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Abstract

Dense assemblies of self-propelled particles undergo a nonequilibrium form of glassy dynamics.
Physical intuition suggests that increasing departure from equilibrium due to active forces fluidifies a
glassy system. We falsify this belief by devising a model of self-propelled particles where increasing
departure from equilibrium can both enhance or depress glassy dynamics, depending on the chosen
state point. We analyze a number of static and dynamic observables and suggest that the location of the
nonequilibrium glass transition is primarily controlled by the evolution of two-point static density
correlations due to active forces. The dependence of the density correlations on the active forces varies
non-trivially with the details of the system, and is difficult to predict theoretically. Our results
emphasize the need to develop an accurate liquid state theory for nonequilibrium systems.

1. Introduction

Nonequilibrium glass transitions have recently emerged as a new type of dynamic arrest occurring in particle
systems driven out of equilibrium by active forces [1, 2]. The initial theoretical interpretation, based on the
analysis of simple glass models driven by active forces [3], has been confirmed in several computer simulations of
more realistic active matter models [1, 4—14, 49]. A number of alternative theoretical approaches have now been
proposed to describe this phenomenon [15-17]. Just as in equilibrium [ 18, 19], nonequilibrium glass transitions
bear no connection to the jamming transition [20], which corresponds instead to a geometric transition taking
place in the absence of any driving mechanism.

Although the system is driven far from thermal equilibrium, the corresponding slow dynamics exhibits all
the characteristic signatures of supercooled liquids approaching an equilibrium glass transition [21], such as
caging, dynamical slowing down, non-exponential time correlation functions and dynamic heterogeneity [22].
A unique feature that distinguishes active from equilibrium glasses is the emergence of collective effective
temperatures [3, 23, 24]. Nonequilibrium glass transitions represent an experimentally relevant concept,
because they may explain various dynamic phenomena observed experimentally in both dense active colloidal
suspensions [25, 26], active granular materials [27], and in biological systems [2, 28-31].

The above summary demonstrates that the existence of nonequilibrium glassy dynamics is well-established.
For anumber of model systems, phase diagrams, microstructure, dynamic timescales and length scales have
been thoroughly analyzed. However, not much is known quantitatively about how active forces influence the
glass transition. In a very trivial sense, adding active forces to an equilibrium material must suppress the glass
transition, as the amount of driving energy then increases [ 1, 10]. This is equivalent to increasing the
temperature at equilibrium. However, the outcome of departing from thermal equilibrium at constant driving
energy is much less trivial, and is in fact not understood. There exist conflicting results in the literature,
suggesting that glassy dynamics is either suppressed (as in hard sphere systems [4, 5]), or enhanced (as in
Lennard-Jones particles [9, 11]) when going out of equilibrium. It is unclear whether these seemingly distinct
behaviors are due to a change in the pair interaction, to the details of the active forces or microscopic dynamics,
or to a genuine physical effect. If real, then, these results beg the question as to what physical quantity is the main
indicator to reveal how active forces modify the location of the glass transition.
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In this work, we devise a simple molecular dynamics model for self-propelled particles where acceleration or
slowing down of the dynamics can both be observed by changing active forces at constant density of the system.
This directly shows that it is in fact very difficult to predict whether active forces will fluidify or glassify a given
material, as they can do both. Having a model displaying both types of response to active forces allows us to
directly investigate how the departure from equilibrium influences the glassy dynamics, and which microscopic
quantity is responsible for their evolution. Our numerical analysis reveals that active forces have a strong impact
on the microstructure of the fluid, which can be readily quantified by two-point static density correlations
functions. The nontrivial evolution of the static structure then primarily accounts for the evolution of the glass
transition, underlying the need to develop a more accurate liquid state theory for active fluids.

The paper is organized as follows. In section 2 we define our model system of purely repulsive, non-aligning, self-
propelled particles and provide the details of the numerical simulations. The main features of the glassy dynamics and
the evolution of the apparent glass transition line upon increasing departure from equilibrium are reported in
section 3. Next, in sections 4 and 5 we analyze two sets of equal-time steady-state correlations, velocity correlations and
two-point density correlations, respectively. We conclude in section 6 with a discussion of the correlations between the
evolution of the glassy dynamics and of the steady-state structure upon increasing departure from equilibrium.

