flenner et al. 2019; Khomenko
et al. 2020). The goal is to better understand the
deposition process itself, but also to better char-
acterize the physical properties of ultrastable
glasses in view of their many potential practical
applications. Also, since ultrastable glasses offer a
way to access much deeper supercooled states, it
can be hoped that they can be used to shed new
light on the glass transition phenomenon itself.
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Other Glasses in Physics, and Beyond
There are many other physical contexts in which
glassiness plays an important role (Young 1998).
One of the most famous examples is the field of
spin glasses. Real spin glasses are magnetic impu-
rities interacting by quenched random couplings.
At low temperatures, their dynamics become
extremely slow and they freeze in amorphous
spin configuration dubbed a “spin glass” by
Anderson. There are many other physical sys-
tems, often characterized by quenched disorder,
that show glassy behavior, like Coulomb glasses,
Bose glasses, etc. In many cases, however, one
does expect quite a different physics from struc-
tural glasses: the similarity between these systems
is therefore only qualitative.

Quite remarkably, glassiness also emerges in
other branches of science (Bouchaud et al. 2011).
In particular, it has been discovered recently that
concepts and techniques developed for glassy
systems turn out to apply and be very useful
tools in the field of computer science. Problems
like combinatorial optimization display phenom-
ena completely analogous to phase transitions,
and actually, to glassy phase transitions.
A posteriori, this is quite natural, because a typical
optimization problem consists in finding a solu-
tion in a presence of a large number of constraints.
This can be defined, for instance, as a set of
N Boolean variables that satisfies M constraints.
For N and M very large at fixed α ¼ M/N, this
problem very much resembles finding a ground
state in a statistical mechanics problem with
quenched disorder. Indeed one can define an
energy function (a Hamiltonian) as the number
of unsatisfied constraints, that has to be mini-
mized, as in a T¼0 statistical mechanics problem.
The connection with glassy systems originates
from the fact that in both cases the energy land-
scape is extremely complicated, full of minima
and saddles. The fraction of constraints per degree
of freedom, α, plays a role similar to the density in
a hard sphere system. For instance, a central prob-
lem in optimization, random k-satisfiability, has
been shown to undergo a glass transition when α
increases, analogous to the one of structural
glasses (Krzakala et al. 2007; Antenucci
et al. 2019).

Glassiness also plays an important role in
machine learning and signal processing. In those
cases, one wants to learn a specific task from
many examples or retrieve a specific signal from
a huge amount of data. This is done in practice by
minimizing a cost function. For example, imagine
that one is given a tensor Ti1,i2,i3 ¼ ui1ui2ui3 ,
constructed from a vector ui(i ¼ 1, . . ., N ) of
norm

ffiffiffiffi
N

p
, and that this tensor is corrupted by

noise Ji1,i2,i3 , which for simplicity we take inde-
pendent and Gaussian for each triple (i1, i2, i3).
The problem called tensor PCA, which appears in
image and video analysis (Anandkumar et al.
2014), consists in retrieving the signal ui from
the noisy tensor Ti1,i2,i3 þ Ji1,i2,i3 . The simplest
procedure to solve this problem is to find the
vector xi minimizing the following cost function:

H xif gð Þ ¼
X
i1, i2, i3

ui1ui2ui3 þ Ji1,i2,i3 � xi1xi2xi3ð Þ2:

By developing the square, one finds that the
cost function H is identical to the one of a 3-spin
spherical glass mean-field model with quenched
random couplings Ji1,i2,i3 and a term favoring
configurations in the direction of ui (Richard and
Montanari 2014). These two contributions are
competing for determining the ground-state prop-
erties, the strength of the latter with respect to the
former is proportional to the signal-to-noise ratio.
This example illustrates one way in which glass-
iness plays an important role in machine learning:
one has to find a signal (the ui’s) buried in a rough
landscape (induced by the Ji1,i2,i3 ’s). Practical
algorithms, such as gradient descent and its sto-
chastic version, lead to dynamics which are very
similar to the ones of physical systems after a
quench to low temperature. One of the main ques-
tions in this area is characterizing the algorithmic
threshold, that is, the critical value of the signal-
to-noise ratio such that the original signal can be
recovered with some given accuracy. Glassy
dynamics plays a central role: it is the main obsta-
cle for recovering the signal, as the dynamics can
be lost and trapped in bad minima instead of
converging toward the good one correlated with
the signal (Mannelli et al. 2020).
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Finally, hunting for a signal in a rough land-
scape (Zdeborová and Krzakala 2016) is not the
only context in which glassiness emerged in
machine learning in recent years. In fact, more
generally, there has been a lot of work aimed at
characterizing the landscapes over which optimi-
zation dynamics take places in general machine
learning problems (from high-dimensional statis-
tics to deep neural networks), and at assessing to
which extent glassy dynamics and rough land-
scapes play a relevant role (Sagun et al. 2014;
Baity-Jesi et al. 2019).

Numerical Simulations

Studying the glass transition of molecular liquids
at a microscopic level is in principle straightfor-
ward since one must answer a very simple ques-
tion: how do particles move in a liquid close to Tg?
It is of course a daunting task to attempt answering
this question experimentally because one should
then resolve the dynamics of single molecules to
be able to follow the trajectories of objects that are
a few Angstroms large on timescales of tens or
hundreds of seconds, which sounds like eternity
when compared to typical molecular dynamics
usually lying in the picosecond regime. In recent
years, such direct experimental investigations
have been developed using time and space
resolved techniques such as atomic force micros-
copy (Russell and Israeloff 2000) or single mole-
cule spectroscopy (Adhikari et al. 2007; Paeng
et al. 2015), but this remains a very difficult task.

In numerical simulations, by contrast, the tra-
jectory of each particle in the system can, by
construction, be followed at all times. This allows
one to quantify easily single particle dynamics, as
proved in Fig. 4 where the averaged mean-
squared displacement Δ(t) measured in a simple
Lennard-Jones glass-former is shown and is
defined as.

D tð Þ ¼ 1

N

XN
i¼1

ri tð Þ � ri 0ð Þj j2
* +

, ð6Þ

where ri(t) represents the position of particle i at
time t in a system composed of N particles and the
brackets indicate an ensemble average. The parti-
cle displacements considerably slow down when
T is decreased and the self-diffusion constant
decreases by orders of magnitude, mirroring the
behavior of the viscosity shown in Fig. 1 for real
systems. Moreover, a rich dynamics is observed,
with a plateau regime at intermediate timescales,
corresponding to an extended time window dur-
ing which particles vibrate around their initial
positions, exactly as in a crystalline solid. The
difference with a crystal is of course that this
localization is only transient, and all particles
eventually escape and diffuse at long times with
a diffusion constant Ds, so that Δ(t)~6Dst when
t ! 1.

In recent years, computer experiments have
played an increasingly important role in glass
transition studies. It could almost be said that
particle trajectories in numerical work have been
studied under so many different angles that prob-
ably very little remains to be learned from such
studies in the regime that is presently accessible
using present day computers. Unfortunately, this
does not imply complete knowledge of the phys-
ics of supercooled liquids. As shown in Fig. 4, it is
presently possible to follow the dynamics of a
simple glass-forming liquid over more than eight
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 4 Mean-squared displacements of individual
particles in a simple model of a glass-forming liquid com-
posed of Lennard-Jones particles observed on a wide time
window. When temperature decreases (from left to right),
the particle displacements become increasingly slow with
several distinct time regimes corresponding to (in this
order) ballistic, localized, and diffusive regimes
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decades of time, and over a temperature window
in which average relaxation timescales increase
by more than five decades. This might sound
impressive, but a quick look at Fig. 1 shows,
however, that at the lowest temperatures studied
in the computer, the relaxation timescales are still
orders of magnitude faster than in experiments
performed close to the glass transition tempera-
ture. They can be directly compared to experi-
ments performed in this high temperature
regime, but this also implies that simulations
focus on a relaxation regime that is about eight
to ten decades of times faster than in experiments
performed close to Tg. Whether numerical works
are useful to understand the kinetics of the glass
transition itself at all is therefore an open, widely
debated, question. We believe that it is now pos-
sible to numerically access temperatures which
are low enough that many features associated to
the glass transition physics can be observed:
strong decoupling phenomena, clear deviations
from fits to the mode-coupling theory (which are
experimentally known to hold only at high tem-
peratures), and crossovers toward truly activated
dynamics. In section “New Computational
Methods,” we discuss recent developments in
the field of computational studies that are able to
address novel challenges regarding the static
properties of supercooled liquids over a broad
temperature range.

Classical computer simulations of supercooled
liquids usually proceed by solving a cleverly
discretized version of Newton’s equations for a
given potential interaction between particles
(Allen and Tildesley 1989). If quantitative agree-
ment with experimental data on an existing spe-
cific material is sought, the interaction must be
carefully chosen in order to reproduce reality, for
instance by combining classical to ab initio sim-
ulations. From a more fundamental perspective
one rather seeks the simplest model that is still
able to reproduce qualitatively the phenomenol-
ogy of real glass-formers, while being consider-
ably simpler to study. The implicit, but quite
strong, hypothesis is that molecular details are
not needed to explain the behavior of supercooled
liquids, so that the glass transition is indeed a topic
for statistical mechanics, not for chemistry.

A considerable amount of work has therefore
been dedicated to studying models such as hard
spheres, soft spheres, or Lennard-Jones particles.
More realistic materials are also studied focusing
for instance on the physics of network forming
materials, multicomponent ones, anisotropic par-
ticles, or molecules with internal degrees of free-
dom. Connections to experimental work can be
made by computing quantities that are experimen-
tally accessible such as the intermediate scattering
function, static structure factors, S(q), or thermo-
dynamic quantities such as specific heat or con-
figurational entropy, which are directly obtained
from particle trajectories and can be measured in
experiments as well. As an example we show in
Fig. 5 the intermediate scattering function F(q, t)
obtained from a molecular dynamics simulation
of a classical model for SiO2 as a function of time
for different temperatures (Horbach and Kob
2001).

An important role is played by simulations also
because a large variety of dynamic and static
quantities can be simultaneously measured in a
single model system. As we shall discuss below,
there are scores of different theoretical approaches
to describe the physics of glass-formers, and
sometimes they have their own set of predictions
that can be readily tested by numerical work.
Indeed, quite a large amount of numerical papers
have been dedicated to testing in detail the pre-
dictions formulated by the mode-coupling theory
of the glass transition, as reviewed in Götze
(1999). Here, computer simulations are particu-
larly well-suited as the theory specifically
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 5 Intermediate scattering function at
wavevector 1.7 Å�1 for the Si particles at T ¼ 2750 K
obtained from molecular dynamics simulations of a model
for silica (Horbach and Kob 2001)
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addresses the relatively high temperature window
that is studied in computer simulations.

While Newtonian dynamics is mainly used in
numerical work on supercooled liquids, a most
appropriate choice for these materials, it can be
interesting to consider alternative dynamics that
are not deterministic, or which do not conserve the
energy. In colloidal glasses and physical gels, for
instance, particles undergo Brownian motion aris-
ing from collisions with molecules in the solvent,
and a stochastic dynamics is more appropriate.
Theoretical considerations might also suggest
the study of different sorts of dynamics for a
given interaction between particles, for instance,
to assess the role of conservation laws and struc-
tural information. Of course, if a given dynamics
satisfies detailed balance with respect to the
Boltzmann distribution, all structural quantities
remain unchanged, but the resulting dynamical
behavior might be very different. Several papers
(Gleim et al. 1998; Szamel and Flenner 2004;
Berthier and Kob 2007) have studied in detail
the influence of the chosen microscopic dynamics
on the dynamical behavior in glass-formers using
either stochastic dynamics (where a friction term
and a random noise are added to Newton’s equa-
tions, the amplitude of both terms being related by
a fluctuation-dissipation theorem), Brownian
dynamics (in which there are no momenta, and
positions evolve with Langevin dynamics), or
Monte-Carlo dynamics (where the potential
energy between two configurations is used to
accept or reject a trial move). Quite surprisingly,
the equivalence between these three types of sto-
chastic dynamics and the originally studied New-
tonian dynamics was established at the level of the
averaged dynamical behavior (Gleim et al. 1998;
Szamel and Flenner 2004; Berthier and Kob
2007), except at very short times where obvious
differences are indeed expected. This strongly
suggests that an explanation for the appearance
of slow dynamics in these materials originates
from their amorphous structure. However, impor-
tant differences were found when dynamic fluctu-
ations were considered (Berthier and Kob 2007;
Berthier et al. 2007a, b), even in the long-time
regime comprising the structural relaxation.

Another crucial advantage of molecular simu-
lations is illustrated in Fig. 6. This figure shows a
spatial map of single particle displacements
recorded during the simulation of a binary soft
sphere system in two dimensions (Hurley and
Harrowell 1995). This type of measurement, out
of reach of most experimental techniques that
study the liquid state, reveals that dynamics
might be very different from one particle to
another. More importantly, Fig. 6 also unambigu-
ously reveals the existence of spatial correlations
between these dynamic fluctuations. The presence
of nontrivial spatiotemporal fluctuations in super-
cooled liquids is now called “dynamic heteroge-
neity” (Ediger 2000), as we now discuss.

Dynamic Heterogeneity

Existence of Spatiotemporal Dynamic
Fluctuations
A new facet of the relaxational behavior of super-
cooled liquids has emerged in the last two decades
thanks to a considerable experimental and theo-
retical effort. It is called “dynamic heterogeneity”
(DH), and now plays a central role in modern
descriptions of glassy liquids (Ediger 2000;
Berthier et al. 2011a). As anticipated in the previ-
ous section, the phenomenon of dynamic hetero-
geneity is related to the spatiotemporal
fluctuations of the dynamics. Initial motivations
stemmed from the search of an explanation for the
non-exponential nature of relaxation processes in
supercooled liquids, related to the existence of a
broad relaxation spectrum. Two natural but fun-
damentally different explanations can be put for-
ward. (1) The relaxation is locally exponential,
but the typical relaxation timescale varies spa-
tially. Hence, global correlation or response func-
tions become non-exponential upon spatial
averaging over this spatial distribution of relaxa-
tion times. (2) The relaxation is complicated and
inherently non-exponential, even locally. Experi-
mental and theoretical works (Ediger 2000) sug-
gest that both mechanisms are likely at play, but
definitely conclude that relaxation is spatially het-
erogeneous, with regions that are faster and
slower than the average. Since supercooled
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liquids are ergodic materials, a slow region will
eventually become fast, and vice versa. A physical
characterization of DH entails the determination
of the typical lifetime of the heterogeneities, as
well as their typical lengthscale.

A clear and more direct confirmation of the
heterogeneous character of the dynamics also
stems from simulation studies. For example,
whereas the simulated average mean-squared dis-
placements are smooth functions of time, time
signals for individual particles clearly exhibit spe-
cific features that are not observed unless dynam-
ics is resolved both in space and time. These
features are displayed in Fig. 7. What do we see?
We mainly observe that particle trajectories are
not smooth but rather composed of a succession
of long periods of time where particles simply
vibrate around well-defined locations, separated
by rapid “jumps.” Vibrations were previously
inferred from the plateau observed at intermediate
times in the mean-squared displacements of
Fig. 4, but the existence of jumps that are clearly

statistically widely distributed in time cannot be
guessed from averaged quantities only. The fluc-
tuations in Fig. 7 suggest, and direct measure-
ments confirm, the importance played by
fluctuations around the averaged dynamical
behavior.

A simple type of such fluctuations has been
studied in much detail. When looking at Fig. 7,
it is indeed natural to ask, for any given time, what
is the distribution of particle displacements. This
is quantified by the self-part of the van-Hove
function defined as

Gs r, tð Þ ¼ 1

N

XN
i¼1

d r� ri tð Þ � ri 0ð Þ½ �ð Þ
* +

: ð7Þ

For an isotropic Gaussian diffusive process,
one gets Gs(r, t) ¼ exp (�|r|2/(4Dst))/(4πDst)

3/2.
Simulations reveal instead strong deviations from
Gaussian behavior on the timescales relevant for
structural relaxation (Kob et al. 1997). In particu-
lar they reveal “fat” tails in the distributions that

A Statistical Mechanics
Perspective on Glasses
and Aging, Fig. 6 Spatial
map of single particle
displacements in the
simulation of a binary
mixture of soft spheres in
two dimensions (Hurley
and Harrowell 1995).
Arrows show the
displacement of each
particle in a trajectory of
length about 10 times the
structural relaxation time.
The map reveals the
existence of particles with
different mobilities during
relaxation, but also the
existence of spatial
correlations between these
dynamic fluctuations
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are much wider than expected from the Gaussian
approximation. These tails are in fact better
described by an exponential decay rather than a
Gaussian one, in a wide time window comprising
the structural relaxation, such thatGs(r, t)~ exp (�|
r| /l(t)) (Chaudhuri et al. 2007). Thus, they reflect
the existence of a population of particles that
moves distinctively further than the rest and
appears therefore to be much more mobile. This
observation implies that relaxation in a viscous
liquid qualitatively differs from that of a normal
liquid where diffusion is close to Gaussian, and
that a nontrivial single particle displacements sta-
tistics exists.

A long series of questions immediately follows
this seemingly simple observation. Answering
them has been the main occupation of many
workers in this field over the last decade. What
are the particles in the tails effectively doing?
Why are they faster than the rest? Are they located
randomly in space or do they cluster? What is the
geometry, time, and temperature evolution of the
clusters? Are these spatial fluctuations correlated
to geometric or thermodynamic properties of the
liquids? Do similar correlations occur in all glassy
materials? Can one predict these fluctuations the-
oretically? Can one understand glassy

phenomenology using fluctuation-based argu-
ments? Can these fluctuations be detected
experimentally?

Another influential phenomenon that was
related early on to the existence of DH is the
decoupling of self-diffusion (Ds) and viscosity
(�). In the high temperature liquid self-diffusion
and viscosity are related by the Stokes-Einstein
relation (Hansen and McDonald 1990), Ds�/T ¼
const. For a large particle moving in a fluid the
constant is equal to 1/(6πR) where R is the particle
radius. Physically, the Stokes-Einstein relation
means that two different measures of the relaxa-
tion time R2/Ds and �R3/T lead to the same time-
scale up to a constant factor. In supercooled
liquids this phenomenological law breaks down,
as shown in Fig. 8 for ortho-terphenyl (Mapes
et al. 2006). It is commonly found that D�1

s does
not increase as fast as � so that, at Tg, the product
Ds� has increased by 2–3 orders of magnitude as
compared to its Stokes-Einstein value. This phe-
nomenon, although less spectacular than the over-
all change of viscosity, is a significative indication
that different ways to measure relaxation times
lead to different answers and thus is a strong hint
of the existence of a distribution of relaxation
timescales.

Indeed, a natural explanation of this effect is
that different observables probe the underlying
distribution of relaxation times in different ways
(Ediger 2000). For example, the self-diffusion
coefficient of tracer particles is dominated by the
more mobile particles whereas the viscosity or
other measures of structural relaxation probe the
timescale needed for every particle to move. An
unrealistic but instructive example is a model
where there is a small, non-percolative subset of
particles that are blocked forever, coexisting with
a majority of mobile particles. In this case, the
structure never relaxes but the self-diffusion coef-
ficient is nonzero because of the mobile particles.
Of course, in reality all particles move, eventually,
but this shows how different observables are
likely to probe different moments of the distribu-
tion of timescales, as explicitly shown within sev-
eral theoretical frameworks (Tarjus and Kivelson
1995; Jung et al. 2004).
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 7 Time resolved squared displacements of
individual particles in a simple model of a glass-forming
liquid composed of Lennard-Jones particles. The average
is shown as a smooth full line. Trajectories are composed of
long periods of time during which particles vibrate around
well-defined positions, separated by rapid jumps that are
widely distributed in time, underlying the importance of
dynamic fluctuations
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The phenomena described above, although
certainly an indication of spatiotemporal fluctua-
tions, do not allow one to study how these fluctu-
ations are correlated in space. This is however a
fundamental issue both from the experimental and
theoretical points of view. How large are the
regions that are faster or slower than the average?
How does their size depend on temperature? Are
these regions compact or fractal? These important
questions were first addressed in pioneering
works using four-dimensional NMR (Reinsberg
et al. 2001), or by directly probing fluctuations at
the nanoscopic scale using microscopy tech-
niques. In particular, Vidal Russel and Israeloff
using Atomic Force Microscopy techniques
(Russell and Israeloff 2000) measured the polari-
zation fluctuations in a volume of size of few tens
of nanometers in a supercooled polymeric liquid
(PVAc) close to Tg. In this spatially resolved mea-
surement, the hope is to probe a small enough
number of dynamically correlated regions, and
detect their dynamics. Indeed, the signal shown
in Fig. 9 shows a dynamics which is very inter-
mittent in time, switching between periods with
intense activity and other periods with no dynam-
ics at all, suggesting that extended regions of
space indeed transiently behave as fast or slow
regions. A much smoother signal would be

measured if such dynamically correlated
“domains” were not present. Spatially resolved
and NMR experiments are quite difficult. They
give undisputed information about the typical
lifetime of the DH, but their determination of a
dynamic correlation lengthscale is rather indirect
and/or performed on a small number of liquids in
a small temperature window. Nevertheless, the
outcome is that a nontrivial dynamic correlation
length emerges at the glass transition, where it
reaches a value of the order of 5–10 molecule
diameters (Ediger 2000).

Multipoint Correlation Functions
More recently, substantial progress in characteriz-
ing spatiotemporal dynamical fluctuations was
obtained from theoretical (Berthier et al. 2007a, b;
Franz and Parisi 2000; Toninelli et al. 2005) and
numerical results (Hurley and Harrowell 1995;
Yamamoto and Onuki 1998; Franz et al. 1999;
Bennemann et al. 1999; Lačević et al. 2003;
Berthier 2004). In particular, it is now understood
that dynamical fluctuations can be measured and
characterized through the use of four-point corre-
lation functions. These multipoint functions can be
seen as a generalization of the spin glass suscepti-
bility measuring the extent of amorphous long-
range order in spin glasses. In this subsection, we

A Statistical Mechanics
Perspective on Glasses
and Aging,
Fig. 8 Decoupling
between viscosity (full line)
and self-diffusion
coefficient (symbols) in
supercooled ortho-
terphenyl (Mapes et al.
2006). The dashed line
shows a fit with a
“fractional” Stokes-Einstein
relation, Ds~(T/�)

ζ with
ζ ~ 0.82
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introduce these correlation functions and summa-
rize the main results obtained using them.

Standard experimental probes of the averaged
dynamics of liquids give access to the time-
dependent autocorrelation function of the sponta-
neous fluctuations of some observable O(t),
F(t) ¼ hδO(0)δO(t)i, where δO(t) ¼ O(t) � hOi
represents the instantaneous value of the deviation
of O(t) from its ensemble average hOi at time t.
One can think of F(t) as being the average of a
two-point quantity, C(0, t) ¼ δO(0)δO(t), charac-
terizing the dynamics. A standard example corre-
sponds to O being equal to the Fourier transform
of the density field. In this case F(t) is the dynam-
ical structure factor as in Eq. (5). More generally, a
correlation function F(t) measures the global
relaxation in the system. Intuitively, in a system
with important dynamic correlations, the fluctua-
tions of C(0, t) are stronger. Quantitative informa-
tion on the amplitude of those fluctuations is
provided by the variance

w4 tð Þ ¼ N dC 0, tð Þ2
D E

, ð8Þ

where δC(0, t) ¼ C(0, t) � F(t), and N is the total
number of particles in the system. The associated
spatial correlations show up more clearly when
considering a “local” probe of the dynamics, like
for instance an orientational correlation function

measured by dielectric or light scattering experi-
ments, which can be expressed as

C 0, tð Þ ¼ 1

V

ð
d3r c r; 0, tð Þ, ð9Þ

where V is the volume of the sample and
c(r; 0, t) characterizes the dynamics between
times 0 and t around point r. For
example, in the abovementioned case of
orientational correlations, c r; 0, tð Þ /
V
N

PN
i,j¼1d r� rið ÞY Oi 0ð Þð ÞY O j tð Þ

	 

, where Ωi

denotes the angles describing the orientation of
molecule i, ri(0) is the position of that molecule at
time 0, and Y(Ω) is some appropriate rotation
matrix element. Here, the “locality” of the probe
comes from the fact that it is dominated by the
self-term involving the same molecule at times
0 and t, or by the contribution coming from neigh-
boring molecules. The dynamic susceptibility
w4(t) can thus be rewritten as

w4 tð Þ ¼ r
ð
d3rG4 r; 0, tð Þ, ð10Þ

where

G4 r; 0, tð Þ ¼ dc 0; 0, tð Þdc r; 0, tð Þh i, ð11Þ

b
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 9 Time series of polarization in the AFM
experiment performed by Vidal Russell and Israeloff
(2000) on PVAc at T ¼ 300 K. The signal intermittently

switches between periods with fast or slow dynamics,
suggesting that extended regions of space indeed tran-
siently behave as fast and slow regions
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and translational invariance has been taken into
account (r ¼ N/V denotes the mean density). The
above equations show that w4(t) measures the
extent of spatial correlation between dynamical
events at times 0 and t at different points, that is,
the spatial extent of dynamically heterogeneous
regions over a time span t.

The function w4(t) has been measured by
molecular dynamics, Brownian and Monte Carlo
simulations in different liquids (Franz et al. 1999;
Bennemann et al. 1999; Lačević et al. 2003;
Berthier 2004, 2007a; Gebremichael et al. 2004).
An example is shown in Fig. 10 for a Lennard-
Jones liquid. The qualitative behavior is similar in
all cases (Berthier et al. 2007a; Franz and Parisi
2000; Toninelli et al. 2005): as a function of time
w4(t) first increases, it has a peak on a timescale
that tracks the structural relaxation timescale and
then it decreases. (The decrease at long times
constitutes a major difference with spin glasses.
In a spin glass, w4 would be a monotonically
increasing function of time whose longtime limit
coincides with the static spin glass susceptibility.
Physically, the difference is that spin glasses
develop long-range static amorphous order while
structural glasses do not or, at least, in a different
and more subtle way.) Thus the peak value mea-
sures the volume on which the structural

relaxation processes are correlated. It is found to
increase when the temperature decreases and the
dynamics slows down. By measuring directly
G4(r; 0, t) it has also been checked that the
increase of the peak of w4(t) corresponds, as
expected, to a growing dynamic lengthscale x
(Berthier et al. 2007a; Bennemann et al. 1999;
Lačević et al. 2003; Berthier 2004), although
these measurements are much harder in computer
simulations, because very large systems need to
be simulated to determine x unambiguously. Note
that if the dynamically correlated regions were
compact, the peak of w4 would be proportional to
x3 in three dimensions, directly relating w4 mea-
surements to that of the relevant lengthscale of
DH.

These results are also relevant because many
theories of the glass transition assume or predict,
in a way or another, that the dynamics slows down
because there are increasingly large regions on
which particles have to relax in a correlated or
cooperative way. However, this lengthscale
remained elusive for a long time. Measures of
the spatial extent of dynamic heterogeneity, in
particular w4(t) and G4(r; 0, t), seem to provide
the long-sought evidence of this phenomenon.
This in turn suggests that the glass transition is
indeed a critical phenomenon characterized by

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 10 Time dependence of w4(t), quantifying the
spontaneous fluctuations of the intermediate scattering
function in a Lennard-Jones supercooled liquid. For each

temperature, w4(t) has a maximum, which shifts to larger
times and has a larger value when T is decreased, revealing
the increasing lengthscale of dynamic heterogeneity in
supercooled liquids approaching the glass transition
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growing timescales and lengthscales. A clear and
conclusive understanding of the relationship
between the lengthscale obtained from G4(r; 0, t)
and the relaxation timescale is still the focus of an
intense research activity.

One major issue is that obtaining information
on the behavior of w4(t) and G4 (r; 0, t) from
experiments is difficult. Such measurements are
necessary because numerical simulations can only
be performed rather far from Tg, see section
“Numerical Simulations.” Up to now, direct
experimental measurements of w4(t) have been
restricted to colloidal (Weeks et al. 2007) and
granular materials (Keys et al. 2007; Dauchot
et al. 2005) close to the jamming transition,
because dynamics is more easily spatially
resolved in those cases. Unfortunately, similar
measurements are currently not available in
molecular liquids.

Recently, an approach based on fluctuation-
dissipation relations and rigorous inequalities has
been developed in order to overcome this difficulty
(Berthier et al. 2005, 2007a; b; Dalle-Ferrier et al.
2007). The main idea is to obtain a rigorous lower
bound on w4(t) using the Cauchy-Schwarz inequal-
ity hδH(0)δC(0, t)i2O hδH(0)2i hδC(0, t)2i, where
H(t) denotes the enthalpy at time t. By using
fluctuation-dissipation relations the previous
inequality can be rewritten as (Berthier et al. 2005)

w4 tð Þ � kBT
2

cP
wT tð Þ½ �2, ð12Þ

where the multipoint response function wT (t) is
defined by

wT tð Þ ¼ @F tð Þ
@T

����
N,P

¼ N

kBT
2
dH 0ð ÞdC 0, tð Þh i:

ð13Þ

In this way, the experimentally accessible
response wT(t) which quantifies the sensitivity of
average correlation functions F(t) to an infinites-
imal temperature change, can be used in Eq. (12)
to yield a lower bound on w4(t). Moreover,
detailed numerical simulations and theoretical
arguments (Berthier et al. 2007a, b) strongly

suggest that the right hand side of (12) actually
provides a good estimation of w4(t), not just a
lower bound.

Using this method, Dalle-Ferrier et al. (2007)
have been able to obtain the evolution of the peak
value of w4 for many different glass-formers in the
entire supercooled regime. In Fig. 11 we show
some of these results as a function of the relaxa-
tion timescale. The value on the y-axis, the peak of
w4, is a proxy for the number of molecules, Ncorr,4

that have to evolve in a correlated way in order to
relax the structure of the liquid. Note that w4 is
expected to be equal to Ncorr,4 only up to a pro-
portionality constant that is not known from
experiments, which probably explains why the
high temperature values of Ncorr,4 are smaller
than one. Figure 11 also indicates that Ncorr,4

grows faster when Tα is not very large, close to
the onset of slow dynamics, and a power law
relationship between Ncorr,4 and Tα fits this regime
well (tα/t0 < 104). The growth of Ncorr,4 becomes
much slower closer to Tg. A change of six decades
in time corresponds to a mere increase of a factor
about 4 of Ncorr,4, suggesting logarithmic rather
than power law growth of dynamic correlations.
This is in agreement with several theories of the
glass transition which are based on activated
dynamic scaling (Xia and Wolynes 2000;
Garrahan and Chandler 2003; Tarjus et al. 2005).

Understanding quantitatively this relation
between timescales and lengthscales is one of
the main recent topics addressed in theories of
the glass transition, see section “Theory of the
Glass Transition.” Furthermore, numerical works
are also devoted to characterizing better the geom-
etry of the dynamically heterogeneous regions
(Donati et al. 1998; Appignanesi et al. 2006;
Kob et al. 2012).

Nonlinear Response Function
Diverging responses are characteristic signatures
of phase transitions. Linear static responses mea-
suring the change in the order parameter due to
external fields diverge at second-order phase tran-
sitions (Chaikin et al. 1995). By using fluctuation-
dissipation relations one can show that such diver-
gence is intimately related to the divergence of the
correlation length emerging in two point-
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functions. Spin-glasses, the archetypal example of
disordered systems, display a diverging static
magnetic nonlinear cubic response (Binder and
Young 1986; Baity-Jesi et al. 2013). In Bouchaud
and Biroli (2005) it was argued that the counter-
part of these phenomena for supercooled liquids
can be found in nonlinear dynamical susceptibil-
ities, which should grow approaching the glass
transition, thus providing a complementary way
(compared to w4) to reveal its collective nature. In
experiments on molecular liquids, nonlinear
dielectric susceptibility is a natural probe to unveil
this phenomenon.

The simplest explanation (Albert et al. 2016)
for this scenario is based on the assumption that
Ncorr ¼ ‘=að Þd f molecules are amorphously
ordered over the lengthscale ‘, where a is the
molecular size and df is the fractal dimension of
the ordered clusters. In consequence, their
dipoles, which are oriented in apparently random
positions, are essentially locked together during a
time tα. In the presence of an external electric field
E oscillating at frequency o � t�1

a , the dipolar
degrees of freedom of these molecules contribute
to the polarization per unit volume as

p ¼ mdip

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=að Þd f

q
‘=að Þd F

mdipE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=að Þd f

q
kT

0@ 1A ð14Þ

where mdip is an elementary dipole moment, F is
an odd scaling function, and d ¼ 3 the dimension
of space. This states that randomly locked dipoles

have an overall moment ~ffiffiffiffiffiffiffiffiffiffiNcorr
p

, and that we
should compare the thermal energy with the
energy of this “super-dipole” in a field.

Expanding Eq. 14 in powers of E, one finds the
“glassy” contribution to p:

p
mdip

¼ F0 0ð Þ ‘
a

� �d f�d mdipE
kT

� �
þ

þ 1

3!
F 3ð Þ 0ð Þ ‘

a

� �2d f�d mdipE
kT

� �3

þ

þ 1

5!
F 5ð Þ 0ð Þ ‘

a

� �3d f�d mdipE
kT

� �5

þ � � �

ð15Þ

Because df � d, the first term, contributing to
the usual linear dielectric susceptibility, w1(o),
cannot grow as ‘ increases. This simple theoretical
argument explains why spatial glassy correlations

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 11 Universal dynamic scaling relation
between number of dynamically correlated particles,

Ncorr,4, and relaxation timescale, tα, for a number of
glass-formers (Dalle-Ferrier et al. 2007), determined
using Eq. (12)
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does not show up in w1(o), in experiments. The
second term, contributing to the third-order
dielectric susceptibility w3(o), does grow with ‘

provided df> d/2. Several theories indeed suggest
that ordered domains are compact, df ¼ d (Tarjus
et al. 2005; Wolynes and Lubchenko 2012). The
third term leads to the fifth-order susceptibility
w5(o), which should diverge as ‘3d f�d (higher
n-order susceptibilities diverge as ‘ nþ1ð Þd f =2�d .
This line of arguments shows that measuring non-
linear susceptibilities is a way to probe and char-
acterize the collective dynamical behavior
associated to glassy dynamics.

This challenge was taken up in the series of
works (Albert et al. 2016; Crauste-Thibierge et al.
2010; Bauer et al. 2013; Brun et al. 2012). The
main outcomes of these experiments have been:
(i) to show that indeed a growth of the nonlinear
responses goes along with the glass transition,
(ii) to measure in a new way the number of corre-
lated molecules close to Tg, (iii) to estimate that
df ’ d (for d ¼ 3). As an example, we reproduce
the results of (Albert et al. 2016) in Fig. 12, which
shows the increase of the fifth-order susceptibility
with temperature (panel A), its humped shape in
frequency (panel B), and the stronger singularity
of the fifth-order susceptibility compared to the
third-order one (panel C), as expected for a col-
lective phenomenon.

Another set of experiments on nonlinear
responses was performed in colloids: nonlinear
mechanical susceptibilities were probed
approaching the colloidal glass transition
(Seyboldt et al. 2016) and shown to grow
approaching it. Differently from the dielectric
case, third-harmonic shear responses have a peak
at a frequency associated to the β-relaxation, and
not to the α-relaxation. The reason is related to the
fact that a very slow shear-strain does not affect
the relaxation time-scale, whereas an external
electric field (even a static one) does, see Seyboldt
et al. (2016).

Finally, a word about theories. Given that the
growth of nonlinear dynamical susceptibility is a
relatively newly established fact in the glass-
physics arena, one can wonder how the different
theoretical framework developed to explain the
glass transitions cope with it. Thermodynamic

theories based on the increases of some kind of
medium range order naturally do, as explained
above. Mode-Coupling-Theory also predicts
diverging dynamical nonlinear susceptibility at
the MCT transition (Seyboldt et al. 2016; Tarzia
et al. 2010). Purely local theory are instead at
odds. Dynamical facilitation theory was argued
to be compatible with such findings in Speck
(2019), even though the general arguments put
forward in Albert et al. (2016) indicate the oppo-
site conclusion.

Theory of the Glass Transition

We now present some theoretical approaches to
the glass transition. It is impossible to cover all of
them in a brief review, simply because there are
way too many of them, perhaps the clearest indi-
cation that the glass transition remains an open
problem. We choose to present approaches that
are keystones and have a solid statistical mechan-
ics basis. Loosely speaking, they have a Hamilto-
nian, can be simulated numerically, or studied
analytically with statistical mechanics tools. Of
course, the choice of Hamiltonians is crucial and
contains very important assumptions about the
nature of the glass transition. All these approaches
have given rise to unexpected results. One finds
more in them than what was supposed at the
beginning, which leads to new, testable predic-
tions. Furthermore, with models that are precise
enough, one can test (and hopefully falsify!) these
approaches by working out all their predictions in
great detail, and comparing the outcome to actual
data. This is not possible with “physical pictures,”
or simpler approaches of the problem which we
therefore do not discuss.

Before going into the models, we would like to
state the few important questions that theoreti-
cians face.

• Why do the relaxation time and the viscosity
increase when Tg is approached? Why is this
growth super-Arrhenius?

• Can one understand and describe quantita-
tively the average dynamical behavior of
supercooled liquids, in particular broad
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relaxation spectra, non-exponential behavior,
and their evolution with fragility?

• Is there a relation between kinetics and ther-
modynamics (like T0 ’ TK), and why?

• Can one understand and describe quantita-
tively the spatiotemporal fluctuations of the
dynamics? How and why are these fluctuations
related to the dynamic slowing down?

• Is the glass transition a collective phenome-
non? If yes, of which kind? Is there a finite
temperature or zero temperature ideal glass
transition?

• Is the slowing down of the dynamics driven by
the growth of amorphous order and a static
length? Or is its origin purely dynamic?

• Is there a geometric, real space explanation for
the dynamic slowing down that takes into
account molecular degrees of freedom?

The glass transition appears as a kind of “inter-
mediate coupling” problem, since for instance
typical growing lengthscales are found to be at
most a few tens of particles large close to Tg. It
would therefore be difficult to recognize the cor-
rect theory even if one bumped into it. To obtain
quantitative, testable predictions, one must there-
fore be able to work out also preasymptotic
effects. This is particularly difficult, especially in
cases where the asymptotic theory itself has not
satisfactorily been worked out. As a consequence,
at this time, theories can only be judged by their
overall predictive power and their theoretical
consistency.

10-2 10-1 100 101 102

10-34

10-33

10-32

10-31

f (Hz)

195K

| χ
(5

)

 5
| (

m
4 /V

4 )

204K

B

glycerol

10-2 10-1 100 101 102
0

1

2

3

4

5

6

|χ
(k

)

 k
(f

)|
 / 

|χ
(k

)

 k
(0

)|

f / f
α

 k = 5
 k = 3
 k = 1
 k = 5, trivial
 k = 3, trivial

glycerol  204K
C

A

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 12 Modulus of the fifth-order susceptibility
in supercooled glycerol as a function of frequency (from

Albert et al. (2016)). (a) The susceptibilities w 5ð Þ
5 reported

are obtained directly by monitoring the response of the
sample at 5o, when applying an electric field E at angular

frequency o. Two independent setups were used. Lines are
guides for the eyes. (b) Projection onto the susceptibility-
frequency plane of the data of panel A at 204 K and at
195 K. (c) Comparison of the fifth-order, cubic, and linear
susceptibilities. Symbols, with line to guide the eyes. The
higher the order k, the stronger the hump of j w kð Þ

k j
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Random First-Order Transition Theory

Mean-Field Models and a Zest of Replica Theory
In the last three decades, three independent lines
of research, Adam-Gibbs theory (Adam and
Gibbs 1965), mode-coupling theory (Götze
1999), and spin glass theory (Mézard et al.
1987), have merged to produce a theoretical
ensemble that now goes under the name of Ran-
dom First-Order Transition theory (RFOT), a ter-
minology introduced by Kirkpatrick, Thirumalai,
and Wolynes (Kirkpatrick and Thirumalai 1987;
Kirkpatrick and Wolynes 1987a) who played a
major role in this unification. Instead of following
the rambling development of history, we summa-
rize it in a more modern and unified way.

A key ingredient of RFOT theory is the exis-
tence of a chaotic or complex free energy land-
scape with a specific evolution with temperature
and/or density. Analyzing it in a controlled way
for three-dimensional interacting particles is an
impossible task. This can be achieved, however,
in simplified models or using mean-field approx-
imations that have therefore played a crucial role
in the development of RFOT theory.

A first concrete example is given by “lattice
glass models” (Biroli and Mézard 2001). These
are models of hard particles sitting on a lattice.
The Hamiltonian is infinite either if there is more
than one particle on a site or if the number of
occupied neighbors of an occupied site is larger
than a parameter m, but is zero otherwise. Tuning
the parameter m, or changing the type of lattice, in
particular its connectivity, yields different models.
Lattice glasses are constructed as simple statmech
models to study the glassiness of hard sphere
systems. The constraint on the number of occu-
pied neighbors mimics the geometric frustration
(Nelson 2002) encountered when trying to pack
hard spheres in three dimensions. Numerical sim-
ulations show that their phenomenological glassy
behavior is indeed analogous to the one of super-
cooled liquids (Darst et al. 2010; Seif and Grigera
2016; Nishikawa and Hukushima 2020). Other
models with a finite energy are closer to molecular
glass-formers, and can also be constructed
(McCullagh et al. 2005). These models can be
solved exactly on a Bethe lattice, which reveals a

rich physical behavior (Rivoire et al. 2004).
(In order to have a well-defined thermodynamics,
Bethe lattices are generated as random graphs
with fixed connectivity, also called random regu-
lar graphs.) In particular their free energy land-
scape can be analyzed in full details and turns out
to have the properties that are also found in several
“generalized spin glasses.” Probably the most
studied example of such spin glasses is the
p-spin model, defined by the Hamiltonian (Gross
and Mézard 1984)

H ¼ �
X

i1, ..., ip

Ji1,...,ipSi1...Sip , ð16Þ

where the Si’s are N Ising or spherical spins, p> 2
is the number of interacting spins in a single term
of the sum, and Ji1,...,ip quenched random cou-

plings extracted from a distribution which, with
no loss of generality, can be taken as the Gaussian
distribution with zero mean and variance
p!/(2Np–1). In this model, the couplings Ji1,...,ip
play the role of self-induced disorder in glasses,
and promote a glass phase at low temperature.

All these models can be analyzed using the
so-called replica theory (Mézard et al. 1987).
Given its importance in setting the foundations
of the theory of glasses at the mean-field level,
we now present its main technical steps. To keep
the discussion as simple as possible, we focus on
p-spin models. Note that the theory holds for more
complex models but it is technically more
involved. The starting point is the computation
of the free-energy which is obtained as an average
over the distribution of couplings:

F ¼ lim
N!1

� 1

bN
log ZJ , ð17Þ

where � � � represents the average over the disorder.
Performing this average is possible thanks to the
replica trick

log ZJ ¼ lim
n!0

1

n
log Zn, ð18Þ

where n is the index of replicas, that is, clones of
the same system with different couplings Ji1,...,ip
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extracted from the same distribution. The use of
the replica trick may seem purely mathematical,
yet it has a profound physical sense. If the system
is ergodic, averages of thermodynamical observ-
ables for two replicas of the same system (with
identical disorder) coincide, whereas they differ if
ergodicity is broken. We can define the overlaps
between two replicas a, b as Qab, which defines
the n � n overlap matrix:

Qab ¼ 1

N

XN
i¼1

Sai S
b
i , ð19Þ

where the product between spins represents a dot
product for spherical spins (Castellani and
Cavagna 2005). After some computations, the
free energy can be expressed as a function of
Qab, which therefore plays the role of the order
parameter. In the ergodic phase one expects sym-
metry between replicas (if additional symmetries
are broken, then one can have ergodicity breaking
also in the RS phase), and the so-called replica-
symmetric (RS) parameterization of Qab is
adopted: all the off-diagonal elements of Qab are
equal to q0 < 1 and the diagonal elements are
Qaa ¼ 1. The parameterization that corresponds
to the glass phase, when ergodicity is broken, is
the so-called one-step replica symmetry breaking
(1RSB) solution. Here, the overlap matrix is
divided into blocks of dimensionm�m; elements
belonging to blocks far from the diagonal are
equal to q0, while off-diagonal elements of blocks
along the diagonal are equal to q1 with
1 > q1 > q0. On the diagonal Qaa ¼ 1. This
parameterization encodes the existence of many
thermodynamically equivalent basins, hence two
replicas can either fall in the same basin and have
overlap q1, or fall in two different basins and have
overlap q0. The crucial simplification introduced
by the mean-field approximation is that barriers
between basins have a free energy cost which
grows exponentially with N, so that truly metasta-
ble states can be defined in the thermodynamic
limit (Cavagna 2009). At high temperature (or low
density) the RS solution has a lower free energy.
Below the ideal glass transition temperature the
1RSB solution instead becomes dominant.

Liquids and Glasses in Infinite Dimensions
A major theoretical breakthrough of the last years
is the analysis of the glass transition for interacting
particle systems in the limit of infinite dimensions
(Kurchan et al. 2012, 2013; Charbonneau et al.
2014a, b; Parisi et al. 2020). The starting point
approach is the definition of a pair interaction
potential with a proper scaling with dimension
d to ensure a nontrivial thermodynamic limit:

u rð Þ ¼ eu d r=‘� 1ð Þ½ � ð20Þ

where ‘ defines the range of the interaction. Many
different potentials used to model glasses can be
written in this way by using a suitable functioneu xð Þ , such as hard spheres, Lennard-Jones,
Yukawa, square-well, harmonic, and Weeks-
Chandler-Andersen potentials (Parisi et al.
2020). In the limit of infinite space dimension,
d ! 1, and using the scaling above, the thermo-
dynamics and the dynamics of liquids and glasses
can be analyzed exactly. (For large d the crystal-
line phase does not intervene. In fact, the amor-
phous and crystalline solid phases are well
separated in configuration space and issues related
to finite dimensions, such as the crystallization of
monodisperse particles, are suppressed (Skoge
et al. 2006; van Meel et al. 2009).) The resulting
theory is qualitatively very similar to the one
obtained from the simple models discussed in
the previous section (both for the statics, in
terms of replica formalism, and for the dynamics,
in terms of self-consistent Langevin equations).

In fact, all these models belong to the univer-
sality class of 1RSB systems (Charbonneau et al.
2014b), with a free-energy landscape evolving as
in the sketch in Fig. 13. At low densities or high
enough temperatures, they all describe an ergodic
liquid phase, analogous to the paramagnetic phase
of a spin glass. Under cooling or application of an
external pressure, the free energy breaks up into
many different minima which eventually trap the
dynamics, and the system enters the glass phase,
as described further below.

The merit of the infinite dimensional theory is
that it offers quantitative results and applies
directly to microscopic models of liquids and
glasses. Moreover, it directly reveals the nature
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of “mean-field” theories and approximations,
such as the diagrammatic liquid theory and
Mode-Coupling Theory. Last but not least, it
establishes once and for all that the 1RSB phase
and associated physics and phase transition is the
correct and universal mean-field theory of glass-
forming models.

Random First-Order Transitions
We now discuss the physics associated to the
1RSB phase transition, and more generally to
RFOT. The free energy landscape of glassy sys-
tems is “rugged,” as shown in Fig. 13. It is char-
acterized by many minima and saddle points of
various orders. Actually, the number of stationary
points is so large that in order to count them one
has to introduce an entropy, called configurational
entropy or complexity, sc ¼ 1

N logN fð Þ , where
N fð Þ is the number of stationary points with a
given free energy density f. The (real space) den-
sity profile corresponding to one given minimum
is amorphous and lacks any type of periodic long-
range order, and different minima are very differ-
ent from one another. Defining a similarity mea-
sure between them, an “overlap” Q (see Eq. (39)
below for a precise definition), one typically finds
that two minima with the same free energy f have
zero overlap. The typical shape of the configura-
tional entropy as a function of f is shown in
Fig. 14.

At high temperature, there is typically a single
minimum, the high temperature liquid state. There
is a temperature below which an exponentially
large (in the system size) number of minima
appear. Within mean-field models, corresponding
to Bethe lattices, completely connected lattices,
and interacting particles for d!1 these minima
correspond to macroscopic physical states analo-
gous to the periodic minimum corresponding to
the crystal. (There is of course no crystal state in
disordered systems such as in Eq. (16). In the case
of lattice glass models, there is a crystal phase but
it can disappear depending whether the Bethe
lattice is a Cayley tree or a random regular
graph.) Once the system is in one of these states
it remains trapped there forever, since the barriers
separating states diverge with the system size.
However, when transposed to finite dimensional
systems, these states become metastable and have
a finite lifetime. As a consequence, in order to
compute thermodynamic properties, one has to
sum over all of them using the Boltzmann weight
exp(�βNfα) for each state α (Monasson 1995):

Z ¼
X
a
e�bNf a ¼

ð
df exp Nsc f ; Tð Þ½ �e�bNf ,

ð21Þ

a b
j ���jg j ���jg

A Statistical Mechanics
Perspective on Glasses
and Aging,
Fig. 13 Sketch of the
evolution of free-energy
landscape of hard spheres
across the glass transition.
In the liquid phase (a) at low
packing fractions ’ < ’g,
every portion of the phase
space is accessible. For
’ < ’g the system is in the
glass phase (b) and remains
trapped in one of the many
equivalent basins
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where β¼ 1/(KBT ). Evaluating this sum by saddle
point method yields three regimes. At high tem-
perature, T > TMCT, the liquid corresponding to a
flat density profile dominates the sum. The land-
scape is simple and has a single minimum. This is
followed by an intermediate temperature regime,
TK< T< TMCT, where the sum is dominated by all
terms with free energy density satisfying

@sc f , Tð Þ
@f

����
f¼ f �

¼ b: ð22Þ

There are many of them, the logarithm of their
number being given byNsc(f*, T), see Fig. 14 for a
graphical solution of Eq. (22). Upon decreasing
the temperature, sc( f*, T) decreases until a tem-
perature, TK, below which the sum in Eq. (21)
becomes dominated by only few terms
corresponding to states with free energy density
fK given by sc( fK, T )¼ 0, see Fig. 14. The entropy
in the intermediate temperature range above TK
has two contributions: the one counting the num-
ber of minima, given by sc, and the intra-state
entropy, sin, counting the number of configura-
tions inside each state. At TK, the configurational
entropy vanishes, sc(TK) ¼ 0. As a consequence
the specific heat undergoes a jump toward a

smaller value across TK, an exact realization of
the “entropy vanishing” mechanism conjectured
by Kauzmann (1948).

Let us discuss the dynamical behavior which
results from the above analysis. We have already
mentioned that relaxation processes do not occur
below TMCT because states have an infinite life-
time. The stability of these states can be analyzed
by computing the free energy Hessian in the min-
ima (Castellani and Cavagna 2005). One finds that
states become more fragile when T ! T�

MCT are
marginally stable at T ¼ TMCT, unstable for
T > TMCT. The relaxation dynamics of these
models can be analyzed exactly (Barrat et al.
2004; Maimbourg et al. 2016). Coming from
high temperature, the dynamics slows down and
the relaxation time diverges at TMCT in a power law
manner,

ta 	 1

T � TMCTð Þg , ð23Þ

where γ is a critical exponent. The physical reason
is the incipient stable states that appear close to
TMCT. The closer the temperature is to TMCT, the
longer it takes to find an unstable direction to
relax.

Amazingly, the dynamical transition that
appears upon approaching TMCT in random first-
order landscapes is completely analogous to the
one predicted for supercooled liquids by the
Mode-Coupling Theory (MCT) of the glass tran-
sition, and developed independently by
Leuthesser, Bengtzelius, Götze, Sjolander, and
coworkers (Götze 1999). Actually, MCT can be
considered as an approximation which becomes
controlled and exact for these mean-field models.
Originally, MCT was developed using projector
operator formalism (Leutheusser 1984;
Bengtzelius et al. 1984) and field-theory methods
(Das and Mazenko 1986) to yield closed integro-
differential equations for the dynamical structure
factor in supercooled liquids. These approaches
were recently generalized (Biroli and Bouchaud
2004; Biroli et al. 2006) to deal with dynamic
heterogeneity and make predictions for the multi-
point susceptibilities and correlation functions
discussed in section “Dynamic Heterogeneity.”

1/TMCT

1/T

1/TK

fMCTffK

f

s c

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 14 Typical shape of the configurational
entropy, sc, as a function of free energy density, f in the
range Tk < T < TMCT for random first-order landscapes.
A graphical solution of Eq. (22) is obtained by finding the
value of f at which the slope of the curve is 1/T. Note that sc
is also a function of temperature, so this curve changes with
T
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Within MCT, the relaxation timescale diverges in
a power law fashion at TMCT, as in Eq. (23). This
divergence is accompanied by critical behavior
that appears both in space (long range spatial
dynamic correlations), and in time (time-
dependent power laws).

Comparing Eqs. (1) and (23) makes it clear that
MCT cannot be used to describe viscosity data
close to Tg since it does not predict activated
behavior. It is recognized that an MCT transition
at TMCT does not occur in real materials, so that
TMCT is, at best, a dynamical crossover. A central
advantage of MCT compared to many other theo-
ries is that it can yield quantitative predictions
from microscopic input obtained for a particular
material. As such it has been applied to scores of
different systems, with predictions that can be
directly confronted to experimental or numerical
measurements. A major drawback is the freedom
offered by the “crossover” nature of the MCT
transition, so that “negative” results can often be
attributed to corrections to asymptotic predictions
rather than deficiencies of the theory itself. Nev-
ertheless, MCT has proven to be useful and con-
tinues to be developed, applied, and generalized to
study many different physical situations (Götze
1999), including aging systems and nonlinear
rheology of glassy materials (Berthier et al.
2000; Miyazaki and Reichman 2002; Fuchs and
Cates 2002), see also section “Aging and Off-
Equilibrium Dynamics.”

What happens below TMCT in a finite dimen-
sional system if the relaxation time does not
diverge as predicted in Eq. (23)? Why is the
transition avoided? In fact, the plethora of states
that one finds in mean-field are expected to
become (at best) metastable in finite dimension,
with a finite lifetime, even below TMCT. What is
their typical life time and how these metastable
states are related to the structural relaxation are
issues that still await for a complete microscopic
analysis.