2. Interpolating between hard and soft active particles

Earlier studies of glassy dynamics in model active systems used either a hard-sphere interaction [4, 5] or a
Lennard-Jones interaction [9—11]. Both families of studies reported opposite results regarding the influence of
active forces on the glass transition.

To continuously interpolate between these limiting cases, we use the Weeks—Chandler—Andersen truncation
of the Lennard-Jones potential [32], a strategy used before in equilibrium studies [33]. This choice creates a
purely repulsive system that allows us to continuously move from simulating a hard sphere-like system at very
low temperatures and moderate densities (when the typical nearest-neighbor distance is slightly larger than the
range of the potential), to simulating a Lennard-Jones-like system at moderate temperatures and large densities
(when the typical nearest-neighbor distance is smaller that the range of the potential). The comparison with
earlier works suggest that our model should display both an acceleration or a slowing down of the glassy
dynamics, depending on the density regime, allowing us to revisit and unify previous studies.

To model an active liquid, we use the so-called active Ornstein—Uhlenbeck particles model [34] introduced
independentlyin [35, 36]. In this model, the dynamics is overdamped and the particles move under the combined
influence of the interparticle interactions and the self-propulsion. The self-propulsion is modeled as an internal
driving force evolving according to the Ornstein—Uhlenbeck process. Thus, the equations of motion are given by

i =& [F + £, (1)

T f, = —f. + ;. )

In equation (1), r; is the position of particle i, &, is the friction coefficient of an isolated particle, F; is the force
acting on particle i originating from the interactions, and f; is the self-propulsion force acting on particle i. In
equation (2), 7, is the persistence time of the self-propulsion and 7, is an internal Gaussian noise with zero mean
and variance (1, (t)nj(t’ Mnoise = 28 Tegr 166 (t — t'), where (...)noise denotes averaging over the noise
distribution, Te is the single-particle effective temperature, and I is the unit tensor. In the following, we set the
friction coefficient to unity, {, = 1. Notice that f; is the unique driving force in equation (1), which does not
contain an additional Brownian noise term.

The name ‘single-particle effective temperature’ for To¢ originates from the fact that an isolated particle
moving under the influence of the self-propulsion evolving according to equation (2) performs a persistent
random walk with the long-time diffusion coefficient equal to Dy = T.¢ (we use a system of units such that the
Boltzmann constant kg is unity). We note that for a system of interacting self-propelled particles other effective
temperatures can be defined based on different fluctuation-dissipation ratios [3, 23, 37]. These effective
temperatures are, in general, different from the single-particle effective temperature. Since we will not be
concerned with these collective effective temperatures in this work, in the following, for brevity, we will refer to
T.t as the effective temperature. Importantly, T.g controls the amount of energy injected into the system, and it
represents the analog of the thermal bath for an equilibrium system.

The interparticle forces originate from a potential, F; = —> jiiVi Vo () where

12 6
-2 (2]

forr < g5 = 2!/4, 5 and zero otherwise. In equation (3), a, 3 denote the particle species A or B, ¢ = 1(which
sets the unit of energy), oy = 1.4, 0pp = 1.2,and opg = 1.0 (which sets the unit of length). Our unit of time is
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Figure 1. Time-dependence of the mean-squared displacement for a high (a) and low (b) temperature. Black solid lines represent
active systems for persistence time 7, = 10 and red dashed lines represent Brownian systems (7, = 0). Dotted lines represent short-
time motion of an isolated particle for active (black) and Brownian (red) systems. In panel (a), solid lines represent active systems at
¢ = 0.554,0.665,0.707,0.721, 0.873 (left to right) and dashed lines represent Brownian systems at ¢ = 0.638,0.873,0.901,0.928
(left to right). In panel (b), solid lines represent active systems at ¢ = 0.554,0.624, 0.652, 0.658, 0.665 (left to right) and dashed lines
represent Brownian systems at ¢p = 0.499, 0.582,0.610, 0.652 (left to right).

0an&y/ €an- Wesimulated N = 1000 particles composing a 50:50 mixture in a volume V using periodic
boundary conditions in three spatial dimensions. The truncation of the potential is at the potential minimum,
and thus the interparticle force is purely repulsive. The repulsive character of the force combined with the finite
range of the potential implies that in the low temperature limit the system becomes equivalent to a hard sphere
system consisting of a binary mixture of spheres of diameters g4 and ggp.