There exist, however, phenomenological argu-
ments (Xia and Wolynes 2000; Kirkpatrick et al.
1989; Bouchaud and Biroli 2004), backed by
microscopic computations (Dzero et al. 2005;
Franz 2006) that yield a possible solution dubbed
“mosaic state” by Kirkpatrick, Thirumalai, and

Wolynes (1989). Schematically, the mosaic pic-
ture states that, in the regime TK < T < TMCT, the
liquid is composed of domains of linear size x.
Inside each domain, the system is in one of the
mean-field states. The length of the domains is
fixed by a competition between energy and con-
figurational entropy. A state in a finite but large
region of linear size l can be selected by appropri-
ate boundary conditions that decrease its free
energy by an amount which scales as Ulθ with
θ � 2. On the other hand, the system can gain
entropy, which scales as scl

3, if it visits the other
numerous states. Entropy obviously gains on
large lengthscales, the crossover length x being
obtained by balancing the two terms,

x ¼ U
Tsc Tð Þ

� �1= 3�yð Þ
: ð24Þ

In this scenario, the configurational entropy on
scales smaller than x is too small to stir the con-
figurations efficiently and win over the dynami-
cally generated pinning field due to the
environment, while ergodicity is restored at larger
scale. Hence, the relaxation time of the system is
the relaxation time, t(x), of finite size regions.
Barriers are finite, unlike in the mean-field treat-
ment. Smaller length scales are faster but unable
to decorrelate, whereas larger scales are orders of
magnitude slower. Assuming thermal activation
over energy barriers which are supposed to grow
with size as xc, one finally predicts, using
Eq. (24), that (Bouchaud and Biroli 2004)

log
ta
t0

� �
¼ c

U
kBT

U
Tsc Tð Þ

� �c= 3�yð Þ
, ð25Þ

where c is a constant.
The above argument is rather generic and

therefore not very predictive. There exist micro-
scopic computations (Dzero et al. 2005; Franz
2006; Biroli and Cammarota 2017) aimed at put-
ting these phenomenological arguments on a
firmer basis and computing the exponents θ and
c. The results are not yet fully conclusive because
they involve replica calculations with some
assumptions, but they do confirm the
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phenomenological scenario presented above and
suggest that θ¼ 2. Some other phenomenological
arguments suggest the value of θ ¼ 3/2
(Kirkpatrick et al. 1989). There are no computa-
tion available for c, only the suggestion that c ¼
0 (Kirkpatrick et al. 1989).

Note that using the value θ ¼ 3/2 with θ ¼ c
simplifies Eq. (25) into a form that is well-known
experimentally and relates log tα directly to 1/Sc,
which is the celebrated Adam-Gibbs relation
(Adam and Gibbs 1965) between relaxation time
and configurational entropy that is in rather good
quantitative agreement with many experimental
results (Angell 1997; Hodge 1997; Johari 2000;
Ozawa et al. 2019). The Random First-Order
Transition theory can be considered, therefore,
as a microscopic theory that reformulates and
generalizes the Adam-Gibbs mechanism. Further-
more, using the fact that the configurational
entropy vanishes linearly at TK, a VFT divergence
of the relaxation time as in Eq. (1) is predicted,
with the identification that

T0 ¼ TK: ð26Þ

The equality (26) between two temperatures
that are commonly used in the description of
experimental data certainly constitutes a central
achievement of RFOT theory since it accounts for
the empirical relation found between the kinetics
and the thermodynamics of supercooled liquids.
Furthermore RFOT theory naturally contains
MCT, which can be used to describe the first
decades of the dynamical slowing down, while
the spin glass side of RFOT theory qualitatively
explains the dynamics in terms of the peculiar
features of the free energy landscape that have
been detailed above. Dynamics first slows down
because there appear incipient metastable states,
and once these metastable states are formed, the
dynamics becomes dominated by the thermally
activated barrier crossing from one metastable
state to another, which is consistent with the rela-
tion between dynamical correlation length and
timescale discussed in section “Dynamic Hetero-
geneity.” Quite importantly, microscopic compu-
tations of TMCT and T0 for realistic models of

liquids are possible (Parisi et al. 2020; Mézard
and Parisi 1999).

Probably the most serious weakness of the
RFOT theory construction is that the theory,
although worked out in full details within mean-
field models or the large dimensionality limit, is
based for finite dimensions on asymptotic results
valid, for example, for T! TK. The application of
RFOT theory to temperatures accessible in exper-
iments (hence not very close to TK) requires addi-
tional phenomenological assumptions. Moreover,
the dynamical processes leading to the VFT law
are not understood completely. Although the ulti-
mate consequences of the theory are sometimes in
very good agreement with experiments, as
Eq. (26), direct tests of the mosaic state picture
are rare and difficult (Cavagna et al. 2007; Ozawa
and Berthier 2017).

Heterogeneous Disorder and Mapping to the
Random, Field Ising Model
The study of second-order phase transitions
shows that field theory provides a natural frame-
work to go beyond mean-field theory (Chaikin
et al. 1995). With this in mind, researchers in
glass physics have also gone down this route in
recent years. One of their main achievements has
been to identify fluctuations that are neglected by
mean-field theory and play a very important role
in shaping the physical behavior of supercooled
liquids. These fluctuations have been related to
the notion of “self-induced disorder” in Franz
et al. (2011). In the following, we may prefer the
name “self-induced heterogeneity” to make the
distinction with the “self-induced disorder”
discussed in section “Franz-Parisi Potential.”
(This terminology was suggested to us by Jean-
Philippe Bouchaud.) The main idea is that when
observing equilibrium relaxation from time t to
time t þ tα, the state of the system at time t is
spatially heterogeneous: for instance it can have
higher density in one region and lower density in
another. Actually, theoretical analysis shows
(Stevenson et al. 2008; Biroli et al. 2018a, b)
that even key mean-field quantities, such as the
configurational entropy, are heterogeneously dis-
tributed in space. Since the amount of slowing
down is directly linked to those quantities
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(at least within RFOT theory), these static fluctu-
ations induce strong dynamical fluctuations, lead-
ing in particular to dynamical heterogeneities
(Franz et al. 2011). From the theoretical point of
view, they play a key role in changing properties
of the MCT transition and the ideal glass transi-
tion. In fact, even though the MCT transition is
like a spinodal instability within mean-field the-
ory (Kirkpatrick and Wolynes 1987b), one finds
that once these fluctuations are included, MCT
enters the universality class of a disordered
spinodal, like, for example, the spinodal of the
Random Field-Ising Model (Franz et al. 2011).
Using results obtained on this problem, this con-
nection implies that even in the absence of acti-
vated hopping, the MCT transition changes nature
in any finite dimension: it is either wiped out by
non-perturbative fluctuations (Rizzo 2016) or it
becomes dominated by rare and non-perturbative
events, as happens for the spinodal of the RFIM
(Nandi et al. 2016). One nevertheless expects that
the higher the spatial dimension, the more obvious
an echo of the MCT mean-field transition should
persist (Maimbourg et al. 2016; Biroli and
Bouchaud 2012; Berthier et al. 2020).

Finally, the role of heterogeneous disorder on
the ideal glass transition has been investigated in
Stevenson et al. (2008) and Biroli et al. (2018a, b).
The main outcome of these studies is an effective
model for the glass transition that takes the form
of an RFIM with extra long-range anti-
ferromagnetic and multi-body interactions.
These new couplings depress the ideal glass tran-
sition temperature but do not lead to qualitative
changes. The strength of the disorder is, however,
crucial: a strong enough disorder (a system-
dependent feature) can destroy the ideal glass
transition, as may happen for the RFIM. Another
relation with the RFIM was also found in Biroli
and Bouchaud (2012), where it was shown that
amorphous interfaces between rearranging
regions behave statistically as the ones of domain
walls in the RFIM.

Let us conclude with a word of caution: not
everything is understood about self-induced het-
erogeneity. Since the disorder is strongly linked to
the state of the system, it is also to a large extent
renewed after a time tα, thus it evolves and at the

same time it affects the dynamics, that is, it is not
truly quenched. This is a first difficulty in
assessing precisely its role for glassy relaxation
(Berthier et al. 2019c). A second one is that
although for static properties, such as configura-
tional entropy or the Franz-Parisi potential, one
can establish a mapping to the RFIM, for the
dynamics the situation is more intricate and no
mapping has been found up to now. (The diffi-
culty is that the mapping to the RFIM proceeds by
relating the overlap (for glasses) to the magneti-
zation (for the RFIM). There are no natural
dynamical equations for the overlap, and in the
only cases where those have been established –
the β-regime of MCT – these proved to be quite
complex and different from the corresponding
equations for the magnetization of the RFIM.)

Renormalization Group for the Glass Transition
In parallel with the efforts described in the previ-
ous section, developing a renormalization group
(RG) analysis of the glass transition has been a
new important theoretical activity in the last
decade. Different methods have been used, and
were applied on lattice disordered models and
replica lattice field theories which display a glass
transition. Given that the ideal glass transition has
a mixed character, intermediate between first- and
second-order phase transition, usual perturbative
RG techniques developed for continuous phase
transitions do not work. Therefore researchers
had to focus on non-perturbative methods. In
Castellana et al. (2010) the hierarchical Dyson
RGmethod was employed to analyze the Random
Energy Model in finite dimension. The authors
found an ideal glass phase transition similar to
the one taking place within mean-field but with a
nonanalytical behavior of the free-energy at TK,
leading in particular to a specific heat exponent
different from one, as assumed within RFOT the-
ory. The real-space properties, correlation length
and energy barrier, and the nature of the fixed-
point were first studied in Yeo and Moore (2012)
and Cammarota et al. (2011) by Migdal-Kadanoff
RG. A complete and more advanced analysis was
performed in Angelini and Biroli (2017), in which
it was shown that the ideal glass transition is
associated to a so-called zero temperature fixed
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point (Fisher 1986). The main implication is that
the correlation length and the typical energy bar-
rier have power law divergences with nontrivial
exponents, hence implying a super-Arrhenius
behavior. However, such a fixed point was found
only in dimensions higher than three. In conse-
quence, this RG treatment predicts that in three
dimensions the glass transition is actually an
avoided phase transition (Kivelson et al. 1995):
glassy behavior is still driven by the RG fixed
point present in higher dimension, but the corre-
lation length and the timescale do not truly
diverge (arguably an irrelevant fact since one can-
not approach the transition close enough, but an
important conceptual one).

The RG approaches we reviewed above offer a
new perspective on the nature of the glass transi-
tion. They provide important guidelines for more
controlled non-perturbative RG treatments. Ide-
ally, one would like to tackle directly interacting
particle systems in the continuum and use
methods that have been proved to be precise and
reliable in previous studies, such as the one devel-
oped by Wetterich (Berges et al. 2002). This is a
formidable challenge as those techniques do not
seem to be able to handle the kind of rare and
localized non-perturbative events that are relevant
for glassy dynamics (Rulquin et al. 2016).

Free Volume, Defects, and Facilitated Models

Lattice Gases
In this subsection we motivate and briefly sum-
marize studies of a different family of statistical
mechanics models that turns out to yield a rich
variety of physical behaviors. Their starting points
are physical assumptions that might seem similar
to the models described in section “Random First-
Order Transition Theory,” but the outcome yields
a different physical explanation of the glass tran-
sition. Although the two theoretical approaches
cannot be simultaneously correct, they both have
been influential and very instructive in order to
develop a theoretical understanding of glassy
phenomena.

As in section “Random First-Order Transition
Theory,” we first consider hard sphere systems.
We follow the lattice gas description introduced

by Kob and Andersen (1993), and work on a
three-dimensional cubic lattice. As in a hard
sphere system, we assume no interaction between
particles beyond the hard-core constraint that the
occupation number ni at site i is at most equal to 1,

H nif g½ � ¼ 0, ni ¼ 0, 1: ð27Þ

In contrast to the lattice glass model, all con-
figurations respecting the hard-core constraint are
allowed and are equally probable. Geometric frus-
tration is instead introduced at the level of the
kinetic rules, which are defined as constrained
local moves. Namely, a particle can jump to a
nearest neighbor site only if that site is empty
(to satisfy the hard-core constraint), but, addition-
ally, only if the sites occupied before and after the
move have less than m neighbors, m being an
adjustable parameter, which Kob and Andersen
choose as m ¼ 4 for d ¼ 3 (m ¼ 6 corresponds to
the unconstrained lattice gas). The model captures
the idea that if the liquid if locally very dense, no
movement is possible while regions with low
density move more easily.

Of course, such kinetically constrained lattice
gases have been studied in various spatial dimen-
sions, for different values of m, for different con-
straints, or even different lattice geometries
(Ritort and Sollich 2003). These models capture
the idea of a “cage” effect in a strict sense, mean-
ing that a particle with a dense neighbor shell
cannot diffuse. Although the cage seems a purely
local concept, it turns out that diffusion in
constrained lattice gases arises from cooperative
rearrangements, so that slow dynamics can be
directly shown to be driven by the growth of
dynamic lengthscales for these cooperative
moves (Franz et al. 2002; Toninelli et al. 2004;
Pan et al. 2005). This strongly suggests that such
cooperative moves most probably have a role in
the dynamics of real liquids.

Free Volume, Dynamic Criticality
In the lattice gas picture, the connection with the
liquid is not obvious because it is the density
(“free volume”) rather than the temperature that
controls the dynamics. Thermal models with sim-
ilar features can in fact be defined along the

32 A Statistical Mechanics Perspective on Glasses and Aging



following lines. In a liquid, low temperature
implies a very small probability to find a location
with enough free volume to move. The idea of a
small concentration of “hot spots” is in fact rem-
iniscent of another picture of the glass transition
based on the idea of “defects” which is captured
by the defect model proposed by Glarum (1960)
in the 1960s, where relaxation proceeds via the
diffusion of a low concentration of independent
defects. In the mid-1980s, using both ideas of
kinetic constraints and rare defects, Fredrickson
and Andersen defined a family of kinetic Ising
models for the glass transition (Fredrickson and
Andersen 1984). They studied an assembly of
noninteracting spins,

H nif g½ � ¼
XN
i¼1

ni, ni ¼ 0, 1, ð28Þ

where ni ¼ 1 represents the defects, whose con-
centration becomes exponentially small at low
temperature, hnii ≈ exp (�1/T ). As for the Kob-
Andersen lattice gas, the nontrivial ingredient lies
in the chosen rates for the kinetic transitions
between states. The kinetic rules stipulate that a
transition at site i can happen with a usual Glauber
rate, but only if site i is surrounded by at least
k defects (k ¼ 0 corresponds to the unconstrained
limit). Again, one can easily imagine studying
such models in different spatial dimensions, on
different lattices, and with slightly different
kinetic rules, yielding a large number of possible
behaviors (Ritort and Sollich 2003; Léonard et al.
2007). The similarity between those spin facili-
tated models and the kinetically constrained lat-
tice gases is striking. Altogether, they form a large
family of models generically called kinetically
constrained models (KCMs) (Ritort and Sollich
2003).

The connection between KCMs and the much
older concept of free volume is obvious from our
presentation. Free volume models are among the
most widely used models to analyze experimental
data, especially in polymeric systems. They have
been thoroughly reviewed before (Debenedetti
1996; Cohen and Grest 1982), and the main predic-
tion is that dynamic slowing down occurs because

the free volume available to each particle, uf, van-
ishes at some temperature T0 as uf ≈ α(T � T0).
Statistical arguments then relate relaxation time-
scales to free volume assuming that a movement is
possible if locally there is “enough” available free
volume, more than a typical value u0. This is clearly
reminiscent of the above idea of a kinetic constraint
for local moves in lattice gases. An appealing VFT
divergence is then predicted:

ta
t0

	 exp g
u0
u f

� �
~exp

gu0=a
T � T0j jm

� �
, ð29Þ

where γ is a numerical factor and m ¼ 1. Pre-
dictions such as Eq. (29) justify the wide use of
free volume approaches, despite the many
(justified) criticisms that have been raised.

Initially it was suggested that KCMs would
similarly display finite temperature or finite den-
sity dynamic transitions similar to the one pre-
dicted by the mode-coupling theory of
supercooled liquids (Fredrickson and Andersen
1984), but it was soon realized (Fredrickson and
Brawer 1986; Butler and Harrowell 1991) that
most KCMs do not display such singularity, and
timescales in fact only diverge in the limit of zero
temperature (T ¼ 0) or maximal density (r ¼ 1).
Models displaying a Tc > 0 or rc < 1 transition
have also been introduced and analyzed (Toninelli
et al. 2006). They provide a microscopic realiza-
tion, based on well-defined statistical mechanics
models, of the glass transition predicted by free
volume arguments. Their relaxation timescale
diverges with a VFT-like form but with an expo-
nent m ’ 0.64. Understanding their universality
classes or the degree of generality of the mecha-
nism leading to the transition is still an open
problem (Elmatad et al. 2009, 2010; Elmatad
and Keys 2012); the most recent results on this
front come from mathematical physicists who
have been able to classify many of the different
possible behaviors on the basis of the microscopic
dynamical rules (Hartarsky et al. 2019a, b;
Martinelli et al. 2019a, b).

Extensive studies have shown that KCMs have
a macroscopic behavior which resembles the phe-
nomenology of supercooled liquids, displaying in
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particular an Arrhenius or super-Arrhenius
increase of relaxation timescales upon decreasing
temperature, and non-exponential relaxation func-
tions at equilibrium (Ritort and Sollich 2003).
Early studies also demonstrated that, when sud-
denly quenched to very low temperatures, the
subsequent nonequilibrium aging dynamics of
these models compares well with experimental
observations on the aging of liquids (Fredrickson
and Brawer 1986). The diverse definitions of such
models suggest a broad variety of different behav-
iors. This feature is both positive and negative: on
the one hand one can explore various scenarios to
describe glass transition phenomena, but on the
other hand, one would like to be able to decide
what particular model should be used to get a
quantitative description for a particular liquid. It
is not straightforward to perform microscopic pre-
dictions using the framework of KCMs, since
there is no direct observable parameter to use as
input of the theory (unlike g(r), for MCT). An
operative definition of KCMs’ defects was pro-
vided (see next section and Keys et al. (2011,
2013)); however, this does not allow to directly
choose which KCM (which rules) are appropriate
for a given liquid.

Despite this caveat, it is quite useful to use
KCMs as theoretical tools to define concepts and
obtain new ideas. It is precisely in this perspective
that interest in KCMs has increased, in large part
since it was realized that their dynamics is spa-
tially heterogeneous (Franz et al. 2002; Butler and
Harrowell 1991; Garrahan and Chandler 2002), a
central feature of supercooled liquids dynamics.
In particular, virtually all the aspects related to
dynamic heterogeneity mentioned in section
“Dynamic Heterogeneity” can be investigated
and rationalized, at least qualitatively, in terms of
KCMs. The dynamics of these systems can be
understood by considering where “relaxation”
happens and then propagate, which is dictated by
the underlying defect motion (Ritort and Sollich
2003). Depending on the particular model, defects
can diffuse or have a more complicated motion.
Furthermore, they can be point-like or “coopera-
tive” (formed by point-like defects moving in a
cooperative way). A site can relax only when it is
visited by a defect. As a consequence, the

heterogeneous character of the dynamics is
entirely encoded in the defect configuration and
defect motion (Garrahan and Chandler 2002). For
instance, a snapshot similar to Fig. 6 in a KCM
shows clusters which have relaxed within the time
interval t (Whitelam et al. 2005; Berthier and
Garrahan 2005). These are formed by all sites
visited by a defect between 0 and t. The other
sites are instead frozen in their initial state. In
these models the dynamics slows down because
the defect concentration decreases. As a conse-
quence, in the regime of slow dynamics there are
few defects and strong dynamic heterogeneity.
Detailed numerical and analytical studies have
indeed shown that in these systems, non-
exponential relaxation patterns do stem from a
spatial, heterogeneous distribution of timescales,
directly connected to a distribution of dynamic
lengthscales (Toninelli et al. 2004, 2006; Pan
et al. 2005; Garrahan and Chandler 2002;
Whitelam et al. 2005; Jack et al. 2006a).
Decoupling phenomena also appear naturally in
KCMs and can be shown to be very direct, quan-
tifiable, consequences of the dynamic heterogene-
ity (Jung et al. 2004), which also deeply affects the
process of self-diffusion in a system close to its
glass transition (Berthier et al. 2004). More fun-
damentally, multipoint susceptibilities and multi-
point spatial correlation functions such as the ones
defined in Eqs. (8) and (11) can be studied in much
greater detail than in molecular systems, relating
their evolution to time and length scales (Berthier
et al. 2007b; Toninelli et al. 2005; Pan et al. 2005;
Chandler et al. 2006; Whitelam et al. 2004). This
type of scaling behavior has been observed close
to T¼0 and r¼1 in spin models and lattice gases
without a transition. (Acritical (diérent) behavior
is expected and predicted for models having a
transition (Toninelli et al. 2006).) Different theo-
retical approaches have shown that these particu-
lar points of the phase diagram correspond to
genuine critical points where timescales and
dynamic lengthscales diverge with well-defined
critical laws (Jack et al. 2006a; Whitelam et al.
2004). Such “dynamic criticality” implies the
existence of universal scaling behavior in the
physics of supercooled liquids, of the type
reported for instance in Fig. 11.

34 A Statistical Mechanics Perspective on Glasses and Aging



Defects: Connection with Hamiltonian Dynamics
Models
A central criticism about the free volume
approach, that is equally relevant for KCMs, con-
cerns the identification, at the molecular level, of
the vacancies (in lattice gases), mobility defects
(in spin facilitated models), or of the free volume
itself. The attempts to provide reasonable coarse-
graining from molecular models with continuous
degrees of freedom to lattice models with kinetic
rules have been, for a very long time, quite limited
and not fully convincing (Gebremichael et al.
2004; Downton and Kennett 2007).

For molecular models, this issue was first
attacked in 2010, with a definition of the cumu-
lated dynamical activity K, an extensive quantity
characterizing the frequency of state changes
(from excited to non-excited and vice versa)
(Elmatad et al. 2010; Hedges et al. 2009). This
definition was made more concrete and studied in
models of supercooled liquids in Keys et al.
(2011), where an appropriate functional is explic-
itly designed as a recorder of excitations
(or defects). Defects or excitations are not to be
mistaken with displacements. Indeed, some loca-
tions providing opportunities for structural reor-
ganization do coincide with defects, and their
presence can be inferred by observing nontrivial
particle displacements associated with transitions
between relatively long-lived configurations. Dis-
placements instead refer to dynamical moves in
short segments of a trajectory, while defects refer
to underlying configurations. The explicit defini-
tion of defects has since been used to estimate the
role of facilitation in glassy dynamics, to provide a
microscopic validation of KCMs (Keys et al.
2015; Isobe et al. 2016), to explain dynamical
heterogeneities in glassy materials, or to compute
the dynamical facilitation volume (Elmatad and
Keys 2012).

The conceptual proof that kinetic rules emerge
effectively and induce a slow dynamics has been
obtained for simple lattice spin models (Garrahan
2002), with a dynamics that directly maps onto
constrained models. A deeper study of this kind of
model was performed more recently (Turner et al.
2015). Several examples are available but here we
only mention the simple case of the bidimensional

plaquette model defined by a Hamiltonian of a
p-spin type on a square lattice of linear size L,

H ¼ �J
XL�1

i¼1

XL�1

j¼1

Si,jSiþ1,jSi,jþ1Siþ1,jþ1, ð30Þ

where Si,j ¼ 
1 is an Ising variable lying at node
(i, j) of the lattice. Contrary to KCMs, the Hamil-
tonian in Eq. (30) contains genuine interactions,
which are no less (or no more) physical than
p-spin models discussed in section “Random
First-Order Transition Theory.” Interestingly the
dynamics of this system is (trivially) mapped onto
that of a KCM by analyzing its behavior in terms
of plaquette variables, pi, j¼Si, jSi þ1, jSi, j þ1Si þ1,

j þ 1, such that the Hamiltonian becomes a non-
interacting one, H ¼ � J �i, jpi, j, as in Eq. (28).
More interestingly, the analogy also applies to the
dynamics (Garrahan 2002). The fundamental
moves are spin-flips, but when a single spin is
flipped the states of the four plaquettes surround-
ing that spin change. Considering the different
types of moves, one quickly realizes that excited
plaquettes, pi,j ¼ +1, act as sources of mobility,
since the energetic barriers to spin flips are smaller
in those regions. This observation allows to iden-
tify the excited plaquettes as defects, by analogy
with KCMs. Spatially heterogeneous dynamics,
diverging lengthscales accompanying diverging
timescales and scaling behavior sufficiently close
to T ¼ 0 can be established by further analysis
(Jack et al. 2005), providing a simple but concrete
example of how an interacting many body system
might effectively behave as a model with kinetic
constraints. (This type of plaquette models and
other spin models were introduced originally
(Lipowski et al. 2000; Sethna et al. 1991) to
show how ultraslow glassy dynamics can emerge
because of growing free energy barriers.)

Connection with Other Perspectives
An essential drawback of facilitated models is that
among the microscopic “details” thrown away to
arrive at simple statmech models such as the ones
in Eqs. (27) and (28), information on the thermo-
dynamical behavior of the liquids has totally
disappeared. In particular, a possible coincidence
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between VFT and Kauzmann temperatures, To
and TK is not expected, nor can the dynamics be
deeply connected to thermodynamics, as in
Adam-Gibbs relations. The thermodynamical
behavior of KCMs appears different from the
one of real glass-formers close to Tg (Biroli et al.
2005). This is probably the point where KCMs
and RFOT approaches differ most obviously.
Even though the dynamics of KCMs shares sim-
ilarities with systems characterized with a com-
plex energy landscape (Berthier and Garrahan
2003; Whitelam and Garrahan 2004), thermody-
namical behaviors are widely different in both
cases, as has been recently highlighted in Jack
and Garrahan (2005) by focusing on the concrete
examples of plaquette models such as in Eq. (30).

Finally, when KCMs were first defined, they
were argued to display a dynamical transition of a
very similar nature to the one predicted by MCT
(Fredrickson and Andersen 1984). Although the
claim has been proven wrong, it bears some truth:
both approaches basically focus on the kinetic
aspects of the glass transition and they both pre-
dict the existence of some dynamic criticality with
diverging lengthscales and timescales. (Most
KCMs do not have a finite temperature dynamical
transition and the ones displaying a transition
have critical properties diérent from MCT.) This
similarity is even deeper, since a modecoupling
singularity is present when (some) KCMs are
studied on the Bethe lattice (Toninelli et al.
2004), but is “avoided”when more realistic lattice
geometries are considered (Berthier et al. 2012).

Geometric Frustration, Avoided Criticality,
and Locally Preferred Structures
In all of the above models, “real space” was pre-
sent in the sense that special attention was paid to
different lengthscales characterizing the physics
of the models that were discussed. However, apart
from the “packing models” with hard-core inter-
actions, no or very little attention was paid to the
geometric structure of local arrangements in
molecular liquids close to a glass transition. This
slight oversight is generally justified using con-
cepts such as “universality” or “simplicity,”
meaning that one studies complex phenomena
using simple models, a typically statistical

mechanics perspective. However, important ques-
tions remain: what is the liquid structure within
mosaic states? How do different states differ?
What is the geometric origin of the defects
invoked in KCMs? Are they similar to defects
found in crystalline materials (disclinations, dis-
locations, vacancies, etc.)? Some lines of research
attempt to provide answers to these questions,
making heavy use of the concept of geometric
frustration.

Geometric Frustration
Broadly speaking, frustration refers to the impos-
sibility of simultaneously minimizing all the inter-
action terms in the energy function of a system.
Frustration might arise from quenched disorder
(as in the spin glass models described above),
but liquids have no quenched randomness. In
liquids, instead, frustration has a purely geometri-
cal origin. It is attributed to a competition between
a short-range tendency for the extension of a
“locally preferred order,” and global constraints
that prevent the periodic tiling of space with this
local structure.

This can be illustrated by considering once
more the packing problem of spheres in three
dimensions. In that case, locally the preferred
cluster of spheres is an icosahedron. However,
the fivefold rotational symmetry characteristic of
icosahedral order is not compatible with transla-
tional symmetry, and formation of a periodic ico-
sahedral crystal is impossible (Frank 1952). The
geometric frustration that affects spheres in three
dimensional Euclidean space can be relieved in
curved space (Nelson 2002). In Euclidian space,
the system possesses topological defects
(disclination lines), as the result of forcing the
ideal icosahedral ordering into a “flat” space. Nel-
son and coworkers developed a solid theoretical
framework based on this picture to suggest that
the slowing down of supercooled liquids is due to
the slow wandering of these topological defects
(Nelson 2002), but their treatment remains too
abstract to obtain quantitative, explicit results.
Further theoretical work extended the integral-
equation approach to calculate the pair correlation
function in hyperbolic geometry, making it easier
to compare predictions and simulation data
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(Sausset et al. 2009). MCTwas also re-derived in
curved space (on a sphere), showing that it still
cannot capture quantitatively the transition (Vest
et al. 2014, 2015). Explicit numerical results were
also obtained recently (Turci et al. 2017a), show-
ing a clear first-order like transition from liquid to
ordered solid in an appropriately curved space,
becoming avoided as Euclidean space is retrieved.

Coulomb Frustrated Theories
The picture of sphere packing disrupted by frus-
tration has been further developed in simple sta-
tistical models characterized by geometric
frustration, in a pure statistical mechanics
approach (Tarjus et al. 2005). To build such a
model, one must be able to identify, then capture,
the physics of geometric frustration. Considering
a locally ordered domain of linear size L, Kivelson
et al. (1995) suggest that the corresponding free
energy scales as

F L,Tð Þ ¼ s Tð ÞL2 ¼ f Tð ÞL3 þ s Tð ÞL5: ð31Þ

The first two terms express the tendency of
growing locally preferred order and represent
respectively the energy cost of having an interface
between two phases and a bulk free energy gain
inside the domain. Geometric frustration is
encoded in the third term which represents the
strain free energy resulting from frustration. The
remarkable feature of Eq. (31) is the super-
extensive scaling of the energy cost due to frus-
tration which opposes the growth of local order.
The elements in Eq. (31) can then be directly
incorporated into ferromagnetic models where
“magnetization” represents the local order, ferro-
magnetic interactions represent the tendency to
local ordering, and Coulombic antiferromagnetic
interactions represent the opposite effect, coming
from the frustration. The following Hamiltonian
possesses these minimal ingredients:

H ¼ �J
X
i, jh i

Si � S j þ K
X
i 6¼j

Si � S j

j xi � x j j , ð32Þ

where the spin Si occupies the site i at position xi.
Such Coulomb frustrated models have been

studied in great detail, using various approxima-
tions to study models for various space and spin
dimensions (Tarjus et al. 2005).

The general picture is that the ferromagnetic
transition occurring at T ¼ T0

c in the pure model
with no frustration (K ¼ 0) is either severely
displaced to lower temperatures for K > 0, some-
times with a genuine discontinuity at K ! 0,
yielding the concept of “avoided criticality.” For
the simple case of Ising spins in d ¼ 3, the
situation is different since the second-order tran-
sition becomes first-order between a paramagnetic
phase and a spatially modulated phase (stripes).
For K> 0 and T < T0

c the system is described as a
“mosaic” of domains corresponding to some local
order, the size of which increases (but does not
diverge!) when T decreases. Tarjus, Kivelson, and
coworkers clearly demonstrated that such a struc-
turation into mesoscopic domains allows one to
understand most of the fundamental phenomena
occurring in supercooled liquids (Tarjus et al.
2005). Their picture as a whole is very appealing
because it directly addresses the physics in terms
of the “real space,” and the presence of domains of
course connects to ideas such as cooperativity,
dynamic heterogeneity, and spatial fluctuations,
which directly explains, at least qualitatively,
non-exponential relaxation, decoupling phenom-
ena, or super-Arrhenius increase of the viscosity.
However, as for the RFOT mosaic picture, direct
confirmations of this scenario are rare (Coslovich
and Pastore 2007), or difficult to obtain.

Locally Preferred Structures
Going back to the geometric structure of local
arrangements in real space, a line of research has
emerged that is based upon some kind of local
order (Coslovich 2011; Royall and Williams
2015; Malins et al. 2013a, b). Icosahedral order
was initially shown to be linked to the dynamics
of some binary mixtures. But more generally, for
simple enough glass-formers, a broader variety of
locally ordered structures can be defined (Royall
and Williams 2015), such as, for example, defec-
tive icosahedron (Royall and Kob 2017). A vast
body of literature has shown that these locally
preferred structures (LPS) seem to correlate with
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structural relaxation. Using trajectory path sam-
pling (see section “s-Ensemble and Large Devia-
tions”), it was found that LPS and dynamic
activity play equivalent roles, and are therefore
strongly correlated (Turci et al. 2017b, 2018). The
increased number of LPS has also been linked to
hindered crystallization (Turci et al. 2019). These
multiple effects suggest the LPS impacts the
dynamics in various ways.

For several systems in d ¼ 2, 3, simple local
order parameters measuring the distance from ste-
rically favored structures (sixfold symmetry,
angles, and closeness to local tetrahedron) have
been spatially coarse-grained (Tong and Tanaka
2018), thus revealing a clear structure-dynamics
relationship. The interpretation in Tong and
Tanaka (2018) is that these LPS represent an indi-
rect measurement of the true amorphous order.
The very simple and widespread tetrahedral
order has been observed in a variety of materials
(Shi and Tanaka 2019). The LPS-dynamics corre-
lation has also been confirmed recently in exper-
iments on colloids (Hallett et al. 2018; Pinchaipat
et al. 2017), providing further evidence of the
important role of LPS in glassy behavior.

Despite these important advances, the concrete
application of LPS-based techniques on any par-
ticular realistic glass-forming material is hindered
by the lack of a universal operative definition of
the LPS. For relatively simple systems, an opera-
tive scheme was designed to automatically find
these LPS (Royall and Williams 2015; Mossa and
Tarjus 2006).

A natural alternative to this tedious exercise is
the use of modernmachine learning techniques. In
particular, one may consider the unsupervised
learning task of grouping together similar local
structures (this is called clustering). Once clusters
(corresponding to automatically found LPS) are
found, any local environment may be assigned to
its most similar group (LPS), but without the
burden of defining the LPS’s one by one
(Ronhovde et al. 2011, 2012; Paret et al. 2020;
Boattini et al. 2020).

Mean-Field Theory of the Amorphous
Phase

The phase transition between liquid and glass is
not the only interesting phenomenon characteriz-
ing the phase diagram of glassy materials. Since
the transition occurs at finite pressure and temper-
ature, glasses can be further compressed or cooled
within the glass phase itself (Kurchan et al. 2012,
2013; Biroli and Urbani 2018; Rainone and
Urbani 2016; Rainone et al. 2015; Scalliet et al.
2019a). How do physical properties of glasses
change in this context? In mean-field theory, this
question has been widely investigated by using
the hard spheres glass model (Parisi and Slanina
2000; Parisi and Zamponi 2010), a favorite canon-
ical example of a glass-former system because of
its analytical simplicity. Eventually, by
compressing a hard sphere glass, the system
undergoes the jamming transition in the limit of
infinite pressure (Donev et al. 2004). In this sec-
tion, we briefly survey recent progress in the
development of an analytic theory of the glass
phase in the large d limit, with a particular empha-
sis on hard spheres (Parisi et al. 2020).

Mean-Field Glassy Phase Diagrams
When a glass-forming liquid undergoes the glass
transition, it becomes confined into a single free
energy minimum and the timescale to explore
different minima becomes infinite. It is formally
possible to define thermodynamic properties by
restricting the available statistical configurations
to a single free energy minimum. This can be
enforced in the replica formalism by considering
two copies of the system and constraining the
distance between them (Charbonneau et al.
2017). First, an equilibrium reference configura-

tion Y at Tg, b’g

� �
is introduced, where b’ is the

scaled packing fraction b’ ¼ 2d’=d . Second, a
copy of the equilibrium configuration X(t) is cre-
ated and evolved in time. Let us define now the
mean-squared displacement (MSD) between the
two copies as D X,Yð Þh i ¼ Dr . The properties of
X(t) are sampled in a restricted region of phase
space close to the equilibrium configuration.
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Within this state following construction, the sys-
tem at Tg, b’g

� �
with initial configuration Y can be

adiabatically followed anywhere in the glass
phase diagram.

Concretely, for the glass state selected by Yand
followed until T, b’ð Þ, we can write the restricted
partition function as:

Z T, b’jY,Dr½ � ¼
ð
dXe�bV Xð Þd Dr � D X,Yð Þð Þ,

ð33Þ

where V(X) is the potential energy of the configu-
ration X, and the delta function enforces the
restricted average. In order to obtain the glass
free energy, we need to compute its average over
the chosen reference configuration Y, which acts
as a source of quenched disorder:

f g T, b’jTg, b’g,Dt

� �
¼ � T

N

ð
dY

Z Tg, b’g

h i e� bgV Yð Þ

� ln Z T, b’jY,Dr½ �
ð34Þ

where Z Tg, b’g

h i
¼ Ð

dY exp �bgV Yð Þ is the parti-

tion function at Tg, b’g

� �
. Mathematically, the

quenched disorder is handled using the replica
method. We then introduce (n þ 1) replicas of
the original system, with the initial glass at

Tg, b’g

� �
being the master replica, while the

n other slave replicas describe the glass at T, b’ð Þ.
The glass free energy is finally expressed in terms
of the average MSD between the slave replicas
and the master replica Δr, and the average distance
between the slave replicas Δ. At this step, we
assume that the symmetry between slave replicas
is not broken, which corresponds to the 1RSB
ansatz described in section “Random First-Order
Transition Theory.”

By choosing the state point at T, b’ð Þ ¼
Tg, b’g

� �
, the recursive equations for Δ and Δr

have to satisfy 1=b’ ¼ Fb Dð Þ, where F β(Δ) is a
positive function which vanishes for both Δ!1
and Δ ! 0, with an absolute maximum in

between. This equation can then be satisfied only
if

1b’d

� max
D

F b Dð Þ: ð35Þ

This condition occurs for volume fractions

larger than a critical value b’d bg
� �

, which corre-

sponds to the dynamical glass transition.
We can explore the glass phase following the

glass prepared at the glass transition Tg, b’g

� �
at

different temperatures and packing fractions. At
low T and high b’ one eventually meets another
phase transition (Kurchan et al. 2013), where the
1RSB assumption fails (Mézard et al. 1987) and
the more complex full-replica symmetry breaking
(fullRSB) solution is necessary to compute the
glass free energy, the so-called Gardner phase
transition (Gardner 1985; Berthier et al. 2019d).
Here, the fullRSB solution corresponds to a hier-
archical organization of the distances between the
slave replicas and the glass becomes marginally
stable (Rainone and Urbani 2016; Franz et al.
2017). The emergence of a complex free energy
landscape gives rise to nontrivial dynamical pro-
cesses (Scalliet and Berthier 2019; Liao and
Berthier 2019; Scalliet et al. 2019b). A pictorial
representation of the Gardner transition is shown
in Fig. 15.

It is worth noting that the derivation sketched
above is completely general and can be used for
any glassy pair potential mentioned in section
“Random First-Order Transition Theory.” In the
following we will apply this formalism to the hard
spheres model, for which several implications
from the mean field picture have been success-
fully tested numerically (Charbonneau et al.
2014b; Berthier et al. 2016a). Here, the relevant
state parameter is the scaled reduced pressurebp ¼ bP=rd . We refer to Biroli and Urbani
(2016, 2018), Berthier et al. (2019d), and Scalliet
et al. (2017, 2019a, b) for more results regarding
systems made of soft potentials.

Starting from an equilibrated hard sphere liq-
uid configuration at b’g , we can apply the state

following formalism to explore the hard sphere
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phase diagram in Fig. 16. The reduced pressure
can lie computed from the equation of state of an
infinite dimensional hard sphere liquid bp~b’=2 ,

derived from a Virial expansion of the free energy
(Maimbourg et al. 2016). Starting from b’g and
decompressing the system, the glass eventually

a bjG  ��j���jg j ��jG
A Statistical Mechanics
Perspective on Glasses
and Aging, Fig. 15 (a)
Sketch of the free energy
structure deep in the hard
sphere glass phase, where
each basin breaks down in
sub-basins corresponding to
secondary relaxations. At
the Gardner transition in
(b), the sub-basins become
fractal and ergodicity is
broken

ϕg = 8, 7, 6, 5.5, 5

equilibrium liquid

RS glass

fullRSB glass

jamming line

1/
p

ϕ

ϕd

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 16 Phase diagram of hard spheres in the
inverse reduced pressure – reduced peaking fraction
1=bp, b’ð Þ plane. The glass transition is marked by a full
circle. The glass equations of state are reported as full lines
in the region where the replica symmetric solution is stable.

The Gardner transition is marked by triangles, beyond
which the fullRSB solution is stable (dashed lines). Tice
glass equations of state end at the jamming transition.
Upon decompression, glasses are stabile until a spinodal
instability arises (open squares)
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undergoes a melting transition: the 1RSB solution
becomes unstable and the glass melts into the
liquid via a spinodal instability (Kurchan et al.
2013). Upon compression instead, the glass enters
deeper into the glass phase and remains dynami-
cally arrested. Numerically, this has been proven
by measuring Δ as the long-time limit of the MSD
Δ(t) between the system at time t and the initial
configuration at t ¼ 0. The order parameter of the
transition Δr is instead computed as the long-time
limit of the distance Δab(t) between two copies
A and B of the same initial system evolved with
different initial velocities:

DAB ¼ 1

N

XN
i¼1

rAi � rBi
�� ��2* +

: ð36Þ

Upon further compression, the glass eventually
undergoes the Gardner transition at a finite pres-
sure bpG . Here, the relation between Δr and Δ
breaks down and Δ(t) is characterized by a loga-
rithmic growth in time, suggesting the emergence
of a complex free energy landscape (Berthier et al.
2016a). The copies A and B cannot occupy the
same sub-basin and are no longer able to explore
the entire metabasin. Due to the fractal nature of
the free energy landscape, the excitations required
to move around the fractal states correspond to
soft modes (Scalliet et al. 2019b). The correlation
length of these modes can be estimated by mea-
suring the dynamical susceptibility, computed as
the variance of ΔAB, which indeed shows a diver-
gence at the Gardner transition (Berthier et al.
2016a).

Compressing further within the Gardner phase,
the pressure eventually diverges as the system
reaches its jamming density b’J , which depends
explicitly on the selected initial condition

Tg, b’g

� �
. In particular, there exists a range of

jamming points, or a “jamming line” (Chaudhuri
et al. 2010), whose extension increases with
d (Kurchan et al. 2012).

Jamming
During the last two decades, a large research effort
has shed light on the critical behavior characteriz-
ing the jamming transition (Liu and Nagel 2010).
Jamming can be seen from two different perspec-
tives. An assembly of Brownian hard spheres
under compression becomes rigid at a finite den-
sity, at which point the pressure diverges. On the
other hand, athermal packings of soft repulsive
spheres reach the jamming point under decom-
pression when the pressure vanishes. In both sit-
uations, each particle is constrained by enduring
contacts with the neighbor particles and the sys-
tem is rigid. In particular, at jamming the average
number of contacts per particle Z reaches the
critical value Zc ¼ 2d, which represents the
lower limit for mechanical stability (O’Hern
et al. 2002) (Maxwell’s criterion for rigidity).
From the hard spheres side, Z jumps from zero
to Zc at the transition, while from the soft spheres
side, as the pressure decreases toward zero the
excess number of contacts scales as (Ohern et al.
2003; Durian 1995):

DZ ¼ Z � Zc
~D’1=2, ð37Þ

where Δ’¼’�’J is the amount of compression
above the jamming threshold. A connection
between hard and soft spheres at jamming is
observed in the pair correlation function (Donev
et al. 2005; Ohern et al. 2003), confirming that
allowed configurations of hard and soft spheres
are identical at jamming.

When ΔZ ¼ 0 the system is isostatic, that is,
there are just enough contacts to ensure mechan-
ical stability and the system is marginally stable:
breaking a bond between contacts can lead to an
excitation that causes a collective motion through-
out the whole system (Wyart 2012). Not surpris-
ingly, this critical behavior fits well into the free
energy picture of marginal glasses reported above.

Marginality in athermal jammed solids can be
explained in real space by the so-called cutting
argument (Wyart et al. 2005). Imagine removing
the contacts between a subsystem of linear size
l and the rest of the system. If we slightly com-
press the system, this cutting will lead to a
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competition between the overall excess contacts
ΔZ created by the compression, and the missing
contacts at the boundary of the subsystem. If the
total number of contacts is below the isostatic
value Niso ¼ NZ/2, then there are modes with no
energetic cost, that is, soft modes. The number of
soft modesNsoft then corresponds to the difference
between the number of contacts at the boundary,
proportional to ld–1, and the number of extra con-
tacts created by the compression, which scales as
ΔZld. There is then a critical length l�~Δ’�1/2 for
which the system looks isostatic and for l¼ l*, soft
modes correlate over the whole subsystem. These
extended anomalous modes correspond to random
excitations over all the system, profoundly differ-
ent from acoustic modes proper of crystalline
solids.

Other anomalies of jammed solids are
observed in the scaling of the elastic moduli near
the transition. These critical behaviors have been
successfully described within a force network pic-
ture, for which en effective medium theory has
been developed (Wyart 2010; Degiuli et al. 2015).
In particular, a jammed soft sphere configuration
can be mapped onto a network of springs with
elastic contacts keff, computed as second deriva-
tives of the pairwise interaction between particles.
The resulting scaling behaviors for the bulk mod-
ulus B ~ keff and the shear modulus G~keffΔ’

1/2

suggest that the Poisson ratio G/B~Δ’1/2 vanishes
at the jamming transition (Ohern et al. 2003). This
criticality reflects on the frequency of normal
modes which is directly related to the elastic mod-
uli (B(o), G(o)) by the dispersion relation o� ¼
ck�, where k* ~ 1/l* and c is the speed of sound.
Since sound propagates either longitudinally
(B) or transversely (G), two different length scales
can be defined: the longitudinal length scale
l�~Δ’�1/2, which matches the cutting length scal-
ing behavior and is indeed attributed to extended
soft modes, and the transverse length scale which
follows the scaling lt~Δ’

�1/4.
Other critical scaling laws have been predicted

both by replica mean field calculations and effec-
tive medium theory for a spring network, with
good consistency with numerical results in finite
dimensions. In particular, the distributions of
interparticle voids and interparticle forces follow

universal power laws (Charbonneau et al. 2012,
2015; DeGiuli et al. 2014; Lerner et al. 2013).
Contact forces can be either extended or localized,
with distributions defined by power law expo-
nents θe and θl, respectively. Extended forces are
predicted from the infinite dimensional exact solu-
tion, whereas the localized forces likely result
from the presence of localized defects, such as
rattling particles, which only exist in finite dimen-
sions. Remarkably, the numerical value of the
critical exponents associated to scaling laws near
jamming can be predicted analytically in the
mean-field approach (Charbonneau et al. 2014a,
b; Parisi et al. 2020), and their value is confirmed
by numerical simulations in dimensions d � 2.

The influence of temperature on the jamming
criticality has also been studied (Degiuli et al.
2015; Ikeda et al. 2013). These works show that
above jamming there exists a region in the plane
T – ’ where the harmonic approximation of the
soft sphere potential holds, and the vibrational
spectrum converges to its zero temperature limit,
provided that T < T*(’). The value of T*(’)
decreases with Δ’ ! 0 with a trivial scaling
exponent. A similar result holds below jamming
for hard sphere glasses (Brito and Wyart 2009).
For T > T*(’), the harmonic approximation
breaks down, defining an anharmonic critical
regime, controlled by nonanalyticities in the
interparticle potential. Physically, strong
anharmonicites stem from the constant breaking
and reformation of particle contacts in the pres-
ence of thermal fluctuations (Schreck et al. 2011).

Vibrational Properties
The anomalous thermal properties of low temper-
ature glasses can be related to the structure of the
free energy landscape of glassy states. Amor-
phous solids behave very differently from crystal-
line solids. In terms of heat capacity and thermal
conductivity, crystals are dominated by phononic
excitations with a low-frequency density of states
(DOS) D(o) given by the Debye scaling law
D(o)~od � 1. Instead, the thermal properties of
glasses are dominated by an excess of vibrational
modes referred to as the boson peak and by an
anomalous low-frequency scaling of D(o). This
excess of anomalous vibrations reflects, within
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mean-field theory, the existence of multiple free
energy barriers in glassy states. In fact, when the
glass enters the Gardner phase, the system
becomes marginal and even infinitesimal pertur-
bations lead to excitations that can bring the sys-
tem to a different glassy state.

The mean-field theory of glasses has been
explored using soft spheres in the jamming limit
(Franz et al. 2015). The theory predicts the low-
frequency scaling of the vibrational density of
states (vDOS) to be D(o) ~ o2 in any dimension
(Parisi and Zamponi 2010; Wyart 2010; Berthier
et al. 2011b), quite differently from the Debye
scaling. The same result was previously obtained
within the effective medium theory (DeGiuli
et al. 2014).

Numerically, the nature of the low-frequency
vibrational spectrum has been widely studied
using soft spheres packings close to jamming.
Early studies suggested the existence of the
D(o) ~ o2 scaling (Charbonneau et al. 2014b;
Franz et al. 2015) for a wide range of dimensions
d, reinforcing the relevance of the mean-field
description for finite dimensional systems
(Charbonneau et al. 2016a). The modes giving
rise to this scaling form have been found to be
extended anomalous modes. A more recent study
established that the o2 scaling is only observed
over a finite frequency range, which seems to
increase systematically with the space dimension
d, which is consistent with a pure quadratic scal-
ing when d ¼ 1. However, for any finite d, the
density of states eventually obeys Debye scaling
for sufficiently low frequencies.

Finally, recent numerical works show that for
frequencies lower than the boson peak, an addi-
tional family of soft modes due to marginal insta-
bilities can be observed (Mizuno et al. 2017;
Lerner et al. 2016). As Fig. 17 shows, the vibra-
tional density of these additional modes scales as
o4. A spatial analysis of such modes shows that
they correspond to quasi-localized modes, which
are again absent from the large d analytic
description.

Rheology
Once the glass is created, it can be adiabatically
cooled or compressed, but it can also be deformed

by applying an external mechanical constraint.
The rheology of amorphous solids is a very
broad research field. Here, we present recent
results in this field obtained using the mean field
glass theory, including implications regarding
elasticity, yielding, and shear jamming (Rainone
and Urbani 2016; Rainone et al. 2015; Biroli and
Urbani 2016; Yoshino and Zamponi 2014).

We report results obtained from the same state
following formalism applied to study the amor-
phous phase along a compression in the d ! 1
limit. If the master replica Y is in the dynamically
arrested region, the system reacts elastically to a
small applied strain γ. We can then obtain the
stress-strain curve as a function of the state point
T, b’ð Þ of the slave replica X. The stress for an
elastic medium increases linearly with strain,
which defines the shear modulus bm ¼ dbs

dg computed
at zero strain, where stress and shear modulus are
scaled such that the d!1 limit remains finite. In
the small strain limit one finds

bm ¼ 1

D
ð38Þ

where Δ is the long time limit of the MSD. The
MSD Δ(X, Y) is the superposition of an affine
component due to the strain, and of a non-affine
contribution defined by the particular shear proto-
col. At the glass transition, the shear modulus
jumps from a zero value (liquid state) to a finite
value at b’d (glass state). In finite dimensions, this
sharp discontinuity becomes a crossover (Parisi
et al. 2020).

When the system is confined within a glass
state, it is able to sustain a shear strain on a time
scale which corresponds to the diverging time
scale for which the dynamics becomes diffusive.
One can then follow adiabatically the slave replica
until a state point T, b’ð Þ and study the linear
response to shear for the different phases of the
glass. This corresponds to exploring the strain vs
volume fraction phase diagram of the system.
Upon decompression, the shear modulus
decreases and displays a square root singularity
at the melting spinodal point (Parisi et al. 2020;
Rainone et al. 2015).
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Increasing the strain and/or the volume frac-
tion, the glass phase may undergo a Gardner tran-
sition and transform into a marginal glass, for
which all nonlinear elastic moduli diverge and
standard elasticity theory does not hold anymore
(Biroli and Urbani 2016). As for a simple com-
pression without shear, the boundary of the Gard-
ner phase transition explicitly depends on the
selected glass state.

Once the Gardner phase is entered, upon fur-
ther compression or strain, two kinds of transition
may occur in hard sphere glasses. First, the shear
modulus may increase and eventually diverge
when a jamming point is reached. At zero strain,
this is the ordinary jamming transition. In that
case, the power law scaling of the MSD directly
implies a similar behavior for the shear modulus.
In the presence of a finite strain, this corresponds
to the phenomenon of shear jamming, observed in
the context of granular materials (Urbani and
Zamponi 2017; Peters et al. 2016).

A second type of instability can occur when
increasing the strain of a hard sphere glass. Here,
the shear stress reaches a maximum followed by a
spinodal instability where the fullRSB solution
for Δ and Δr is no longer stable. The spinodal

point gY b’g

� �
corresponds to the glass yielding

transition (Urbani and Zamponi 2017; Parisi et al.

2017). The yielding transition in glasses has been
studied for a variety of models and under different
physical conditions (Lin et al. 2014; Ozawa et al.
2018b). In particular, it has been suggested that
the yielding transition belongs to the same univer-
sality class as the RFIM, that is, a spinodal transi-
tion with disorder.

New Computational Methods

In the last decade, a number of new numerical
techniques have allowed to attack the challenges
presented in the above theoretical sections. These
techniques typically make use of tools that go
beyond the realm of standard computer simula-
tions to either sample phase space more efficiently
or access information and observables that are not
directly stored in particle trajectories.

The Swap Monte-Carlo Method
To sample deeply supercooled states in equilib-
rium, one needs to run computer simulations over
a duration that scales with the equilibrium struc-
tural relaxation time tα. Because tα grows rapidly
as the system approaches the glass transition,
ordinary computer simulations are limited to a
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Aging, Fig. 17 Adapted from (Mizuno et al. 2017).
Vibrational density of states of jammed harmonic soft
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scaling as o4, as confirmed in the inset
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rather high temperature regime much above the
experimental glass transition Tg.

The swapMonte Carlo algorithm is an efficient
way to produce equilibrium configurations of a
supercooled liquid on the computer (Berthier et al.
2016b; Ninarello et al. 2017). Here, “efficient”
means that the equilibration time of the swap
Monte Carlo algorithm increases much less than
tα as temperature decreases. Actually, it was
shown that for several three-dimensional model
systems, the equilibration speedup can be larger
than a factor 1011, as illustrated in Fig. 18. For this
particular model of soft spheres, the swap algo-
rithm continues to reach thermal equilibrium
below the experimental glass transition Tg.