As our control parameters, we use the volume fraction ¢ = 7N [¢>, + <351/ (12V), the effective
temperature Tefr, and the persistence time of the self-propulsion 7,,. Since there is no thermal noise, when
7, — 0 this model system becomes equivalent to a Brownian system at a temperature T = T¢. Therefore, 7,
quantifies the increasing departure from equilibrium as 7, increases from zero. In this work, we investigate the
dependence of the glassy dynamics on the persistence time and we also compare the results obtained for active
systems with those obtained from overdamped Brownian dynamics simulations at a temperature T. We vary the
persistence time between 7, = 0 and 7, = 10 and the effective temperature between Ter = 0.01and Ter = 1.0.

3. Glassy dynamics and phase diagram

In figure 1 we show the development of glassy dynamics upon increasing the volume fraction, at two values of
the effective temperature, the highest and the lowest temperature investigated, T = 1.0 and Tor = 0.01,
respectively. We illustrate the changes in the dynamics by showing the mean-squared displacement

N,
(6r2(1)) = NL <Z[ri(t) - r,-(0)12>, (4)

A \i=1

where the summation is over the particles of type A and N, is the number of these particles. Here and in the
following, we restrict our discussion to the larger particles, particles A, and we note that analyzing the dynamics
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of the B particles leave the conclusions unchanged. Furthermore, to simplify notation we do not use
conventional subscripts when referring to quantities pertaining to particles A only. Thus, we use (6r2(t)) rather
than (6@% (t)) and later in section 5 we will use, for instance, g(r) rather than g 4(r).

For an isolated active particle or, alternatively, in a non-interacting system, the mean-squared displacement
can be calculated analytically,

(6r2() = 6Tagr[rp(e™/7 — 1) + 11, )

Atshort times, the particle motion is ballistic and (6r%(¢)) =~ 3(Te /7,)t*. The long-time motion is diffusive
and (6r%(t)) =~ 6Ty t. Comparing the long-time result with that for an isolated Brownian particle,

(6r*(t)) = 6Tt, we see that the long time diffusive motion of an isolated active particle at an effective
temperature To matches that of the isolated Brownian particle at a temperature T = Tog.

As shown in figure 1, the ballistic and diffusive regimes are still observed in mean-squared displacements in
systems of interacting active particles (solid lines, 7, = 10). However, for active particles both the short-time
dynamics and the long-time dynamics change with the volume fraction. The change in the short-time dynamics
is induced by correlations between active particles velocities and positions, discussed further in section 4. These
correlations are an important feature of active systems [9]. At constant effective temperature, their magnitude
decreases with decreasing persistence time and the correlations vanish in the Brownian limit. Generally, for
active systems both the short-time ballistic motion and the long-time diffusive motion slow down with
increasing volume fraction. The slowing down of the short-time dynamics is more pronounced at higher
effective temperatures (note, however, that at higher effective temperatures the volume fractions are also
somewhat larger). Generally, with increasing volume fraction, at intermediate times a plateau begins to develop
and glassy dynamics emerge.

Figure 1 also shows that for Brownian systems we have two diffusive regimes, for short times (6r%()) = 6Tt
(dotted red line) and for long times (§r2(¢)) = 6Dt, where D is the long-time self-diffusion coefficient. At
intermediate times a plateau develops between the short time diffusive motion and the long time diffusive
motion. The presence of the plateau indicates caging of individual particles.

While emerging glassy dynamics in active systems is generally similar to that in Brownian systems, we note
some important quantitative differences. First, in active systems there is a significant slowing down of the short-
time ballistic motion whereas in Brownian systems the short-time diffusive motion is independent of the
volume fraction (and it depends only trivially on the temperature). Second, plateau heights in active systems are
different from those in Brownian systems. This is especially prominent at the higher temperature where the
plateau height for the densest 7, = 10 active system is around an order of magnitude smaller than for the
densest Brownian system (note that the density of the active system is quite a bit lower than that of the Brownian
system). For To = 0.01, a well-defined plateau is not observed and instead the mean-squared displacement
exhibit a very slow subdiffusive behavior. These latter facts suggest that upon increasing departure from
equilibrium the effective interparticle interaction changes significantly. We comment on this point further in
section 5.