The swap algorithm was introduced long ago
(Gazzillo and Pastore 1989), and it was first used
in the context of the glass transition by Grigera
and Parisi (2001). Its ability to reach equilibrium
at extremely low temperatures was established
more recently (Berthier et al. 2016b; Ninarello
et al. 2017; Ninarello 2017). By comparison
with ordinary computer simulations, the swap
Monte Carlo algorithm introduces unphysical par-
ticle moves, where the identity of a pair of ran-
domly chosen particles is exchanged. Provided
the swap moves are constructed to satisfy detailed
balance, the algorithm is guaranteed to reach ther-
mal equilibrium. The swap Monte Carlo

algorithm can be implemented in a molecular
dynamics setting, replacing the swap moves by
an exchange between the system and a reservoir of
particles (Brito et al. 2018; Kapteijns et al. 2019;
Berthier et al. 2019e). Typically, increasing the
frequency of swap moves speeds up the dynamics
but there are practical limits to the maximal allo-
wed frequency (Berthier et al. 2019e). The swap
algorithm was shown to work well from d ¼ 2 up
to at least d¼8 dimensions (Berthier et al. 2019f).

A decisive step to increase the efficiency of the
swap Monte Carlo algorithm was the develop-
ment of models for supercooled liquids that were
tailored to increase the swap efficiency. However,
and perhaps more importantly, many models that
were previously thought to be good glass-formers
were in fact crystallizing very easily when swap
was employed. Thus, a key step was also the
development of more robust glass-forming
models, using size polydispersity and nonadditive
interaction parameters to prevent structural order-
ing (Ninarello et al. 2017; Parmar et al. 2020).

In summary, the swap Monte Carlo algorithm
easily and rapidly produces a large number of
independent equilibrium configurations of a
glass-former over a very broad range of tempera-
tures, from the high temperature liquid, down to
the mode-coupling crossover, and even below the
experimental glass transition temperature. The
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latter regime can be explored experimentally only
using physical vapor deposition, see section
“Ultrastable Glasses.” Therefore, many physical
properties of glassy materials can now be mea-
sured over a temperature regime that is extremely
broad, and may be compared directly to experi-
ments with no extrapolation. This has led to an
important activity to address several problems
related to glassy materials: the Gardner transition
in finite dimensional glass-formers (Liao and
Berthier 2019; Scalliet et al. 2019b; Berthier
et al. 2016a), the link between glass and jamming
transitions (Berthier et al. 2016b; Coslovich et al.
2018), the measurement of the configurational
entropy in deeply supercooled liquids (Ozawa
et al. 2018c; Berthier et al. 2019g), the analysis
of point-to-set lengthscales (Berthier et al. 2017c;
Yaida et al. 2016) and of the Franz-Parisi potential
(Berthier et al. 2017c; Guiselin et al. 2020), the
evolution of several important properties of
glasses with the glass preparation (Khomenko
et al. 2020; Wang et al. 2019a; Wang et al.
2019b), and the physics of ultrastable glasses
(Berthier et al. 2017b; Flenner et al. 2019).

In addition, the demonstration that a very sim-
ple algorithm can speed up the equilibration
dynamics of supercooled liquids can be seen as
an interesting physical result in itself. If such a
result appears quite natural in the context of
kinetic facilitation (Wyart and Cates 2017;
Gutiérrez et al. 2019), it is more challenging (but
possible) to interpret in the context of the random
first-order transition theory (Berthier et al. 2019c;
Ikeda et al. 2017b; Szamel 2018), where dynamics
becomes highly collective at very low
temperatures.

Franz-Parisi Potential
In seminal work (Franz and Parisi 1997; Franz and
Parisi 1998), Franz and Parisi introduced a quan-
tity now called the Franz-Parisi potential, V(Q).
This quantity plays the role of a Landau free
energy for mean-field phase transitions, in the
sense that it expresses the free energy cost of the
order parameter fluctuations at the mean-field
level.

For spin glass models, where the approach was
first introduced, the overlap Q represents indeed
the spin glass order parameter. It quantifies the

degree of similarity between two configurations
C0 and C1. For liquids with continuous degrees of
freedom, a practical definition of the overlap
reads:

Q ¼ 1

N

XN
i¼1

XN
j¼1

Y a�jrC 0

i � rC 1

j j
� �

, ð39Þ

where rC0

i represents the position of particle i in
configuration C 0 . The overlap is close to unity
when the two configurations C 0 and C 1 have
similar density profiles, up to thermal vibrations
of spatial extension a (typically, one takes a as a
small fraction of the particle diameter, a ~ 0.2s).

The Franz-Parisi potential V(Q) efficiently cap-
tures all the features associated to a random first-
order transition. It can be defined from the prob-
ability distribution function P(Q) of the overlap as
V(Q) ¼ � (T/N ) log P(Q). In particular, V(Q) is
characterized by a single minimum near Q ¼ 0 at
high temperature, but develops within mean-field
theory a secondary minimum at a finite Q > 0
when T decreases toward the Kauzmann transi-
tion, indicating that the glass phase is metastable
with respect to the liquid. The free energy differ-
ence between the glass and the liquid phases in
this regime is given by TSc(T ), where Sc(T ) is the
configurational entropy. Physically, this means
that localizing the system in a single free energy
minimum in the liquid phase comes with a free
energy cost of entropic nature.

In addition, Franz and Parisi introduced a field
ε conjugate to the overlap Q:

HFP C 1½ � ¼ H C 1½ � � eQ C 0, C 1½ �: ð40Þ

This allowed them to explore an extended
phase diagram by changing both T and ε
(Cardenas et al. 1999; Donati et al. 2002). In this
plane, the Kauzmann transition at (T ¼ TK, ε ¼ 0)
extends as a first-order transition line, which ends
at a second-order critical point at a position
(Tc > TK, εc). More recent work taking into
account finite dimensional fluctuations suggest
that this critical point should exist also in finite
dimensions, and should be in the same universal-
ity class of the random field Ising model (Biroli
et al. 2014).
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The Franz-Parisi potential and the extended
phase diagram have been studied numerically in
finite dimensional models in recent years (Turner
et al. 2015; Berthier et al. 2017c; Guiselin et al.
2020; Cardenas et al. 1999; Berthier 2013; Biroli
et al. 2016; Berthier and Jack 2015; Jack and
Garrahan 2016; Parisi and Seoane 2014). Taken
together, these studies confirm the existence of
both a first-order transition line and a second-
order RFIM critical point in finite dimensional
glass-formers.

A second important outcome of the Franz-
Parisi potential is the possibility to directly esti-
mate a configurational entropy for equilibrium
glass-formers using the free energy difference
between the liquid and metastable glass phase
(Berthier et al. 2017c; Berthier and Coslovich
2014). This definition of the configurational
entropy is conceptually closer to its mean-field
definition, and does not rely on an explicit defini-
tion of metastable states for a finite dimensional
system (Berthier et al. 2019a).

Point-to-Set Lengthscale
As mentioned in section “Static and Dynamic
Correlation Functions,” assessing and measuring
a growing static length scale is crucial to the glass
problem. Standard probes used for second-order
phase transitions, such as 2-point and 4-point
correlation functions, do not seem to provide any
useful evidence. A possible explanation is that
these correlation functions do not carry enough
information to capture the relevant structural
order, also termed amorphous order, and that one
has to use higher-order correlation functions (see
also section “Jamming Transition”). The point-to-
set correlation function C(R) is effectively an
n-point correlation function, where n is the num-
ber of particles comprised in a sphere of radius
R (the “set”), which can indeed be a large number.

The justification is that in order to probe amor-
phous order one has to proceed as in standard
phase transitions: fix a suitable boundary condi-
tion and study whether it enforces a given arrange-
ment of particles in the bulk of the system. For
simple cases, such as the ferromagnetic Ising
model, it is clear what type of boundary condi-
tions are needed (all spins up or all spins down).

However, for supercooled liquids this is a much
harder task. The problem can be circumvented by
using equilibrated configurations and freezing all
particles outside a cavity of radius R. This pro-
vides the boundary conditions sought for: if the
system is indeed ordering, then using cavities
drawn from different equilibrium configurations
will give access to different sets of appropriate
boundary conditions. This method was first pro-
posed theoretically in the context of RFOT theory
(Bouchaud and Biroli 2004; Montanari and
Semerjian 2006) and signal processing (Mézard
and Montanari 2006), and was transformed into a
concrete numerical procedure in Cavagna et al.
(2007) and Biroli et al. (2008). In the last decades,
measurements of the point-to-set length were pro-
gressively refined (Berthier and Kob 2012;
Berthier et al. 2016c, 2017c; Yaida et al. 2016;
Cavagna et al. 2012; Charbonneau et al. 2016b).

Let us describe the main steps and mention
some important obstacles that had to be over-
come. Firstly, one needs a collection of well-
equilibrated configurations C 0 to start with. This
is not supposed to be the hardest part, but for very
low temperatures, methods such as the swap
Monte Carlo algorithm are necessary.

Secondly, for each sample C 0 one freezes all
particles outside a cavity of radius R, then let the
particles inside ergodically visit the remaining
phase space, and record the configurations C 1

that are sampled. For small cavities, large activa-
tion barriers make conventional molecular
dynamics simulations ineffective, but this prob-
lem can be solved using parallel tempering tech-
niques (Berthier et al. 2016c), in addition to swap
Monte Carlo (Cavagna et al. 2012). It is crucial to
check that a complete sampling of the restricted
configurational space has been reached inside the
cavity, and careful tests have been devised to this
end (Cavagna et al. 2012).

Thirdly, one needs to measure the overlap dis-
tribution P(Q) between the quenched reference
configuration C 0 and the equilibrium samples C 1 .
This is very similar to the Franz-Parisi construc-
tion, except for the local nature of the constraint.
There are two possibilities. One is that the cavity is
so small that only one state (one configuration, up
to vibrations) can be visited, so that the peak of
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P(Q) is in the high-overlap range. The other is that
the cavity is sufficiently large for many different
states to be accessible. In that case, P(Q) has a peak
at low Q. In between the two cases, there is a
critical value of the radius, R ~ xPTS, which corre-
sponds to the crossover, with a bimodal P(Q).
Since finite size cavities cannot be self-averaging,
one needs to repeat the overlap measurements for
many independent quenched configurations C 0 ,
and then perform an average over these realizations
of the disorder. Indeed, for R ~ xPTS, large sample-
to-sample variations of P(Q) are observed.

There are a number of subtleties and exten-
sions related to the overlap function that we now
describe. A first subtlety is that an appropriate
measure of the overlap needs to focus on the
center of the spherical cavity, since boundaries
always have a high overlap, and this makes the
results difficult to interpret (Biroli et al. 2008).
Moreover, the overlap needs to be a smooth func-
tion of the distance between configurations, and
step functions are too singular to average over.
A second subtlety is that for some liquids, the
simple positional information does not adequately
cover all the structural information. In that case,
the conventional overlap needs to be completed
with additional coordinates overlap, for example,
bond angles. This was used in Yaida et al. (2016)
to show that hexatic order could be captured by
the point-to-set correlations (see also Russo and
Tanaka (2015)).

Let us also mention a few extensions of the
method that have been proposed. In Cavagna et al.
(2012), the authors proposed to relax the frozen
configuration constraint by letting the outside
atoms vibrate, so long as they maintain a large
overlap with the initial configuration: they called
this reference state “frozen state” (as opposed to
frozen configuration). A second type of extension
is to study various confinement geometries, as in
Berthier and Kob (2012), Kob et al. (2012),
Cavagna et al. (2012), and Li et al. (2014),
where it was shown that the geometry of confine-
ment needs to be carefully considered.

Thanks to the computational progress outlined
above, several important results were established
in the last decade. Among them: (i) clear evidence
that the slowing down of the dynamics is

accompanied by the growth of the point-to-set
length (even though a mild one), (ii) established
relation between point-to-set and configurational
entropy: the former appears to be inversely propor-
tional to the other (Berthier et al. 2019a), thus
directly linking the growth of amorphous order to
the decrease in number of metastable states – a tenet
of RFOT theory, (iii) clear difference between two-
dimensional and three-dimensional behavior: two-
dimensional glass-formers display a point-to-set that
appears to diverges at zero temperature, as shown in
Fig. 19, thus indicating aTK¼ 0Kauzman transition
temperature (Berthier et al. 2019g). This is in sharp
contrast with the results in three dimensions, where
the extrapolated TK is larger than zero.

s-Ensemble and Large Deviations
The Franz-Parisi potential is an example of a large
deviation analysis. The idea behind it is that fluc-
tuations in the overlap field play an important role
for the glass transition, analog to the magnetiza-
tion field in a ferromagnet. In order to investigate
such fluctuations, one can then study the large
deviation function (the free-energy) associated to
the spatial average of the field (the order parame-
ter). This is the usual route followed in
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 19 From Berthier et al. (2019g). Evolution of
the inverse point to set length, denoted here as 1/R with the
temperature T. A clear growth of the point to set length up
to xPTS ≈ 6.5 is observed. Cavities smaller (larger) than
xPTS have a large (small) overlap with the reference con-
figuration, as illustrated in the snapshots, where the particle
shade encodes the overlap value
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thermodynamic analyses of second-order phase
transitions. The s-ensemble is the dynamical
counterpart of such a procedure. One modifies
the dynamical rules, in order to be in a particular
subset of the “dynamical states,” to probe the
tendency of the original system to explore these
states. This idea originates both from theoretical
considerations on the large deviations of activity
(rare events) predicted in KCMs (Garrahan et al.
2007, 2009) and from considerations on efficient
simulation schemes (for rare events as well) that
apply more generally (Noe et al. 2009). In prac-
tice, the s-ensemble dynamics is a particular
instance of transition path sampling, where the
quantity of interest is a measure of the activity of
a multi-particles trajectory {xi(t)}i ¼ 1, . . ., N, cumu-
lated over time

K x tð Þ½ � ¼ 1

Ntobs

X
t� t0 , t0þtobs½ �

X
i� 1,N½ �

xi tþ Dtð Þ � xi tð Þð Þ2

ð41Þ

where Δt (resp. tobs) is chosen to be of the order of a
few ballistic times (resp. a few relaxation times). In
the s-ensemble, the actual relaxation time then
becomes larger than tobs. Here we follow the nota-
tions used in (Hedges et al. 2009), where this biasing
method was first applied to structural glasses (for its
initial introduction in KCMs, see Elmatad et al.
(2010), and Garrahan et al. (2007, 2009)). The
method is called s-ensemble because the probability
of a trajectory x(t) is P0[x(t)]e

�sK[x(t)], where P0[x(t)]
is the probability for the unperturbed system. This
amounts to defining a “thermodynamics of trajecto-
ries”which are biased (and classified) depending on
their activity; s is the biasing field. In order to
numerically simulate and probe such a measure,
one can performMonte-Carlo sampling in trajectory
space. This method is actually so efficient at finding
low-energy states that special attention must be paid
to crystallization (Hedges et al. 2009).

One of the most important results obtained by
the s-ensemble method is a direct evidence of a
first-order phase transition between an active phase
(for low s) and an inactive phase (for large s) in
supercooled liquids: see Fig. 20. In the s – T plane
this corresponds to a first-order transition line s*(T)

which ends in a critical point at high temperature
(Elmatad et al. 2010; Hedges et al. 2009). Although
the method focuses on the dynamical properties,
inactive states do exhibit interesting structural fea-
tures. They are more stable than equilibrium sam-
ples (Jack et al. 2011): mechanically, in terms of
their lower number of low-energy modes
(depletion of D(o)), and thermodynamically, in
terms of a longer lived “melting” transient from
the glass to the liquid state. This suggests that
inactive states correspond to very stable glassy
state, that is, nonequilibrium glassy states with
low fictive temperatures.

The foundation of the s-ensemble relies on the
dynamical behavior of KCMs. For the East model
scenario it was shown (Keys et al. 2015) that
configurations obtained by (i) the s-ensemble,
(ii) finite-rate cooling, and (iii) quenching and
longtime aging are all equivalent. This provides
a concrete example where glassiness is directly
related to the phase transition unveiled by the
s-ensemble. Let us conclude by noticing that
even systems having an RFOT display such a
phase transition, the difference being that the
line s*(T) reaches s* ¼ 0 for T ¼ TK and not for
T ¼ 0 as for KCMs (Jack and Garrahan 2010).
This shows that the s-ensemble is actually a gen-
eral construction, which transforms the physics of
metastability observed in supercooled liquids in
well-defined phase transitions in the extended
ensemble comprising space and time.

Machine Learning Developments
We have mentioned the possible use of
(unsupervised) Machine Learning (ML) in section
“Geometric Frustration, Avoided Criticality, and
Locally Preferred Structures” for automatic identifi-
cation of LPS in supercooled liquids (see also
Ronhovde et al. (2011, 2012), Paret et al. (2020),
and Boattini et al. (2020)). Another set of ML tech-
niques to be used is supervised learning: automati-
cally defining fluid- or solid-like structures (features
in ML language) by labeling them for a training set
of local environments which are observed to be
locally fluid-or solid-like. The general idea devel-
oped in Schoenholz (2018) is to train a neural net-
work (or other fitting model) to “predict” the current
degree of mobility or “instantaneous activity” from
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the knowledge of structure only. This may be cast as

finding the function f such that f r
!n o� �

i, tð Þ ¼
yprecl � ytrue i, tð Þ , where r

!n o
i, tð Þ is the structure

of the neighborhood of particle i at time t, and ytrue(i,
t) (the label) is a measure of the dynamical activity
for particle i at time t. Concretely, the target label
ytrue has to encode some notion of local, instanta-
neous mobility (Candelier et al. 2009, 2010a, b),
while the local structure may be defined, for exam-
ple, by the (local, instantaneous) density pair corre-
lation function g(r), with the possible addition of
angular variables (Cubuk et al. 2016; Schoenholz
et al. 2016). This technique has been applied with
success, showing how much structure correlates
with dynamics in supercooled liquids (Schoenholz
et al. 2016; Landes et al. 2020), disordered solids
(Cubuk et al. 2016; Schoenholz et al. 2015, 2016;
Landes et al. 2020; Cubuk et al. 2015), for the
plasticity of amorphous materials (Ivancic et al.
2017; Cubuk et al. 2017), and in polycrystalline
materials (Sharp et al. 2018).

The problem of the interpretation, which is one
of the major issues with statistical learning in
general, remains open: how to make use of pre-
dictions emerging from hundred-parameters
models? This issue is transverse to most ML
applications and is currently under active scrutiny.
In terms of basic science, the conclusion of Liu

and collaborators is that the predicted ypred pro-
vides a new observable, called the softness field
(Schoenholz et al. 2015), which plays a key role
for the dynamics.

We conclude mentioning a very recent work
which introduced a newML technique in the glass
physics arena. The authors of (Bapst et al. 2020)
focused on the problem of predicting long-time
dynamics (more precisely, the propensity field
(Widmer-Cooper and Harrowell 2006)) from
knowledge of structure alone, by leveraging on
recent progress in graph neural networks. The
results are impressive: the ability to predict the
propensity map is substantially better than
existing numerical physics-based methods and
the ML techniques described above, thus
establishing a promising new way to study glassy
dynamics.

Aging and Off-Equilibrium Dynamics

Why Aging?
We have dedicated most of the above discussion
to properties of materials approaching the glass
transition at thermal equilibrium. We discussed a
rich phenomenology and serious challenges for
both our numerical and analytical capabilities to
account for these phenomena. For most people,

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 20 From Hedges et al. (2009). Coexistence
of the active (large K ) and inactive (small K ) phases, as
evidenced from s-ensemble biased simulations. As

temperature is reduced, the distribution becomes increas-
ingly bimodal, as expected when approaching a first-order
phase transition
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however, glasses are interesting below the glass
transition, so deep in the glass phase that the
material seems to be frozen forever in a seemingly
arrested amorphous state, endowed with enough
mechanical stability for a glass to retain, say, the
liquid it contains (preferably a nice red wine).
Does this mean that there is no interesting physics
in the glass state?

The answer is clearly “no.” There is still life
(and physics) below the glass transition. We recall
that for molecular glasses, Tg is defined as the
temperature below which relaxation is too slow
to occur within an experimental timescale. Much
below Tg, therefore, the equilibrium relaxation
timescale is so astronomically large that thermal
equilibrium is out of reach. One enters therefore
the realm of off-equilibrium dynamics. A full
physical understanding of the nonequilibrium
glassy state remains a central challenge (Young
1998; Barrat et al. 2004).

A first consequence of studying materials in a
time window smaller than equilibrium relaxation
timescales is that the system can, in principle,
remember its complete history, a most unwanted
experimental situation since all details of the
experimental protocol may then matter. The sim-
plest protocol to study aging phenomena in the
glass phase is quite brutal (Struik 1977): take a
system equilibrated above the glass transition and
suddenly quench it at a low temperature at a
“waiting time” tw ¼ 0 which corresponds to the
beginning of the experiment. For tw > 0 the sys-
tem is left unperturbed at constant temperature
where it tries to slowly reach thermal equilibrium,
even though it has no hope to ever get there.
Aging means that the system never forgets the
time tw spent in the glass phase, its “age.” The
evolution of one time quantities, for example, the
energy, as a function of time is not a good evi-
dence of aging. In order to show that the system
never equilibrates, two time quantities such as
density-density or spin-spin correlation functions
are much more useful. A typical example is pre-
sented in Fig. 21 where the self-part of the inter-
mediate function in Eq. (5) is shown for a
Lennard-Jones molecular liquid at low tempera-
ture. Immediately after the quench, the system
exhibits a relatively fast relaxation: particles still

move substantially. However, when the age
increases, dynamics slow down and relaxation
becomes much slower. When tw becomes very
large, relaxation becomes too slow to be followed
in the considered time window and the system
seems frozen on that particular timescale: it has
become a glass. A striking feature conveyed by
these data is that an aging system not only remains
out-of-equilibrium for all practical purposes, but
its typical relaxation time is in fact set by its age tw.
In simple cases, the effective relaxation time after
waiting a time tw scales at tw itself, which means
that since equilibration timescales have diverged,
tw is the only remaining relevant timescale in the
problem.

A popular interpretation of this phenomenon is
given by considering trap models (Bouchaud
1992). In this picture, reminiscent of the Goldstein
view of the glass transition mentioned above
(Goldstein 1969), the system is described as a
single particle evolving in a complex energy land-
scape with a broad distribution of trap depths – a
paradigmatic mean-field approach. Aging in this
perspective arises because the system visits traps
that become deeper when tw increases,
corresponding to more and more stable states. It
therefore takes more and more time for the system
to escape, and the dynamics slow down with time,
as observed in Fig. 21. This implies that any
physical property of the glass becomes an age-
dependent quantity in aging protocols, and more
generally becomes dependent on how the glass
was prepared. One can easily imagine using this
property to tune mechanical or optical character-
istics of a material by simply changing the way it
is prepared, like how fast it is cooled to the glassy
state (recall our discussion of ultrastable glasses in
section “Ultrastable Glasses”).

A real space alternative picture was promoted
in particular in the context of spin glass studies,
based on the ideas of scaling and renormalization
(Bray and Moore 1984; van Hemmen and
Morgenstern 1987; Fisher and Huse 1986). The
physical picture is that of a coarsening process,
where the system develops long-range order by
growing extended domains of lengthscale ‘(tw).
On lengthscales less than ‘(tw), the system has had
the time to order since the quench at tw ¼ 0. The
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walls between domains evolve in a random envi-
ronment. In order to move they have to overcome
free energy barriers. It is then assumed an acti-
vated dynamic scaling which states that the typi-
cal barrier to extend the domain from linear size
‘(tw) to, say, 2‘(tw) scales as ‘

c, where c is some
“barrier” exponent. Using the Arrhenius law to
relate dynamics to barriers, one gets that aging
corresponds to the logarithmic growth with time
of spatially correlated domains, ‘~(T log tw)

1/c.
A domain growth picture of aging in spin glasses
can be directly confirmed by numerical simula-
tions (Kisker et al. 1996), only indirectly by
experiments.

Memory and Rejuvenation Effects
Since the complete history of a sample in the glass
phase matters, there is no reason to restrain exper-
imental protocols to the simple aging experiment
mentioned above. Indeed, experimentalists have
investigated scores of more elaborated protocols
that have revealed an incredibly rich, and some-
times quite unexpected, physics (Young 1998).
We restrain ourselves here to a short discussion
of memory and rejuvenation effects observed dur-
ing temperature cycling experiments (Refregier
et al. 1987) (one can imagine applying a magnetic
field or a mechanical constraint, be they constant
in time or sinusoidal, etc.). These two effects were

first observed in spin glasses, but the protocol was
then repeated in many different materials, from
polymers and organic liquids to disordered ferro-
electrics. After several unsuccessful attempts,
similar effects are now observed in numerical
work as well (Berthier and Young 2005; Berthier
and Bouchaud 2002). Recent results obtained
from simulations of a three-dimensional glass-
former exploring the spin-glass-like Gardner
phase (Scalliet and Berthier 2019) are presented
in Fig. 22.

There are three steps in temperature cycling
experiments (Refregier et al. 1987). The first one
is a standard aging experiment, namely a sudden
quench from high to low temperature at time tw ¼
0. The system then ages for a duration t1 at con-
stant temperature T1. The system slowly relaxes
toward equilibrium and its dynamics slows down:
for our spin glass example (see Fig. 22) this is
observed through the measurement of some
dynamic susceptibility w(tw, o). Temperature is
then suddenly shifted to T2 < T1 at time t1.
There, the material restarts aging (almost) as if
the first step had not taken place. This is called
“rejuvenation effect,” because the system seems
to forget it is already “old.” At total time t1 þ t2,
temperature is then shifted back to its initial value
T1. Then, aging is found to proceed as a quasi-
perfect continuation of the first step, as if the
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 21 Aging dynamics in a Lennard-Jones
glass-forming liquid at low temperature. The system is
quenched at time tw ¼ 0 at low T, where the temperature
is kept constant. Two-time self-intermediate scattering

functions are then measured for 20 logarithmically spaced
waiting times tw from tw¼1 to tw¼105 (from left to right).
The relaxation becomes slower when tw increases: the
system ages
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second step had not taken place. The system has
kept the “memory” of the first part of the experi-
ment, despite the rejuvenation observed in the
intermediate part. The memory effect becomes
more spectacular when relaxation during the sec-
ond step is removed, as in the inset of Fig. 22. The
third relaxation appears indeed as a perfect con-
tinuation of the first one.

On top of being elegant and quite intriguing,
such protocols are relevant because they probe
more deeply the dynamics of aging materials,
allowing one to ask more precise questions
beyond the simplistic observation that “this mate-
rial displays aging.”Moreover, the observation of
similar effects in many different glassy materials
implies that these effects are intrinsic to systems
with slow dynamics. Interesting also are the subtle
differences observed from one material to the
other.

Several experimental, numerical and theoreti-
cal papers have been devoted to this type of
experiments, and these effects are not “mysteri-
ous” anymore (see Barrat et al. (2004)). A clear
link between memory effects and typical
lengthscales over which the slow dynamics takes
place has been established. Because lengthscales

depend so sensitively on timescales and on the
working temperature, experiments performed at
two different temperatures typically probe very
different lengthscales, allowing the system to
store memory of its state at different temperatures
over different lengthscales (Berthier and
Bouchaud 2002; Bouchaud et al. 2001). In return,
this link has been elegantly exploited to obtain a
rather precise experimental estimate of dynamic
lengthscales involved in the aging dynamics of
spin glass materials (Bert et al. 2004), which
seems to confirm the slow logarithmic growth
law mentioned before.

Discussion of the rejuvenation effect is slightly
more subtle. It is indeed not yet obvious that the
effect as it is observed in computer simulations
and reported, for example, in Fig. 22, is exactly
similar to the one observed in experiments. The
difficulty comes from the fact that some seem-
ingly innocuous details of the experimental pro-
tocol, such as the necessary use in experiments of
finite cooling rates, in fact play a crucial role and
influence the physics so that direct comparison
between experiments and simulations is difficult.
In numerical work, rejuvenation can be attributed
to a gradual change with temperature of the nature
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 22 Memory and rejuvenation effects
obtained in the numerical simulation of a three-
dimensional glass-former (Scalliet and Berthier 2019).
There is a first aging step, 0 < tw < 11, during which the
system slowly tries to reach thermal equilibrium at

temperature T1. The system “rejuvenates” in the second
step at T2, t1 < t < t1 þ t2, and it restart aging
(rejuvenation). Finally in the third step, temperature is
back to T1, and memory of the first step is kept intact, as
shown in the inset where relaxation during the second step
of the experiment is taken away
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of spatial correlations between spins that develop
with time (Berthier and Young 2005; Berthier and
Bouchaud 2002). More drastic changes are pre-
dicted to occur in disordered systems as a result of
the chaotic evolution with temperature of the
metastable states in a spin glass (so-called chaos
effect (Bray and Moore 1987)), which could also
be responsible for the observed rejuvenation
effect (Jönsson et al. 2004).

Mean-Field Aging and Effective Temperatures
Theoretical studies of mean-field glassy models
have provided important insights into the aging
dynamics of both structural and spin glasses
(Cugliandolo and Kurchan 1993, 1994). Although
such models are defined in terms of spin degrees
of freedom interacting via infinite-ranged interac-
tions, the deep connections between them and the
mode-coupling theory of the glass transition make
them serious candidates to investigate glassy
states in general, not only thermodynamic proper-
ties at thermal equilibrium but also non-
equilibrium aging dynamics. Despite their often
reported “simplicity,” it took several years to
derive a proper asymptotic solution of the long-
time dynamics for a series of mean-field spin
glasses (see Cugliandolo in Barrat et al. (2004)).
These results have then triggered an enormous
activity (Crisanti and Ritort 2003) encompassing
theoretical, numerical, and also experimental
work trying to understand further these results,
and to check in more realistic systems whether
they have some reasonable range of applicability
beyond mean-field.

This large activity, by itself, easily demon-
strates the broad interest of these results. More
recently, the derivation of the static properties of
liquids and glasses in large dimensions has
renewed the interest in mean-field dynamic phe-
nomena (Parisi et al. 2020). In particular, the
dynamic equations governing the equilibrium
properties of supercooled liquids have now been
derived (Maimbourg et al. 2016; Kurchan et al.
2016) and their consequences are being explored
(Manacorda et al. 2020). The study of the non-
equilibrium (aging and sheared) dynamics is now
under way (Agoritsas et al. 2018, 2019; Altieri
et al. 2020).

In these mean-field models, thermal equilib-
rium is never reached, and aging proceeds by
downhill motion in an increasingly flat free
energy landscape (Kurchan and Laloux 1996),
with subtle differences between spin glass and
structural glass models. In both cases, however,
time translational invariance is broken, and two-
time correlation and response functions depend on
both their temporal arguments. In fact, the exact
dynamic solution of the equations of motion for
time correlators displays behaviors in strikingly
good agreement with the numerical results
reported in Fig. 21.

In these systems, the equations of motion in the
aging regime involve not only temporal correla-
tions, but also time-dependent response functions.
At thermal equilibrium, response and correlation
are not independent, since the fluctuation-
dissipation theorem (FDT) relates both quantities.
In aging systems, there is no reason to expect the
FDT to hold and both quantities carry, at least in
principle, distinct physical information. Again,
the asymptotic solution obtained for mean-field
models quantitatively establishes that the FDT
does not apply in the aging regime. Unexpectedly,
the solution also shows that a generalized form of
the FDT holds at large waiting times (Cugliandolo
and Kurchan 1993). This is defined in terms of the
two-time connected correlation function for some
generic observable A(t),

C t, twð Þ ¼ A tð ÞA twð Þh i � A tð Þh i A twð Þh i, ð42Þ

with t � tw, and the corresponding two-time
(impulse) response function

R t, twð Þ ¼ T
d A tð Þh i
dh twð Þ

����
h¼0

: ð43Þ

Here h denotes the thermodynamically conju-
gate field to the observable A so that the perturba-
tion to the Hamiltonian (or energy function) is
δE ¼ �hA, and angled brackets indicate an aver-
age over initial conditions and any stochasticity in
the dynamics. Note that we have absorbed the
temperature T in the definition of the response,
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for convenience. The associated generalized FDT
reads then

R t, twð Þ ¼ X t, twð Þ @
@tw

C t, twð Þ, ð44Þ

with X(t, tw) the so-called fluctuation-dissipation
ratio (FDR). At equilibrium, correlation and
response functions are time translation invariant,
depending only on t¼ t – tw, and equilibrium FDT
imposes that X(t, tw)¼ 1 at all times. A parametric
fluctuation-dissipation (FD) plot of the step
response or susceptibility

w t, twð Þ ¼
ðt
tw

dt0R t, t0ð Þ, ð45Þ

against

DC t, twð Þ ¼ C t, tð Þ ¼ C t, twð Þ, ð46Þ

is then a straight line with unit slope. These sim-
plifications do not occur in nonequilibrium sys-
tems. But the definition of an FDR through
Eq. (44) becomes significant for aging systems
(Cugliandolo and Kurchan 1993, 1994). In
mean-field spin glass models the dependence of
the FDR on both temporal arguments is only
through the correlation function,

X t, twð Þ 	 X C t, twð Þð Þ, ð47Þ

valid at large waiting times, tw ! 1. For mean-
field structural glass models, the simplication (47)
is even more spectacular since the FDR is shown
to be characterized by only two numbers instead
of a function, namely X ~ 1 at short times (large
value of the correlator) corresponding to a quasi-
equilibrium regime, with a crossover to a non-
trivial number, X ~ X1 for large times (small
value of the correlator). This implies that paramet-
ric FD plots are simply made of two straight lines
with slope 1 and X1, instead of the single straight
line of slope 1 obtained at equilibrium.

Since any kind of behavior is in principle allo-
wed in nonequilibrium situations, getting such a
simple, equilibrium-like structure for the FD rela-
tions is a remarkable result. This immediately led

to the idea that aging systems might be character-
ized by an effective thermodynamic behavior and
the idea of quasi-equilibration at different time-
scales (Cugliandolo et al. 1997). In particular,
generalized FD relations suggest to define an
effective temperature, as

Teff ¼ T
X t, twð Þ , ð48Þ

such that mean-field glasses are characterized by a
unique effective temperature, Teff ¼ T/X1 It is
thought of as the temperature at which slow
modes are quasi-equilibrated. One finds in general
that 0 < X1 < 1, such that Teff > T, as if the
system had kept some memory of its high temper-
ature initial state.

The name “temperature” for the quantity
defined in Eq. (48) is not simply the result of a
dimensional analysis but has a deeper, physically
appealing meaning that is revealed by asking the
following questions. How does one measure tem-
peratures in a many-body system whose relaxa-
tion involves well-separated timescales?What is a
thermometer (and a temperature) in a far from
equilibrium aging material? Answers are provided
in Cugliandolo et al. (1997), and Kurchan (2005)
both for mean-field models and for additional toy
models with multiple relaxation timescales. The
idea is to couple an additional degree of freedom,
such as a harmonic oscillator, x(t), which plays the
role of the thermometer operating at frequency w,
to an observable of interest A(t) via a linear cou-
pling, �lx(t)A(t). Simple calculations show then
that the thermometer “reads” the following
temperature,

1

2
KBT

2
meas ¼

1

2
o2 x2

�  ¼ oC0 o, twð Þ
2w00 o, twð Þ , ð49Þ

where C0(o, tw) is the real part of the Fourier
transform of Eq. (42), and w(o, tw) the imaginary
part of the Fourier transform of Eq. (43), with
h ¼ lx. The relation (49) indicates that the bath
temperature is measured, Tmeas ¼ T, if the fre-
quency is high and FDT is satisfied, while Tmeas¼
Teff > T if the frequency is slow enough to be
tuned to that of the slow relaxation in the aging
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material. The link between the FDR in Eq. (44)
and the effective temperature measured in
Eq. (49) was numerically confirmed in the com-
puter simulation of a glassy molecular liquid in
Berthier and Barrat (2002a).

More generally, relaxation in glassy systems
occurs in well-separated time sectors
(Cugliandolo and Kurchan 1994); it is then easy
to imagine that each sector could be associated
with an effective temperature (Kurchan 2005).
A thermodynamic interpretation of effective tem-
peratures has also been put forward, relating them
to the concept of replica symmetry breaking
(Franz et al. 1998). Interestingly, the full-step or
one-step replica symmetry breaking schemes
needed to solve the static problem in these models
have a counterpart as the FDR being a function or
a number, respectively, in the aging regime.More-
over, we note that these modern concepts are
related to, but make much more precise, older
ideas of quasi-equilibrium and fictive tempera-
tures in aging glasses (Struik 1977).

Taken together, these results make the mean-
field description of aging very appealing, and they
nicely complement the mode-coupling/RFOT
description of the equilibrium glass transition
described above. Moreover, they have set the
agenda for a large body of numerical and experi-
mental work, as reviewed in Crisanti and Ritort
(2003). In Fig. 23 we present recent numerical
data obtained in an aging silica glass (Berthier
2007b), presented in the form of a parametric
response-correlation plot. The measured correla-
tion functions are the self-part of the intermediate
scattering functions defined in Eq. (5), while the
conjugated response functions quantify the
response of particle displacements to a spatially
modulated field conjugated to the density. Plots
for silicon and oxygen atoms at different ages are
presented. They seem to smoothly converge
toward a two-straight line plot, as obtained in
mean-field models (note, however, that this
could be just a pre-asymptotic, finite “tw,” effect).
Moreover, the second, nontrivial part of the plot is
characterized by a slope that appears to be inde-
pendent of the species, and of the wavevector
chosen to quantify the dynamics, in agreement
with the idea of a unique asymptotic value of the

FDR, possibly related to a well-defined effective
temperature.

Beyond Mean-Field: Real Space
Despite successful results, such as those shown in
Fig. 23, the broader applicability of the mean-field
scenario of aging dynamics remains still unclear.
While some experiments and simulations indeed
seem to support the existence of well-behaved
effective temperatures (Grigera and Israeloff
1999; Abou and Gallet 2004; Wang et al. 2006),
other studies also reveal the limits of the mean-
field scenario. Experiments have for instance
reported anomalously large FDT violations asso-
ciated with intermittent dynamics (Bellon et al.
2001; Bellon and Ciliberto 2002; Buisson et al.
2003a, b), while theoretical studies of model sys-
tems have also found non-monotonic or even neg-
ative response functions (Talbot et al. 2003;
Nicodemi 1999; Krzkala 2005; Depken and
Stinchcombe 2005), and ill-defined or
observable-dependent FDRs (Fielding and
Sollich 2002). In principle, these discrepancies
with mean-field predictions are to be expected,
since there are many systems of physical interest
in which the dynamics are not of mean-field type,
displaying both activated processes and spatial
heterogeneity.
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A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 23 Parametric correlation-response plots
measured in the aging regime of a numerical model for a
silica glass, SiO2 (Berthier 2007b). The plots for both
species smoothly converges toward a two-straight line
plot of slope 1 at short times (large C values), and of
slope X1 ≈ 0.51 at large times (small values of C), yielding
an effective temperature of about Teff ¼ T/X1 ≈ 4900 K.
Note that the glass transition temperature of SiO2 is 1446 K
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It is thus an important task to understand from
the theoretical point of view when the mean-field
concept of an FDR-related effective temperature
remains viable. However, theoretically studying
the interplay between relevant dynamic
lengthscales and thermally activated dynamics in
the nonequilibrium regime of disordered materials
is clearly a challenging task. Nevertheless, this
problem has been approached in different ways,
as we briefly summarize in this subsection.

A first class of system that displays aging and
spatial heterogeneity is given by coarsening sys-
tems. The paradigmatic situation is that of an Ising
ferromagnetic model (with a transition at Tc) sud-
denly quenched in the ferromagnetic phase at time
tw ¼ 0. For tw > 0, domains of positive and
negative magnetizations appear and slowly
coarsen with time. The appearance of domains
that grow with time proves the presence of both
aging and heterogeneity.

The case where the quench is performed down
to T< Tc is well understood. The system becomes
scale invariant (Bray 1994), since the only rele-
vant lengthscale is the growing domain size, ‘(tw).
Correlation functions display aging, and scale
invariance implies that C(t, tw)~f(‘(t)/‘(tw)).
Response functions can be decomposed into two
contributions (Barrat 1998; Berthier et al. 1999):
one part stems from the bulk of the domains and
behaves as the equilibrium response, and a second
one from the domain walls and becomes vanish-
ingly small in the long time limit, where ‘(tw)!1
and the density of domain walls vanishes. This
implies that for coarsening systems in d ≥ 2, one
has X1 ¼ 0, or equivalently an infinite effective
temperature, Teff ¼ 1. The case d ¼ 1 is special
because Tc ¼ 0 and the response function remains
dominated by the domain walls, which yields the
nontrivial value X1 ¼ 1/2 (Godréche and Luck
2000; Lippiello and Zannetti 2000).

Another special case has retained attention.
When the quench is performed at T ¼ Tc, there is
no more distinction between walls and domains
and the above argument yielding X1¼ 0 does not
hold. Instead one studies the growth of critical

fluctuations with time, with x twð Þ ~
t
1=z
w the correla-

tion length at time tw, where z is the dynamic

exponent. Both correlation and response func-
tions become nontrivial at the critical point
(Godreche and Luck 2000). It proves useful in
that case to consider the dynamics of the Fourier
components of the magnetization fluctuations,
Cq(t, tw) ¼ hmq(t)m�q(tw)i, and the conjugated
response Rq t, twð Þ ¼ d mq tð Þh i

dh�q twð Þ . From Eq. (44) a
wavevector-dependent FDR follows, Xq(t, tw),
which has interesting properties (Mayer et al.
2003) (see (Calabrese and Gambassi 2005) for a
review).

In dimension d ¼ 1, it is possible to compute
Xq(t, tw) exactly in the aging regime at T¼Tc¼ 0.
An interesting scaling form is found, and numer-
ical simulations performed for d > 1 confirm its
validity:

Xq t, twð Þ ¼ w q2tw
	 


, ð50Þ

where the scaling function w(x) is w(x!1)! 1 at
small lengthscale, qx � 1, and w(x ! 0) ! 1/2
(in d¼ 1) at large distance, qx 1; recall that z¼
2 in that case.

Contrary to mean-field systems where geome-
try played no role, here the presence of a growing
correlation lengthscale plays a crucial role in the
off-equilibrium regime since x(tw) allows one to
discriminate between fluctuations that satisfy the
FDT at small lengthscale, Xq ~ 1, and those at
large lengthscale which are still far from equilib-
rium, 0 < Xq ~ X1 < 1. These studies suggest
therefore that generalized fluctuation-dissipation
relations in fact have a strong lengthscale depen-
dence – a result which is not predicted by mean-
field approaches.

Another interesting result is that the FDT vio-
lation for global observables (i.e., those at q ¼ 0)
takes a particularly simple form, since the intro-
duction of a single number is sufficient, the FDR
at zero wavevector, Xq ¼ 0(t, tw) ¼ X1 ¼ 1/2
(in d¼ 1). This universal quantity takes nontrivial
values in higher dimension, for example,
X1 ≈ 0.34 is measured in d ¼ 2 (Mayer et al.
2003). This shows that the study of global rather
than local quantities makes the measurement of
X1much easier. Finally, having a nontrivial value
of X1 for global observables suggests that the
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possibility to define an effective temperature
remains valid, but it has become a more compli-
cated object, related to global fluctuations on large
lengthscale.

Kinetically constrained spin models represent
a second class of non-mean-field systems whose
off-equilibrium has been thoroughly studied
recently (Léonard et al. 2007). This is quite a
natural thing to do since these systems have
local, finite ranged interactions, and they combine
the interesting features of being defined in terms
of (effective) microscopic degrees of freedom,
having local dynamical rules, and displaying ther-
mally activated and heterogeneous dynamics.

The case of the Fredrickson-Andersen model,
described in section “Theory of the Glass Transi-
tion,” has been studied in great detail (Léonard
et al. 2007), and we summarize the main results.
Here, the relevant dynamic variables are the Fou-
rier components of the mobility field, which also
correspond in that case to the fluctuations of the
energy density. Surprisingly, the structure of the
generalized fluctuation-dissipation relation
remains once more very simple. In particular, in
dimension d > 2, one finds a scaling form similar
to (50), Xq(t, tw) ¼ w(q2tw), with a well-defined
limit at large distance Xq ¼ 0(t, tw)¼X1. The deep
analogy with critical Ising models stems from the
fact that mobility defects in KCMs diffuse in a
way similar to domain walls in coarsening Ising
models. It is in fact by exploiting this analogy that
analytic results are obtained in the aging regime of
the Fredrickson-Andersen model (Mayer and
Sollich 2007).

There is however a major qualitative difference
between the two families of model. The (big!)
surprise lies in the sign of the asymptotic FDR,
since calculations show that (Mayer et al. 2006)

X1 ¼ �3, d > 2: ð51Þ

In dimension d ¼ 1, one finds Xq ¼ 0(t, tw) ¼
f(t/tw) with Xq¼0 t ! 1, twð Þ ¼ 3p

16�6p � �3:307 .
Numerical simulations confirm these calculations.
In Fig. 24, we show such a comparison between
simulations (symbols) and theory (lines) in the
case of the d ¼ 3 Fredrickson-Andersen model

(Mayer et al. 2006). Fourier components of the
mobility field yield parametric FD plots that fol-
low scaling with the variable q2tw, as a direct
result of the presence of a growing lengthscale
for dynamic heterogeneity, x twð Þ ~ffiffiffiffiffitwp

. Again, gen-
eralized fluctuation-dissipation relations explic-
itly depend on the spatial lengthscale considered,
unlike in mean-field studies. In Fig. 24, the limit
q ¼ 0 corresponding to global observables is also
very interesting since the plot is a pure straight
line, as in equilibrium. Unlike equilibrium, how-
ever, the slope is not 1 but�3. A negative slope in
this plot means a negative FDR, and therefore
suggests a negative effective temperature, a very
nonintuitive result at first sight.

Negative response functions in fact directly
follows from the thermally activated nature of
the dynamics of these models (Mayer et al.
2006). First, one should note that the global
observable shown in Fig. 24 corresponds to fluc-
tuations of the energy, e(tw), whose conjugated
field is temperature. In the aging regime the sys-
tem slowly drifts toward equilibrium. Micro-
scopic moves result from thermally activated
processes, corresponding to the local crossing of
energy barriers. An infinitesimal change in tem-
perature, T ! T þ δT with δT > 0, accelerates
these barrier crossings and makes the relaxation
dynamics faster. The energy response to a positive
temperature pulse is therefore negative, δe < 0,
which directly yields δe/δT < 0, which explains
the negative sign of the FDR. This result does not
hold in mean-field glasses, where thermal activa-
tion plays no role.

Finally, another scenario holds for local
observables in some KCMs when kinetic con-
straints are stronger, such as the East model
(Léonard et al. 2007) or a bidimensional triangular
plaquette model (Jack et al. 2006b). Here, relaxa-
tion is governed by a hierarchy of energy barriers
that endow the systems with specific dynamic
properties. In the aging regime following a
quench, in particular, the hierarchy yields an
energy relaxation that arises in discrete steps
which take place on very different timescales,
reminiscent of the “time sectors” encountered in
mean-field spin glasses. Surprisingly, it is found
that to each of these discrete relaxations one can
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associate a well-defined (positive) value of the
fluctuation-dissipation ratio, again reminiscent of
the dynamics of mean-field spin glass models.
Therefore, a physical picture seems to have some
validity, even in models that are very far from the
mean-field limit: in that picture, slow relaxation
takes place on multiple timescales, with each
timescale characterized by a different effective
temperature.

Beyond Mean-Field: Energy Landscape
What the mean-field approach crucially lacks is
the description of activated processes that allow
the system to jump over larger and larger barriers
at large times. One way to introduce this key effect
is to study mean-field models at finite system size
N. In fact, the mean field theory of aging is derived
by first taking the limit N ! 1 to study the
dynamics on large but finite timescales. Instead,
if one focuses on timescales that diverge exponen-
tially with N, activated processes will occur. One
can then analyze in a controlled way how jumping
over barriers alters the mean-field dynamics.

This approach was pioneered numerically by
Crisanti and Ritort (2000a; b, 2003), and more
recently pursued further in (Baity-Jesi et al.
2018a, b; Billoire et al. 2005; Stariolo and
Cugliandolo 2019). One of the most important
outcomes of their study is to show the existence

of an effective temperature and its relation with
the energy landscape, more precisely the com-
plexity, even when barriers are crossed. The
understanding of the dynamical evolution in this
regime was reached recently by theoretical and
rigorous analysis of the Random Energy Model
(REM) in (Baity-Jesi et al. 2018a; Baity-Jesi et al.
2018b; Arous et al. 2002; Gayrard 2019). It was
shown that when observing the dynamics on
exponentially large (in N) timescales, activated
processes lead to a dynamical evolution that can
be mapped on the one of the trap model
(Bouchaud 1992; Dyre 1987). Again, an interest-
ing relation with the energy landscape emerges:
the exponent of the trapping time power law
describing aging dynamics at a given energy is
directly linked to the slope of the configurational
entropy at that energy. It is not yet clear whether
this scenario goes beyond the REM and applies,
for instance, to the Monte Carlo dynamics of the
p-spin model. In this case the energy landscape is
more complex and one needs to understand the
interplay between energy and entropic barriers
(Barrat and Mézard 1995; Cammarota and
Marinari 2015, 2018).

To this end, a series of recent works focused on
the organization in configuration space of the
barriers that can be used to escape from a given
minimum for the p-spin spherical model. By using

A Statistical Mechanics Perspective on Glasses and
Aging, Fig. 24 Parametric response-correlation plots for
the Fourier components of the mobility field in the d ¼ 3
Fredrickson-Andersen model. Symbols are from simula-
tions, lines from analytic calculations, and wavevectors
decrease from top to bottom. The FDT is close to being

satisfied at large q corresponding to local equilibrium. At
larger distance deviations from the FDT are seen, with an
asymptotic FDR which becomes negative. Finally, for
energy fluctuations at q ¼ 0 (bottom curve), the plot
becomes a pure straight line of (negative!) slope � 3, as a
result of thermally activated dynamics
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the Kac-Rice formalism, these works computed
the entropy of the barriers at a given energy and at
a certain distance from a given minimum (Ros
et al. 2019) and obtained the dynamical instanton
representing the escape from a given minimum.

Finally, another set of works performed a com-
plementary study on finite size models of three
dimensional supercooled liquids. The key idea
was to focus on a size that is large enough to be
representative of the bulk behavior and small
enough to be able to study the dynamics in terms
of energy landscape (Büchner and Heuer 1999;
Doliwa and Heuer 2003; Heuer 2008). This led to
the introduction of the notion of metabasins, a set
of basins that corresponds to the same metastable
state. A study of the dynamics in terms of energy
barriers between metabasins was then performed.
It showed in a very compelling way that the
dynamics start to be activated even above the
MCT cross-over in 3D systems (Doliwa and
Heuer 2003; Denny et al. 2003). Interestingly, a
strong relationship with the dynamics of the trap
model was also found in this case (Heuer 2008).

All the results cited above provide valuable
information and insights on activated dynamics.
Interestingly, they show that relations between
aging dynamics and energy landscape found
within mean-field theory seem to hold more
broadly. Many questions remain open and will
hopefully be addressed in future work, such as
understanding and characterizing the dynamical
paths and the barrier crossings leading to relaxa-
tion during the aging regime.

Driven Glassy Materials
We have introduced aging phenomena with the
argument that in a glass phase, the timescale to
equilibrate becomes so long that the system
always remembers its complete history. This is
true in general, but one can wonder whether it is
possible to invent a protocol where the material
history could be erased, and the system “rejuve-
nated” (McKenna and Kovacs 1984). This con-
cept has been known for decades in the field of
polymer glasses, where complex thermo-
mechanical histories are often used.

Let us consider an aging protocol where the
system is quenched to low temperature at time

tw ¼ 0, but the system is simultaneously forced
by an external mechanical constraint. Experimen-
tally one finds that a stationary state can be
reached, which explicitly depends on the strength
of the forcing: a system which is forced more
strongly relaxes faster than a material that is less
solicited, a phenomenon called “shear-thinning.”
The material has therefore entered a driven steady
state, where memory of its age is no longer present
and the dynamics have become stationary: aging
is stopped.

Many studies of these driven glassy states have
been performed in recent years. These studies are
relevant for the rheology of supercooled liquids
and glasses, and the T  Tg limit corresponds to
studies of the plasticity of amorphous solids, a
broad field in itself, see section “Rheology.” In
the colloidal world, such studies are also relevant
for the newly-defined field of the rheology of “soft
glassy materials.” These materials are (somewhat
tautologically) defined as those for which the non-
linear rheological behavior is believed to result
precisely from the competition between intrinsi-
cally slow relaxation processes and an external
forcing (Sollich et al. 1997; Ikeda et al. 2012). It
is believed that the rheology of dense colloidal
suspensions, foams, emulsions, binary mixtures,
or even biophysical systems is ruled by such a
competition, which represents a broad scope for
applications.

From the point of view of statmech modeling,
soft glassy rheology can be naturally studied from
the very same angles as the glass transition itself.
As such trap models (Sollich et al. 1997; Sollich
1998), mean-field spin glasses (Berthier et al.
2000), and the related mode-coupling theory
approach (Miyazaki and Reichman 2002; Fuchs
and Cates 2002) have been explicitly extended to
include an external mechanical forcing. In all
these cases, one finds that a driven steady state
can be reached and aging is indeed expected to
stop at a level that depends on the strength of the
forcing. Many of the results obtained in aging
systems about the properties of an effective tem-
perature are also shown to apply in the driven
case, as shown both theoretically (Berthier et al.
2000) and numerically (Berthier and Barrat
2002b). A most interesting aspect is that the
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broad relaxation spectra predicted to occur in
glassy materials close to a glass transition directly
translate into “anomalous” laws both for the linear
rheological behavior (seen experimentally in the
broad spectrum of elastic, G0(v) and loss, G00(v),
moduli), and the nonlinear rheological behavior
(a strong dependence of the viscosity � upon the
shear rate _g).

Future Directions

The problem of the glass transition, already very
exciting in itself, has ramifications well beyond
the physics of supercooled liquids. Glassy sys-
tems figure among the even larger class of “com-
plex systems.” These are formed by a set of
interacting degrees of freedom showing nontrivial
emergent behavior: as a whole they exhibit prop-
erties that are not already encoded in the definition
of the individual parts. As a consequence the
study of glass-formers as statistical mechanics
models characterized by frustrated interactions is
a fertile ground to develop new concepts and
techniques that will likely be applied to other
physical, and more generally, scientific situations.

An example, already cited in this review, is the
progress obtained in computer science and infor-
mation theory (Bouchaud et al. 2011) using tech-
niques originally developed for spin glasses and
structural glasses. There is no doubt that progress
will steadily continue in the future along these
interdisciplinary routes. Concerning physics,
glassiness is such a ubiquitous and, yet as we
showed, rather poorly understood problem that
many developments are very likely to take place
in the next decade.

Instead of guessing future developments of the
field (and then very likely be proven wrong), we
prefer to list a few problems we would like to see
solved in the next years.

• Is the glass transition related to a true phase
transition? If yes, a static or a dynamic one?
A finite or zero temperature one?

• Do RFOT theory, defects models, or
frustration-based theory form the correct

starting points of “the” theory of the glass
transition?

• Is MCT really a useful theory for the first
decades of slowing down of the dynamics?
Can one find direct evidence that an avoided
MCT transition exists and controls the
dynamics?

• What is the correct physical picture for the low
temperature phase of glass-forming liquids and
spin glasses?

• Are there general principles governing off-
equilibrium dynamics, and in particular aging
and sheared materials?

• Do non-disordered, finite-dimensional, and
finite-range statmech model exist that display
a thermodynamically stable amorphous phase
at low temperature?

Finally, notice that we did not discuss possible
interplays between glassiness, disorder, and quan-
tum fluctuations. This is a very fascinating topic
that has boomed in recent years; new phenomena
such as Many-Body Localization (Nandkishore
and Huse 2015) and Quantum Scars (Turner
et al. 2018) have been discovered, revealing new
facets of slow dynamics. Models of classical
glasses, such as the KCMs and the p-spin models,
found new applications in this arena (Pancotti
et al. 2020; Facoetti et al. 2019).

Acknowledgments This work was supported by a grant
from the Simons Foundation (Grant No. 454933, L. B.,
Grant No. 454935, G. B.)

Bibliography

Abou B, Gallet F (2004) Phys Rev Lett 93:160603
Adam G, Gibbs JH (1965) J Chem Phys 43:139
Adhikari AN, Capurso NA, Bingemann D (2007) J Chem

Phys 127:114508
Agoritsas E, Biroli G, Urbani P, Zamponi F (2018) J Phys

A Math Theor 51:085002
Agoritsas E, Maimbourg T, Zamponi F (2019) J Phys

A Math Theor 52:144002
Albert S, Bauer T, Michl M, Biroli G, Bouchaud J-P,

Loidl A, Lunkenheimer P, Tourbot R, Wiertel-Gasquet-
C, Ladieu F (2016) Science 352:1308

Allen M, Tildesley D (1989) New York/Oxford, p 385
Altieri A, Biroli G, Cammarota C (2020) arXiv preprint

arXiv:2005.05118

A Statistical Mechanics Perspective on Glasses and Aging 61



Anandkumar A, Ge R, Hsu D, Kakade SM, Telgarsky
M (2014) J Mach Learn Res 15:2773

Angelani L, Paoluzzi M, Parisi G, Ruocco G (2018) Proc
Natl Acad Sci 115:8700

Angelini MC, Biroli G (2017) Proc Natl Acad Sci 114:
3328

Angelini TE, Hannezo E, Trepat X, Marquez M, Fredberg
JJ, Weitz DA (2011) Proc Natl Acad Sci 108:4714

Angell CA (1995) Science 267:1924
Angell CA (1997) J Res Natl Inst Stand Technol 102:171
Antenucci F, Franz S, Urbani P, Zdeborová L (2019) Phys

Rev X 9:011020
Appignanesi GA, Rodríguez Fris JA, Montani RA, Kob

W (2006) Phys Rev Lett 96:057801
Arous GB, Bovier A, Gayrard V (2002) Phys Rev Lett 88:

087201
Baity-Jesi M, Baños R, Cruz A, Fernandez LA, Gil-

Narvion JM, Gordillo-Guerrero A, Iniguez D,
Maiorano A, Mantovani F, Marinari E et al
(2013) Phys Rev B 88:224416

Baity-Jesi M, Achard-de Lustrac A, Biroli G (2018a) Phys
Rev E 98:012133

Baity-Jesi M, Biroli G, Cammarota C (2018b) J Stat Mech:
Theory Exp 2018:013301

Baity-Jesi M, Sagun L, Geiger M, Spigler S, Arous GB,
Cammarota C, LeCun Y, Wyart M, Biroli G (2019)
J Stat Mech: Theory Exp 2019:124013

Bapst V, Keck T, Grabska-Barwińska A, Donner C, Cubuk
ED, Schoenholz S, Obika A, Nelson A, Back T,
Hassabis D et al (2020) Nat Phys 16:448

Barrat A (1998) Phys Rev E 57:3629
Barrat A, Mézard M (1995) J Phys I 5:941
Barrat J-L, Feigelman M, Kurchan J et al (2004) Slow

relaxations and nonequilibrium dynamics in condensed
matter 77. Springer, Berlin, Heidelberg, https://doi.org/
10.1007/978-3-540-44835-8_5

Bässler H (1987) Phys Rev Lett 58:767
Bauer T, Lunkenheimer P, Loidl A (2013) Phys Rev Lett

111:225702
Bechinger C, Di Leonardo R, Löwen H, Reichhardt C,

Volpe G, Volpe G (2016) Rev Mod Phys 88:045006
Bellon L, Ciliberto S (2002) Physica D 168:325
Bellon L, Ciliberto S, Laroche C (2001) EPL (Europhys

Lett) 53:511
Bengtzelius U, Gotze W, Sjolander A (1984) J Phys

C Solid State Phys 17:5915
Bennemann C, Donati C, Baschnagel J, Glotzer SC

(1999) Nature 399:246
Berges J, Tetradis N,Wetterich C (2002) Phys Rep 363:223
Bert F, Dupuis V, Vincent E, Hammann J, Bouchaud J-P

(2004) Phys Rev Lett 92:167203
Berthier L (2004) Phys Rev E 69:020201
Berthier L (2007a) Phys Rev E 76:011507
Berthier L (2007b) Phys Rev Lett 98:220601
Berthier L (2013) Phys Rev E 88. https://doi.org/10.1103/

PhysRevE.88.022313
Berthier L (2014) Phys Rev Lett 112:220602
Berthier L, Barrat J-L (2002a) Phys Rev Lett 89:095702
Berthier L, Barrat J-L (2002b) J Chem Phys 116:6228

Berthier L, Biroli G (2011) Rev Mod Phys 83:587
Berthier L, Bouchaud J-P (2002) Phys Rev B 66:054404
Berthier L, Coslovich D (2014) Proc Natl Acad Sci 111:

11668
Berthier L, Ediger MD (2016) Phys Today 69:40
Berthier L, Garrahan JP (2003) J Chem Phys 119:4367
Berthier L, Garrahan JP (2005) J Phys Chem B 109:3578
Berthier L, Jack RL (2015) Phys Rev Lett 114. https://doi.

org/10.1103/PhysRevLett.114.205701
Berthier L, Kob W (2007) J Phys Condens Matter 19:

205130
Berthier L, Kob W (2012) Phys Rev E:85. https://doi.org/

10.1103/PhysRevE.85.011102
Berthier L, Kurchan J (2013) Nat Phys 9:310
Berthier L, Witten TA (2009) Phys Rev E 80:021502
Berthier L, Young A (2005) Phys Rev B 71:214429
Berthier L, Barrat J-L, Kurchan J (1999) Eur Phys

J B-Condens Matter Complex Syst 11:635
Berthier L, Barrat J-L, Kurchan J (2000) Phys Rev E 61:

5464
Berthier L, Chandler D, Garrahan JP (2004) EPL

(Europhys Lett) 69:320
Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, El

Masri D, L’Hôte D, Ladieu F, Pierno M (2005) Science
310:1797

Berthier L, Biroli G, Bouchaud J-P, Kob W, Miyazaki K,
Reichman D (2007a) J Chem Phys 126:184503

Berthier L, Biroli G, Bouchaud J-P, Kob W, Miyazaki K,
Reichman DR (2007b) J Chem Phys 126:184504

Berthier L, Biroli G, Bouchaud J-P, Cipelletti L, van
Saarloos W (2011a) Dynamical heterogeneities in
glasses, colloids, and granular media, vol 150. OUP,
Oxford

Berthier L, Jacquin H, Zamponi F (2011b) Phys Rev E 84:
051103

Berthier L, Biroli G, Coslovich D, Kob W, Toninelli
C (2012) Phys Rev E 86:031502

Berthier L, Charbonneau P, Jin Y, Parisi G, Seoane B,
Zamponi F (2016a) Proc Natl Acad Sci 113:8397

Berthier L, Coslovich D, Ninarello A, Ozawa M (2016b)
Phys Rev Lett 116. https://doi.org/10.1103/Phys-
RevLett.116.238002

Berthier L, Charbonneau P, Yaida S (2016c) J Chem Phys
144:024501

Berthier L, Flenner E, Szamel G (2017a) New J Phys 19:
125006

Berthier L, Charbonneau P, Flenner E, Zamponi F (2017b)
Phys Rev Lett 119:188002

Berthier L, Charbonneau P, Coslovich D, Ninarello A,
Ozawa M, Yaida S (2017c) Proc Natl Acad Sci 114:
11356

Berthier L, OzawaM, Scalliet C (2019a) J Chem Phys 150:
160902

Berthier L, Flenner E, Szamel G (2019b) J Chem Phys 150:
200901

Berthier L, Biroli G, Bouchaud J-P, Tarjus G (2019c)
J Chem Phys 150:094501

Berthier L, Biroli G, Charbonneau P, Corwin EI, Franz S,
Zamponi F (2019d) J Chem Phys 151:010901

62 A Statistical Mechanics Perspective on Glasses and Aging

https://doi.org/10.1007/978-3-540-44835-8_5
https://doi.org/10.1007/978-3-540-44835-8_5
https://doi.org/10.1103/PhysRevE.88.022313
https://doi.org/10.1103/PhysRevE.88.022313
https://doi.org/10.1103/PhysRevLett.114.205701
https://doi.org/10.1103/PhysRevLett.114.205701
https://doi.org/10.1103/PhysRevE.85.011102
https://doi.org/10.1103/PhysRevE.85.011102
https://doi.org/10.1103/Phys-RevLett.116.238002
https://doi.org/10.1103/Phys-RevLett.116.238002


Berthier L, Flenner E, Fullerton CJ, Scalliet C, Singh
M (2019e) J Stat Mech: Theory Exp 2019:064004

Berthier L, Charbonneau P, Kundu J (2019f) Phys Rev
E 99. https://doi.org/10.1103/PhysRevE.99.031301

Berthier L, Charbonneau P, Ninarello A, Ozawa M, Yaida
S (2019g) Nat Commun 10. https://doi.org/10.1038/
s41467-019-09512-3

Berthier L, Charbonneau P, Kundu J (2020) Phys Rev Lett
125:108001

Bi D, Yang X, Marchetti MC, Manning ML (2016) Phys
Rev X:6. https://doi.org/10.1103/Phys-RevX.6.021011

Billoire A, Giomi L, Marinari E (2005) EPL (Europhys
Lett) 71:824

Binder K, Kob W (2011) Glassy materials and disordered
solids: an introduction to their statistical mechanics.
World Scientific

Binder K, Young AP (1986) Rev Mod Phys 58:801
Biroli G, Bouchaud J-P (2004) EPL (Europhys Lett) 67:21
Biroli G, Bouchaud J-P (2012) Structural glasses and

supercooled liquids: theory, experiment, and applica-
tions. p 31

Biroli G, Cammarota C (2017) Phys Rev X 7:011011
Biroli G, Mézard M (2001) Phys Rev Lett 88:025501
Biroli G, Urbani P (2016) Nat Phys 12:1130
Biroli G, Urbani P (2018) SciPost Phys 4:020
Biroli G, Bouchaud J-P, Tarjus G (2005) J Chem Phys 123:

044510
Biroli G, Bouchaud J-P, Miyazaki K, Reichman DR

(2006) Phys Rev Lett 97:195701
Biroli G, Bouchaud J-P, Cavagna A, Grigera TS, Verroc-

chio P (2008) Nat Phys 4:771
Biroli G, Cammarota C, Tarjus G, Tarzia M (2014) Phys

Rev Lett 112:175701
Biroli G, Rulquin C, Tarjus G, Tarzia M (2016) SciPost

Phys 1. https://doi.org/10.21468/SciPostPhys.1.1.007
Biroli G, Cammarota C, Tarjus G, Tarzia M (2018a) Phys

Rev B 98:174205
Biroli G, Cammarota C, Tarjus G, Tarzia M (2018b) Phys

Rev B 98:174206
Boattini E, Marín-Aguilar S, Mitra S, Foffi G,

Smallenburg F, Filion L (2020) arXiv preprint
arXiv:2003.00586

Bouchaud J-P (1992) J Phys I 2:1705
Bouchaud J-P, Biroli G (2004) J Chem Phys 121:7347
Bouchaud J-P, Biroli G (2005) Phys Rev B 72:064204
Bouchaud J-P, Dupuis V, Hammann J, Vincent E (2001)

Phys Rev B 65:024439
Bouchaud J-P, Mézard M, Dalibard J (2011) Complex

systems: lecture notes of the les Houches Summer
School 2006. Elsevier

Brambilla G, El Masri D, Pierno M, Berthier L,
Cipelletti L, Petekidis G, Schofield AB (2009) Phys
Rev Lett 102:085703

Bray A (1994) Adv Phys 43:357
Bray A, Moore M (1984) J Phys C Solid State Phys 17:

L463
Bray A, Moore M (1987) Phys Rev Lett 58:57
Brito C, Wyart M (2009) J Chem Phys 131:149

Brito C, Lerner E, Wyart M (2018) Phys Rev X 8. https://
doi.org/10.1103/PhysRevX.8.031050

Brun C, Ladieu F, LHôte D, Biroli G, Bouchaud J (2012)
Phys Rev Lett 109:175702

Büchner S, Heuer A (1999) Phys Rev E 60:6507
Buisson L, Bellon L, Ciliberto S (2003a) J Phys Condens

Matter 15:S1163
Buisson L, Ciliberto S, Garcimartin A (2003b) EPL

(Europhys Lett) 63:603
Butler S, Harrowell P (1991) J Chem Phys 95:4454
Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C,

Speck T (2013) Phys Rev Lett 110:238301
Calabrese P, Gambassi A (2005) J Phys A Math Gen 38:

R133
Cammarota C (2013) EPL (Europhys Lett) 101:56001
Cammarota C, Biroli G (2012) Proc Natl Acad Sci 109:

8850
Cammarota C, Biroli G (2013) J Chem Phys 138:12A547
Cammarota C, Marinari E (2015) Phys Rev E 92:010301
Cammarota C, Marinari E (2018) J Stat Mech: Theory Exp

2018:043303
Cammarota C, Seoane B (2016) Phys Rev B 94:180201
Cammarota C, Biroli G, Tarzia M, Tarjus G (2011) Phys

Rev Lett 106:115705
Candelier R, Dauchot O, Biroli G (2009) Phys Rev Lett

102:1
Candelier R, Widmer-Cooper A, Kummerfeld JK,

Dauchot O, Biroli G, Harrowell P, Reichman DR
(2010a) Phys Rev Lett 105:135702. https://doi.org/10.
1103/PhysRevLett.105.135702

Candelier R, Dauchot O, Biroli G (2010b) EPL (Europhys
Lett) 92:24003

Cardenas M, Franz S, Parisi G (1999) J Chem Phys 110:
1726

Castellana M, Decelle A, Franz S, Mézard M, Parisi
G (2010) Phys Rev Lett 104:127206

Castellani T, Cavagna A (2005) J Stat Mech: Theory Exp
2005:P05012

Cavagna A (2009) Phys Rep 476:51
Cavagna A, Grigera TS, Verrocchio P (2007) Phys Rev

Lett 98:187801
Cavagna A, Grigera TS, Verrocchio P (2012) J Chem Phys

136:204502
Chaikin PM, Lubensky TC,Witten TA (1995) Principles of

condensed matter physics, vol 10. Cambridge Univer-
sity Press, Cambridge

Chakrabarty S, Karmakar S, Dasgupta C (2015) Sci Rep 5:
12577

Chakrabarty S, Das R, Karmakar S, Dasgupta C (2016)
J Chem Phys 145:034507

Chandler D, Garrahan JP, Jack RL, Maibaum L, Pan AC
(2006) Phys Rev E 74:051501

Charbonneau P, Tarjus G (2013) Phys Rev E 87:042305
Charbonneau P, Corwin EI, Parisi G, Zamponi F (2012)

Phys Rev Lett 109:205501
Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi

F (2014a) Nat Commun 5:1
Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi

F (2014b) J Stat Mech: Theory Exp 2014:P10009

A Statistical Mechanics Perspective on Glasses and Aging 63

https://doi.org/10.1103/PhysRevE.99.031301
https://doi.org/10.1038/s41467-019-09512-3
https://doi.org/10.1038/s41467-019-09512-3
https://doi.org/10.1103/Phys-RevX.6.021011
https://doi.org/10.21468/SciPostPhys.1.1.007
https://doi.org/10.1103/PhysRevX.8.031050
https://doi.org/10.1103/PhysRevX.8.031050
https://doi.org/10.1103/PhysRevLett.105.135702
https://doi.org/10.1103/PhysRevLett.105.135702


Charbonneau P, Corwin EI, Parisi G, Zamponi F (2015)
Phys Rev Lett 114:125504

Charbonneau P, Corwin EI, Parisi G, Poncet A, Zamponi
F (2016a) Phys Rev Lett 117:045503

Charbonneau P, Dyer E, Lee J, Yaida S (2016b) J Stat
Mech: Theory Exp 2016:074004

Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi
F (2017) Annu Rev Condens Matter Phys 8:265

Chaudhuri P, Berthier L, Kob W (2007) Phys Rev Lett 99:
060604

Chaudhuri P, Berthier L, Sastry S (2010) Phys Rev Lett
104:165701

Chen Z, Sepúlveda A, Ediger M, Richert R (2013) J Chem
Phys 138:12A519

Cheng Z, Zhu J, Chaikin PM, Phan S-E, Russel WB
(2002) Phys Rev E 65:041405

Cohen MH, Grest G (1982) Phys Rev B 26:6313
Coslovich D (2011) Phys Rev E Stat Nonlinear Soft Matter

Phys 83:1
Coslovich D, Pastore G (2007) J Chem Phys 127:124504
Coslovich D, Ozawa M, Berthier L (2018) J Phys Condens

Matter 30:144004
Crauste-Thibierge C, Brun C, Ladieu F, Lhôte D, Biroli G,

Bouchaud J-P (2010) Phys Rev Lett 104:165703
Crisanti A, Ritort F (2000a) EPL (Europhys Lett) 51:147
Crisanti A, Ritort F (2000b) EPL (Europhys Lett) 52:640
Crisanti A, Ritort F (2003) J Phys A Math Gen 36:R181
Cubuk ED, Schoenholz SS, Rieser JM, Malone BD,

Rottler J, Durian DJ, Kaxiras E, Liu AJ (2015) Phys
Rev Lett 114:1

Cubuk ED, Schoenholz SS, Kaxiras E, Liu AJ
(2016) J Phys Chem B 120:6139. iSBN: 1520-5207
(Electronic) 1520-5207 (Linking)

Cubuk ED, Ivancic RJS, Schoenholz SS, Strickland DJ,
Basu A, Davidson ZS, Fontaine J, Hor JL, Huang Y-R,
Jiang Y, Keim NC, Koshigan KD, Lefever JA, Liu T,
Ma X-G, Magagnosc DJ, Morrow E, Ortiz CP, Rieser
JM, Shavit A, Still T, Xu Y, Zhang Y, Nordstrom KN,
Arratia PE, Carpick RW, Durian DJ, Fakhraai Z,
Jerolmack DJ, Lee D, Li J, Riggleman R, Turner KT,
Yodh AG, Gianola DS, Liu AJ (2017) Science 358:
1033. iSBN: 3487716170192

Cugliandolo LF, Kurchan J (1993) Phys Rev Lett 71:173
Cugliandolo LF, Kurchan J (1994) J Phys A Math Gen 27:

5749
Cugliandolo LF, Kurchan J, Peliti L (1997) Phys Rev E 55:

3898
D’Anna G, Grémaud G (2001) Nature 413:407
Dalle-Ferrier C, Thibierge C, Alba-Simionesco C,

Berthier L, Biroli G, Bouchaud J-P, Ladieu F,
L’Hôte D, Tarjus G (2007) Phys Rev E 76:041510

Darst RK, Reichman DR, Biroli G (2010) J Chem Phys
132:044510

Das SP, Mazenko GF (1986) Phys Rev A 34:2265
Dauchot O, Marty G, Biroli G (2005) Phys Rev Lett 95:

265701
Debenedetti PG (1996) Metastable liquids: concepts and

principles. Princeton University Press
Debenedetti PG, Stillinger FH (2001) Nature 410:259

DeGiuli E, Lerner E, Brito C, Wyart M (2014) Proc Natl
Acad Sci 111:17054

Degiuli E, Lerner E, Wyart M (2015) J Chem Phys 142:
164503

Denny RA, Reichman DR, Bouchaud J-P (2003) Phys Rev
Lett 90:025503

Depken M, Stinchcombe R (2005) Phys Rev E 71:065102
Deseigne J, Dauchot O, Chaté H (2010) Phys Rev Lett 105:

098001
Doliwa B, Heuer A (2003) Phys Rev E 67:030501
Donati C, Douglas JF, Kob W, Plimpton SJ, Poole PH,

Glotzer SC (1998) Phys Rev Lett 80:2338
Donati C, Franz S, Glotzer SC, Parisi G (2002) J Non-Cryst

Solids 307–310:215
Donev A, Torquato S, Stillinger FH, Connelly R (2004)

J Appl Phys 95:989
Donev A, Torquato S, Stillinger FH (2005) Phys Rev E 71:

011105
Downton MT, Kennett MP (2007) Phys Rev E 76:031502
Durian DJ (1995) Phys Rev Lett 75:4780
Dyre JC (1987) Phys Rev Lett 58:792
DzeroM, Schmalian J,Wolynes PG (2005) Phys Rev B 72:

100201
Ediger MD (2000) Annu Rev Phys Chem 51:99
Ediger MD (2017) J Chem Phys 147:210901
Elmatad YS, Keys AS (2012) Phys Rev E Stat Nonlinear

Soft Matter Phys 85:061502
Elmatad Y, Chandler D, Garrahan J (2009) J Phys Chem

B 113:5563
Elmatad YS, Jack RL, Chandler D, Garrahan JP

(2010) Proc Natl Acad Sci 107:12793
Facoetti D, Biroli G, Kurchan J, Reichman DR (2019) Phys

Rev B 100:205108
Fernández L, Martín-Mayor V, Verrocchio P (2006) Phys

Rev E 73:020501
Fielding S, Sollich P (2002) Phys Rev Lett 88:050603
Fisher DS (1986) Phys Rev Lett 56:416
Fisher DS, Huse DA (1986) Phys Rev Lett 56:1601
Flenner E, Berthier L, Charbonneau P, Fullerton CJ

(2019) Phys Rev Lett 123:175501
Frank FC (1952) Proc R Soc Lond AMath Phys Sci 215:43
Franz S (2006) EPL (Europhys Lett) 73:492
Franz S, Parisi G (1997) Phys Rev Lett 79:2486
Franz S, Parisi G (1998) Physica A 23:317–339
Franz S, Parisi G (2000) J Phys Condens Matter 12:6335
Franz S, Parisi G (2013) J Stat Mech: Theory Exp 2013:

P11012
Franz S, Mézard M, Parisi G, Peliti L (1998) Phys Rev Lett

81:1758
Franz S, Donati C, Parisi G, Glotzer SC (1999) Philos Mag

B 7 9 : 1 8 2 7 . h t t p s : / / d o i . o r g / 1 0 . 1 0 8 0 /
13642819908223066

Franz S, Mulet R, Parisi G (2002) Phys Rev E 65:021506
Franz S, Parisi G, Ricci-Tersenghi F, Rizzo T (2011) Eur

Phys J E 34:1
Franz S, Parisi G, Ricci-Tersenghi F (2013) J Stat Mech:

Theory Exp 2013:L02001
Franz S, Parisi G, Urbani P, Zamponi F (2015) Proc Natl

Acad Sci 112:14539

64 A Statistical Mechanics Perspective on Glasses and Aging

https://doi.org/10.1080/13642819908223066
https://doi.org/10.1080/13642819908223066


Franz S, Parisi G, Sevelev M, Urbani P, Zamponi F (2017)
SciPost Phys 2:019

Fredrickson GH, Andersen HC (1984) Phys Rev Lett 53:
1244

Fredrickson GH, Brawer SA (1986) J Chem Phys 84:3351
Fuchs M, Cates ME (2002) Phys Rev Lett 89:248304
Fullerton CJ, Berthier L (2017) EPL (Europhys Lett) 119:

36003
Fullerton CJ, Jack RL (2014) Phys Rev Lett 112:255701
Ganapathi D, Nagamanasa KH, Sood A, Ganapathy

R (2018) Nat Commun 9:1
Garcia S, Hannezo E, Elgeti J, Joanny J-F, Silberzan P, Gov

NS (2015) Proc Natl Acad Sci 112:15314
Gardner E (1985) Nucl Phys B 257:747
Garrahan JP (2002) J Phys Condens Matter 14:1571
Garrahan JP, Chandler D (2002) Phys Rev Lett 89:035704
Garrahan JP, Chandler D (2003) Proc Natl Acad Sci 100:

9710. tex.eprint: https://www.pnas.org/content/100/17/
9710.full.pdf. tex.publisher: National Academy of
Sciences

Garrahan JP, Jack RL, Lecomte V, Pitard E, van
Duijvendijk K, van Wijland F (2007) Phys Rev Lett
98. https://doi.org/10.1103/Phys-RevLett.98.195702

Garrahan JP, Jack RL, Lecomte V, Pitard E, van
Duijvendijk K, van Wijland F (2009) J Phys A Math
Theor 42:075007

Gayrard V (2019) Probab Theory Relat Fields 174:501
Gazzillo D, Pastore G (1989) Chem Phys Lett 159:388
Gebremichael Y, Vogel M, Glotzer SC (2004) J Chem Phys

120:4415. https://doi.org/10.1063/1.1644539
Glarum SH (1960) J Chem Phys 33:639
Gleim T, Kob W, Binder K (1998) Phys Rev Lett 81:4404
Godréche C, Luck J (2000) J Phys A Math Gen 33:1151
Godreche C, Luck J (2000) J Phys A Math Gen 33:9141
Gokhale S, Nagamanasa KH, Ganapathy R, Sood A (2014)

Nat Commun 5:4685
Gokhale S, Sood A, Ganapathy R (2016) Adv Phys 65:363
Goldstein M (1969) J Chem Phys 51:3728
Götze W (1999) J Phys Condens Matter 11:A1
Grigera TS, Israeloff N (1999) Phys Rev Lett 83:5038
Grigera TS, Parisi G (2001) Phys Rev E 63. https://doi.org/

10.1103/PhysRevE.63.045102
Gross DJ, Mézard M (1984) Nucl Phys B 240:431
Guiselin B, Berthier L, Tarjus G (2020) arXiv preprint

arXiv:2004.10555
Gutiérrez R, Garrahan JP (2016) J Stat Mech: Theory Exp

2016:074005
Gutiérrez R, Garrahan JP, Jack RL (2019) J Stat Mech:

Theory Exp 2019:094006
Hallett JE, Turci F, Royall CP (2018) Nat Commun 9:1
Hansen J-P, McDonald IR (1990) Theory of simple liquids.

Elsevier
Hartarsky I, Marêché L, Toninelli C (2019a) arXiv preprint

arXiv:1904.09145
Hartarsky I, Martinelli F, Toninelli C (2019b) arXiv pre-

print arXiv:1910.06782
Hedges LO, Jack RL, Garrahan JP, Chandler D (2009)

Science 323:1309

Henkes S, Fily Y, Marchetti MC (2011) Phys Rev E 84:
040301

Heuer A (2008) J Phys Condens Matter 20:373101
Hocky GM, Berthier L, Reichman DR (2014) J Chem Phys

141:224503
Hodge IM (1997) J Res Natl Inst Stand Technol 102:195
Hołyst R (2001) Physica A 292:255
Horbach J, Kob W (2001) Phys Rev E 64:041503
Hurley M, Harrowell P (1995) Phys Rev E 52:1694
Ikeda A, Berthier L, Sollich P (2012) Phys Rev Lett 109:

018301
Ikeda A, Berthier L, Biroli G (2013) J Chem Phys 138:

12A507
Ikeda H, Miyazaki K, Biroli G (2017a) EPL (Europhys

Lett) 116:56004
Ikeda H, Zamponi F, Ikeda A (2017b) J Chem Phys 147:

234506
Isobe M, Keys AS, Chandler D, Garrahan JP (2016) Phys

Rev Lett 117:1
Ivancic R, Cubuk E, Schoenholz S, Strickland D,

Gianola D, Liu A (2017) Bull Am Phys Soc 62:
B16–013

Jack RL, Berthier L (2012) Phys Rev E 85:021120
Jack RL, Berthier L (2016) J Chem Phys 144:244506
Jack RL, Fullerton CJ (2013) Phys Rev E 88:042304
Jack RL, Garrahan JP (2005) J Chem Phys 123:164508
Jack RL, Garrahan JP (2010) Phys Rev E 81:011111
Jack RL, Garrahan JP (2016) Phys Rev Lett 116. https://

doi.org/10.1103/PhysRevLett.116.055702
Jack RL, Berthier L, Garrahan JP (2005) Phys Rev E 72:

016103
Jack RL, Mayer P, Sollich P (2006a) J Stat Mech: Theory

Exp 2006:P03006
Jack RL, Berthier L, Garrahan JP (2006b) J Stat Mech:

Theory Exp 2006:P12005
Jack RL, Hedges LO, Garrahan JP, Chandler D (2011)

Phys Rev Lett 107. https://doi.org/10.1103/
PhysRevLett.107.275702

Jaeger HM, Nagel SR, Behringer RP (1996) RevMod Phys
68:1259

Johari G (2000) J Chem Phys 112:7518
Jönsson P, Mathieu R, Nordblad P, Yoshino H, Katori HA,

Ito A (2004) Phys Rev B 70:174402
Jung Y, Garrahan JP, Chandler D (2004) Phys Rev E 69:

061205
Kapteijns G, Ji W, Brito C, Wyart M, Lerner E (2019) Phys

Rev E 99. https://doi.org/10.1103/Phys-RevE.99.
012106

Karmakar S, Parisi G (2013) Proc Natl Acad Sci 110:2752
Karmakar S, Procaccia I (2011) arXiv preprint

arXiv:1105.4053
Kauzmann W (1948) Chem Rev 43:219
Kearns KL, Ediger M, Huth H, Schick C (2010) J Phys

Chem Lett 1:388
Kegel WK, van Blaaderen A (2000) Science 287:290
Keys AS, Abate AR, Glotzer SC, Durian DJ (2007) Nat

Phys 3:260
Keys AS, Hedges LO, Garrahan JP, Glotzer SC, Chandler

D (2011) Phys Rev X 1:1

A Statistical Mechanics Perspective on Glasses and Aging 65

https://www.pnas.org/content/100/17/9710.full.pdf
https://www.pnas.org/content/100/17/9710.full.pdf
https://doi.org/10.1103/Phys-RevLett.98.195702
https://doi.org/10.1063/1.1644539
https://doi.org/10.1103/PhysRevE.63.045102
https://doi.org/10.1103/PhysRevE.63.045102
https://doi.org/10.1103/PhysRevLett.116.055702
https://doi.org/10.1103/PhysRevLett.116.055702
https://doi.org/10.1103/PhysRevLett.107.275702
https://doi.org/10.1103/PhysRevLett.107.275702
https://doi.org/10.1103/Phys-RevE.99.012106
https://doi.org/10.1103/Phys-RevE.99.012106


Keys AS, Garrahan JP, Chandler D (2013) Proc Natl Acad
Sci 110:4482

Keys AS, Chandler D, Garrahan JP (2015) Phys Rev E Stat
Nonlinear Soft Matter Phys 92(1)

Khomenko D, Scalliet C, Berthier L, Reichman DR,
Zamponi F (2020) Phys Rev Lett 124:225901

Kim K (2003) EPL (Europhys Lett) 61:790
Kirkpatrick TR, Thirumalai D (1987) Phys Rev Lett 58:

2091
Kirkpatrick T, Wolynes P (1987a) Phys Rev A 35:3072
Kirkpatrick T, Wolynes P (1987b) Phys Rev B 36:8552
Kirkpatrick TR, Thirumalai D, Wolynes PG (1989) Phys

Rev A 40:1045
Kisker J, Santen L, Schreckenberg M, Rieger H (1996)

Phys Rev B 53:6418
Kivelson D, Kivelson SA, Zhao X, Nussinov Z, Tarjus

G (1995) Physica A 219:27
Klongvessa N, Ginot F, Ybert C, Cottin-Bizonne C,

Leocmach M (2019) Phys Rev Lett 123:248004
Kob W, Andersen HC (1993) Phys Rev E 48:4364
Kob W, Berthier L (2013) Phys Rev Lett 110:245702
Kob W, Coslovich D (2014) Phys Rev E 90:052305
Kob W, Donati C, Plimpton SJ, Poole PH, Glotzer SC

(1997) Phys Rev Lett 79:2827
Kob W, Roldán-Vargas S, Berthier L (2012) Nat Phys

8:164
Krakoviack V (2010) Phys Rev E 82:061501
Krakoviack V (2011) Phys Rev E 84:050501
Krakoviack V (2014) J Chem Phys 141:104504
Krzakala F, Montanari A, Ricci-Tersenghi F, Semerjian G,

Zdeborová L (2007) Proc Natl Acad Sci 104:10318
Krzkala F (2005) Phys Rev Lett 94:077204
Kurchan J (2005) Nature 433:222
Kurchan J, Laloux L (1996) J Phys A Math Gen 29:1929
Kurchan J, Parisi G, Zamponi F (2012) J Stat Mech:

Theory Exp 2012:P10012
Kurchan J, Parisi G, Urbani P, Zamponi F (2013) J Phys

Chem B 117:12979
Kurchan J, Maimbourg T, Zamponi F (2016) J Stat Mech:

Theory Exp 2016:033210
LačevićN, Starr FW, Schrøder T, Glotzer S (2003) J Chem

Phys 119:7372
Landes FP, Biroli G, Dauchot O, Liu AJ, Reichman DR

(2020) Phys Rev E 101:010602
Larson RG (1999) The structure and rheology of complex

fluids, vol 150. Oxford University Press, New York
Léonard S, Harrowell P (2010) J Chem Phys 133:244502
Léonard S, Mayer P, Sollich P, Berthier L, Garrahan JP

(2007) J Stat Mech: Theory Exp 2007:P07017
Lerner E, Düring G, Wyart M (2013) Soft Matter 9:8252
Lerner E, Düring G, Bouchbinder E (2016) Phys Rev Lett

117:035501
Leutheusser E (1984) Phys Rev A 29:2765
Li Y-W, Xu W-S, Sun Z-Y (2014) J Chem Phys 140:

124502
Li Y-W, Zhu Y-L, Sun Z-Y (2015) J Chem Phys 142:

124507
Liao Q, Berthier L (2019) Phys Rev X 9:011049

Lin J, Lerner E, Rosso A, Wyart M (2014) Proc Natl Acad
Sci 111:14382

Lipowski A, Johnston D, Espriu D (2000) Phys Rev E 62:
3404

Lippiello E, Zannetti M (2000) Phys Rev E 61:3369
Liu AJ, Nagel SR (1998) Nature 396:21
Liu AJ, Nagel SR (2010) Annu Rev Condens Matter Phys

1:347
Lyubimov I, Ediger MD, de Pablo JJ (2013) J Chem Phys

139:144505
Maimbourg T, Kurchan J, Zamponi F (2016) Phys Rev Lett

116:015902
Malins A, Eggers J, Royall CP, Williams SR, Tanaka

H (2013a) J Chem Phys 138:12A535
Malins A, Williams SR, Eggers J, Royall CP (2013b)

J Chem Phys 139:234506
Manacorda A, Schehr G, Zamponi F (2020) J Chem Phys

152:164506
Mandal R, Bhuyan PJ, Rao M, Dasgupta C (2016) Soft

Matter 12:6268
Mannelli SS, Biroli G, Cammarota C, Krzakala F, Urbani P,

Zdeborová L (2020) Phys Rev X 10:011057
Mapes MK, Swallen SF, Ediger MD (2006) J Phys Chem

B 110:507. https://doi.org/10.1021/jp0555955. PMID:
16471562

Marchetti MC, Joanny J-F, Ramaswamy S, Liverpool TB,
Prost J, Rao M, Simha RA (2013) Rev Mod Phys 85:
1143

Martinelli F, Morris R, Toninelli C (2019a) Commun Math
Phys 369:761

Martinelli F, Toninelli C et al (2019b) Ann Probab 47:324
Marty G, Dauchot O (2005) Phys Rev Lett 94:015701
Matoz-Fernandez D, Martens K, Sknepnek R, Barrat J,

Henkes S (2017) Soft Matter 13:3205
Mayer P, Sollich P (2007) J Phys A Math Theor 40:5823
Mayer P, Berthier L, Garrahan JP, Sollich P (2003) Phys

Rev E 68:016116
Mayer P, Léonard S, Berthier L, Garrahan JP, Sollich

P (2006) Phys Rev Lett 96:030602
McCullagh GD, Cellai D, Lawlor A, Dawson KA

(2005) Phys Rev E 71:030102
McKenna G, Kovacs A (1984) Polym Eng Sci 24:1138
Menon N, Nagel SR (1995) Phys Rev Lett 74:1230
Mézard M, Montanari A (2006) J Stat Phys 124:1317
Mézard M, Parisi G (1999) Phys Rev Lett 82:747
Mézard M, Parisi G, Virasoro M (1987) Spin glass theory

and beyond: an introduction to the replica method and
its applications, vol 9. World Scientific

Miyazaki K, Reichman DR (2002) Phys Rev E 66:050501
Mizuno H, Shiba H, Ikeda A (2017) Proc Natl Acad Sci

114:E9767
Monasson R (1995) Phys Rev Lett 75:2847
Mongera A, Rowghanian P, Gustafson HJ, Shelton E,

Kealhofer DA, Carn EK, Serwane F, Lucio AA,
Giammona J, Campàs O (2018) Nature 561:401

Montanari A, Semerjian G (2006) J Stat Phys 125:23
Mossa S, Tarjus G (2006) J Non-Cryst Solids 352:4847
Nandi SK, Biroli G, Tarjus G (2016) Phys Rev Lett 116:

145701

66 A Statistical Mechanics Perspective on Glasses and Aging

https://doi.org/10.1021/jp0555955


Nandkishore R, Huse DA (2015) Annu Rev Condens Mat-
ter Phys 6:15

Nelson DR (2002) Defects and geometry in condensed
matter physics. Cambridge University Press

Ni R, Stuart MAC, Dijkstra M (2013) Nat Commun 4:1
Niblett S, de Souza VK, Jack R, Wales D (2018) J Chem

Phys 149:114503
Nicodemi M (1999) Phys Rev Lett 82:3734
Ninarello AS (2017) Computer simulations of supercooled

liquids near the experimental glass transition, PhD the-
sis, Montpellier

Ninarello A, Berthier L, Coslovich D (2017) Phys Rev
X 7. https://doi.org/10.1103/PhysRevX.7.021039

Nishikawa Y, Hukushima K (2020) Phys Rev Lett 125:
065501

Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR
(2009) Proc Natl Acad Sci 106:19011. iSBN: 0027-
8424

O’Hern CS, Langer SA, Liu AJ, Nagel SR (2002) Phys
Rev Lett 88:075507

Ohern CS, Silbert LE, Liu AJ, Nagel SR (2003) Phys Rev
E 68:011306

Ozawa M, Berthier L (2017) J Chem Phys 146:014502
OzawaM, Ikeda A, Miyazaki K, KobW (2018a) Phys Rev

Lett 121:205501
Ozawa M, Berthier L, Biroli G, Rosso A, Tarjus G (2018b)

Proc Natl Acad Sci 115:6656
Ozawa M, Parisi G, Berthier L (2018c) J Chem Phys 149:

154501
Ozawa M, Scalliet C, Ninarello A, Berthier L (2019)

J Chem Phys 151:084504
Paeng K, Park H, Hoang DT, Kaufman LJ (2015) Proc Natl

Acad Sci 112:4952
Pan AC, Garrahan JP, Chandler D (2005) Phys Rev E 72:

041106
Pancotti N, Giudice G, Cirac JI, Garrahan JP, Bañuls MC

(2020) Phys Rev X 10:021051
Pardo L, Lunkenheimer P, Loidl A (2007) Phys Rev E 76:

030502
Paret J, Jack RL, Coslovich D (2020) J Chem Phys 152:

144502
Parisi G, Seoane B (2014) Phys Rev E 89:022309
Parisi G, Slanina F (2000) Phys Rev E 62:6554
Parisi G, Zamponi F (2010) Rev Mod Phys 82:789
Parisi G, Procaccia I, Rainone C, SinghM (2017) Proc Natl

Acad Sci 114:5577
Parisi G, Urbani P, Zamponi F (2020) Theory of simple

glasses: exact solutions in infinite dimensions. Cam-
bridge University Press

Parmar ADS, Ozawa M, Berthier L (2020) Phys Rev Lett
125:085505

Pérez-Castañeda T, Rodríguez-TinocoC,Rodríguez-Viejo J,
Ramos MA (2014) Proc Natl Acad Sci 111:11275

Peters IR, Majumdar S, Jaeger HM (2016) Nature 532:214
Phan AD, Schweizer KS (2018) J Chem Phys 148:054502
Pinchaipat R, Campo M, Turci F, Hallett JE, Speck T,

Royall CP (2017) Phys Rev Lett 119. https://doi.org/
10.1103/PhysRevLett.119.028004

Pusey PN, VanMegen W (1986) Nature 320:340

Ràfols-Ribé J, Will P-A, Hänisch C, Gonzalez-Silveira M,
Lenk S, Rodríguez-Viejo J, Reineke S (2018) Sci Adv
4:eaar8332

Rainone C, Urbani P (2016) J Stat Mech: Theory Exp
2016:053302

Rainone C, Urbani P, Yoshino H, Zamponi F (2015) Phys
Rev Lett 114:015701

Refregier P, Vincent E, Hammann J, Ocio M (1987) J Phys
48:1533

Reinsberg SA, Qiu XH, Wilhelm M, Spiess HW, Ediger
MD (2001) J Chem Phys 114:7299. https://doi.org/10.
1063/1.1369160

Richard E, Montanari A (2014) Advances in neural infor-
mation processing systems. pp 2897–2905

Richert R, Angell C (1998) J Chem Phys 108:9016
Ritort F, Sollich P (2003) Adv Phys 52:219
Rivoire O, Biroli G, Martin OC, Mézard M (2004) Eur

Phys J B-Condens Matter Complex Syst 37:55
Rizzo T (2016) Phys Rev B 94:014202
Ronhovde P, Chakrabarty S, Hu D, Sahu M, Sahu K,

Kelton K, Mauro N, Nussinov Z (2011) Eur Phys J E
34:105

Ronhovde P, Chakrabarty S, Hu D, Sahu M, Sahu KK,
Kelton KF, Mauro NA, Nussinov Z (2012) Sci Rep 2:1

Ros V, Biroli G, Cammarota C (2019) EPL (Europhys Lett)
126:20003

Royall CP, Kob W (2017) J Stat Mech: Theory Exp 2017.
https://doi.org/10.1088/1742-5468/aa4e92

Royall CP, Williams SR (2015) Phys Rep 560:1
Rulquin C, Urbani P, Biroli G, Tarjus G, Tarzia M (2016)

J Stat Mech: Theory Exp 2016:023209
Russell EV, Israeloff N (2000) Nature 408:695
Russo J, Tanaka H (2015) Proc Natl Acad Sci 112:6920
Sagun L, Guney VU, Arous GB, LeCun YA (2014) arXiv

preprint arXiv:1412.6615
Sausset F, Tarjus G, Viot P (2009) J Stat Mech: Theory Exp

2009:P04022
Scalliet C, Berthier L (2019) Phys Rev Lett 122:255502
Scalliet C, Berthier L, Zamponi F (2017) Phys Rev Lett

119:205501
Scalliet C, Berthier L, Zamponi F (2019a) Phys Rev E 99:

012107
Scalliet C, Berthier L, Zamponi F (2019b) Nat Commun

10:1
Scheidler P, Kob W, Binder K, Parisi G (2002) Philos Mag

B 82:283
Schoenholz SS (2018) In: Journal of Physics: conference

series, vol 1036. IOP Publishing, p 012021
Schoenholz SS, Cubuk ED, Sussman DM, Kaxiras E, Liu

AJ (2015) Nat Phys 12:469
Schoenholz SS, Cubuk ED, Kaxiras E, Liu AJ (2016) Proc

Natl Acad Sci 114:263
Schreck CF, Bertrand T, OHern CS, Shattuck M (2011)

Phys Rev Lett 107:078301
Seif A, Grigera TS (2016) arXiv preprint

arXiv:1611.06754
Sepúlveda A, Tylinski M, Guiseppi-Elie A, Richert R,

Ediger M (2014) Phys Rev Lett 113:045901
Sethna JP, Shore JD, HuangM (1991) Phys Rev B 44:4943

A Statistical Mechanics Perspective on Glasses and Aging 67

https://doi.org/10.1103/PhysRevX.7.021039
https://doi.org/10.1103/PhysRevLett.119.028004
https://doi.org/10.1103/PhysRevLett.119.028004
https://doi.org/10.1063/1.1369160
https://doi.org/10.1063/1.1369160
https://doi.org/10.1088/1742-5468/aa4e92


Seyboldt R, Merger D, Coupette F, Siebenbürger M,
Ballauff M, Wilhelm M, Fuchs M (2016) Soft Matter
12:8825

Sharp TA, Thomas SL, Cubuk ED, Schoenholz SS,
Srolovitz DJ, Liu AJ (2018) Proc Natl Acad Sci 115:
10943

Shi R, Tanaka H (2019) Sci Adv 5:eaav3194
Skoge M, Donev A, Stillinger FH, Torquato S (2006) Phys

Rev E 74:041127
Sollich P (1998) Phys Rev E 58:738
Sollich P, Lequeux F, Hébraud P, Cates ME (1997) Phys

Rev Lett 78:2020
Speck T (2019) J Stat Mech: Theory Exp 2019:084015
Stariolo DA, Cugliandolo LF (2019) EPL (Europhys Lett)

127:16002
Stevenson JD, Walczak AM, Hall RW, Wolynes PG

(2008) J Chem Phys 129:194505
Struik L (1977) Polym Eng Sci 17:165
Swallen SF, Kearns KL, Mapes MK, Kim YS, McMahon

RJ, Ediger MD, Wu T, Yu L, Satija S (2007) Science
315:353

Szamel G (2018) Phys Rev E 98. https://doi.org/10.1103/
Phys-RevE.98.050601

Szamel G, Flenner E (2004) EPL (Europhys Lett) 67:779
Szamel G, Flenner E (2013) EPL (Europhys Lett) 101:

66005
Talbot J, Tarjus G, Viot P (2003) J Phys A Math Gen 36:

9009
Tarjus G, Kivelson D (1995) J Chem Phys 103:3071.

https://doi.org/10.1063/1.470495
Tarjus G, Kivelson SA, Nussinov Z, Viot P (2005) J Phys

Condens Matter 17:R1143
Tarzia M, Biroli G, Lefèvre A, Bouchaud J-P

(2010) J Chem Phys 132:054501
Thalmann F, Dasgupta C, Feinberg D (2000) EPL

(Europhys Lett) 50:54
Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C,

Bocquet L (2012) Phys Rev Lett 108:268303
Tong H, Tanaka H (2018) Phys Rev X 8. https://doi.org/10.

1103/PhysRevX.8.011041
Toninelli C, Biroli G, Fisher DS (2004) Phys Rev Lett 92:

185504
Toninelli C, Wyart M, Berthier L, Biroli G, Bouchaud J-P

(2005) Phys Rev E 71:041505
Toninelli C, Biroli G, Fisher DS (2006) Phys Rev Lett 96:

035702
Turci F, Tarjus G, Royall CP (2017a) Phys Rev Lett 118:1
Turci F, Royall CP, Speck T (2017b) Phys Rev X 7. https://

doi.org/10.1103/PhysRevX.7.031028
Turci F, Speck T, Royall CP (2018) Eur Phys J E 41. https://

doi.org/10.1140/epje/i2018-11662-3
Turci F, Patrick Royall C, Speck T (2019) J Phys Conf Ser

1252:012012
Turner RM, Jack RL, Garrahan JP (2015) Phys Rev E 92.

https://doi.org/10.1103/PhysRevE.92.022115

Turner CJ, Michailidis AA, Abanin DA, Serbyn M, Papić
Z (2018) Nat Phys 14:745

Urbani P, Zamponi F (2017) Phys Rev Lett 118:038001
van Hemmen J, Morgenstern I (1987) In: Lecture notes in

physics, vol 275. Springer, Berlin
van Meel JA, Charbonneau B, Fortini A, Charbonneau

P (2009) Phys Rev E 80:061110
Vest J-P, Tarjus G, Viot P (2014) Mol Phys 112:1330
Vest J-P, Tarjus G, Viot P (2015) J Chem Phys 143:084505
Vila-Costa A, Ràfols-Ribé J, González-Silveira M,

Lopeandia A, Abad-Muñoz L, Rodríguez-Viejo
J (2020) Phys Rev Lett 124:076002

Wang P, Song C, Makse HA (2006) Nat Phys 2:526
Wang L, Ninarello A, Guan P, Berthier L, Szamel G,

Flenner E (2019a) Nat Commun 10:1
Wang L, Berthier L, Flenner E, Guan P, Szamel G (2019b)

Soft Matter 15:7018
Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA

(2000) Science 287:627
Weeks ER, Crocker JC, Weitz DA (2007) J Phys Condens

Matter 19:205131
Whitelam S, Garrahan JP (2004) J Phys Chem B 108:6611
Whitelam S, Berthier L, Garrahan JP (2004) Phys Rev Lett

92:185705
Whitelam S, Berthier L, Garrahan JP (2005) Phys Rev

E 71:026128
Widmer-Cooper A, Harrowell P (2006) Phys Rev Lett 96:

185701
Williams I, Turci F, Hallett JE, Crowther P, Cammarota C,

Biroli G, Royall CP (2018) J Phys Condens Matter 30:
094003

Wolynes PG (2009) Proc Natl Acad Sci
Wolynes PG, Lubchenko V (2012) Structural glasses and

supercooled liquids: theory, experiment, and applica-
tions. Wiley

Wuttke J, PetryW, Pouget S (1996) J Chem Phys 105:5177
Wyart M (2010) EPL (Europhys Lett) 89:64001
Wyart M (2012) Phys Rev Lett 109:125502
Wyart M, Cates ME (2017) Phys Rev Lett 119. https://doi.

org/10.1103/PhysRevLett.119.195501
Wyart M, Nagel SR, Witten TA (2005) EPL (Europhys

Lett) 72:486
Xia X, Wolynes PG (2000) Proc Natl Acad Sci 97:2990.

tex.eprint: https://www.pnas.org/content/97/7/2990.
full.pdf. tex.publisher: National Academy of Sciences

Yaida S, Berthier L, Charbonneau P, Tarjus G (2016) Phys
Rev E 94. https://doi.org/10.1103/Phys-RevE.94.
032605

Yamamoto R, Onuki A (1998) Phys Rev E 58:3515
Yeo J, Moore M (2012) Phys Rev E 86:052501
Yoshino H, Zamponi F (2014) Phys Rev E 90:022302
Young AP (1998) Spin glasses and random fields, vol 12.

World Scientific
Zdeborová L, Krzakala F (2016) Adv Phys 65:453
Zhu L, Brian C, Swallen S, Straus P, Ediger M, Yu L (2011)

Phys Rev Lett 106:256103

68 A Statistical Mechanics Perspective on Glasses and Aging

https://doi.org/10.1103/Phys-RevE.98.050601
https://doi.org/10.1103/Phys-RevE.98.050601
https://doi.org/10.1063/1.470495
https://doi.org/10.1103/PhysRevX.8.011041
https://doi.org/10.1103/PhysRevX.8.011041
https://doi.org/10.1103/PhysRevX.7.031028
https://doi.org/10.1103/PhysRevX.7.031028
https://doi.org/10.1140/epje/i2018-11662-3
https://doi.org/10.1140/epje/i2018-11662-3
https://doi.org/10.1103/PhysRevE.92.022115
https://doi.org/10.1103/PhysRevLett.119.195501
https://doi.org/10.1103/PhysRevLett.119.195501
https://www.pnas.org/content/97/7/2990.full.pdf
https://www.pnas.org/content/97/7/2990.full.pdf
https://doi.org/10.1103/Phys-RevE.94.032605
https://doi.org/10.1103/Phys-RevE.94.032605

	A Statistical Mechanics Perspective on Glasses and Aging
	Glossary
	Definition of the Subject
	Phenomenology
	Basic Facts
	Static and Dynamic Correlation Functions

	Taxonomy of ``Glasses´´ in Science
	Colloidal Glass Transition
	Jamming Transition
	Granular Glass Transition
	Active Glasses
	Random Pinning Glass Transition
	Ultrastable Glasses
	Other Glasses in Physics, and Beyond

	Numerical Simulations
	Dynamic Heterogeneity
	Existence of Spatiotemporal Dynamic Fluctuations
	Multipoint Correlation Functions
	Nonlinear Response Function

	Theory of the Glass Transition
	Random First-Order Transition Theory
	Mean-Field Models and a Zest of Replica Theory
	Liquids and Glasses in Infinite Dimensions
	Random First-Order Transitions
	Heterogeneous Disorder and Mapping to the Random, Field Ising Model
	Renormalization Group for the Glass Transition

	Free Volume, Defects, and Facilitated Models
	Lattice Gases
	Free Volume, Dynamic Criticality
	Defects: Connection with Hamiltonian Dynamics Models
	Connection with Other Perspectives

	Geometric Frustration, Avoided Criticality, and Locally Preferred Structures
	Geometric Frustration
	Coulomb Frustrated Theories
	Locally Preferred Structures


	Mean-Field Theory of the Amorphous Phase
	Mean-Field Glassy Phase Diagrams
	Jamming
	Vibrational Properties
	Rheology

	New Computational Methods
	The Swap Monte-Carlo Method
	Franz-Parisi Potential
	Point-to-Set Lengthscale
	s-Ensemble and Large Deviations
	Machine Learning Developments

	Aging and Off-Equilibrium Dynamics
	Why Aging?
	Memory and Rejuvenation Effects
	Mean-Field Aging and Effective Temperatures
	Beyond Mean-Field: Real Space
	Beyond Mean-Field: Energy Landscape
	Driven Glassy Materials

	Future Directions
	Acknowledgments
	Bibliography