From the long-time limit of the mean-squared displacements we extract the long-time self-diffusion
coefficients, D = lim,_,+,(6r2(t)) /(6t). In figure 2, we show the dependence of the diffusion coefficients on the
volume fraction for a number of active systems characterized by a given value of the persistence time and the
effective temperature, (7, Te), and for Brownian systems characterized by the temperature T. For the highest
temperature. T.g = 1.0, in figure 2(a) we see that the diffusion coefficient decreases with increasing persistence
time at a fixed volume fraction. In contrast, at an intermediate temperature, Tor = 0.1, we find a non-
monotonic dependence of the diffusion coefficient on the persistence time at a fixed volume fraction. Finally, at
the lowest temperature, To¢ = 0.01, we find that the diffusion coefficient increases with increasing persistence
time at a fixed volume fraction for the range of persistence times investigated. We observe that increasing
departure from equilibrium can either promote or suppress the glassy dynamics without changing the pair
interaction between the self-propelled particles, as announced in the introduction.

These results suggest that there is a change in the persistence time dependence of the apparent glass
transition line in the temperature—volume fraction plane. To determine quantitatively the glass transition line,
we fit the diffusion coefficient data to a Vogel-Fulcher-like dependence on the volume fraction,

InD = A + B/(¢ — ¢.), where A, Band ¢, are fitting parameters. These empirical fits are shown as continuous
lines in figure 2. The Vogel-Fulcher-like formula results in reasonable fits to the data and, therefore, reasonable
estimates for the glass transition volume fraction ¢, = @,(7,, Tefr). Other fitting functions would provide
qualitatively similar results for the evolution of the glass transition lines.

In figure 3 we present the resulting glass-fluid phase diagram in the temperature—volume fraction plane, for
different persistence times. As can be inferred from the dependence of the diffusion coefficient on the volume
fraction, the glass transition volume fraction ¢, monotonically decreases with increasing 7, for Ter = 1.0, and it
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Figure 2. Volume fraction dependence of the long-time self-diffusion coefficient at different persistence times at three representative
temperatures. The points represent results of numerical simulations and the lines are Vogel-Fulcher-like fits, InD = A + B/(¢ — ¢,).
For each system glassy dynamics is observed as the volume fraction increases. The glass transition is shifted to larger ¢ as the persistence
time increases atlow T (a), decreases atlarge Tegr (c), and is non-monotonic at intermediate Teg (b). Filled symbols are Brownian
dynamics simulations.

monotonically increases with increasing 7;, for Toir = 0.01. Atintermediate T4 there is a non-monotonic
change of ¢, upon increasing the persistence time, which signals the crossover between the high and low
temperature regimes. These findings are consistent with both the previously observed increase of the glass
transition temperature for the Lennard-Jones system [11] and the increase of the glass transition packing
fraction for the hard-sphere system [4, 5].

Figure 3 shows for the first time that for the same model active system increasing departure from equilibrium
can both glassify an active fluid and fluidifies an active glass, depending on the studied thermodynamic state
point. This directly demonstrates that the physical intuition that activity fluidifies the glass is incorrect, as activity
can also solidify the supercooled fluid. In the following two sections we search for correlations between the
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Figure 3. Evolution of the phase diagram with the persistence time of the self-propulsion. The fluid phase at low ¢ transforms into a
glass at large ¢ at a volume fraction which depends both Tef and 7, With increasing persistence time the glass transition lime shifts
towards smaller volume fractions at higher effective temperatures (departure from equilibrium promotes glassy dynamics) and
towards larger volume fractions at low effective temperatures (departure from equilibrium fluidifies the glass). Filled symbols are
Brownian dynamics simulations.

observed non-trivial dependence of the dynamics on the persistence time and the dependence of static (equal-
time) correlations on the persistence time. In section 4 we examine the evolution of the correlations between
active particles’ velocities on the persistence time. In section 5 we investigate the dependence of density
fluctuations on the persistence time.

4. Nonequilibrium velocity correlations

While developing a theory for the dynamics of systems of active Ornstein—Uhlenbeck particles [9, 15] we
discovered that correlations between velocities of self-propelled particles play an important role in the dynamics
of active systems. Subsequent simulational studies [9, 11] showed that in the active system with Lennard-Jones
interactions the velocity correlations grow upon increasing departure from equilibrium. The correlations
between velocities of different active particles vanish in the limit of zero persistence time and are zero in
Brownian systems. Therefore, these nonequilibrium velocity correlations represent the most natural candidate
to explain how the glass transition departs from its equilibrium counterpart as the persistence time increases.

In [15] a mode-coupling-like theory is derived for active particle systems. As with the mode-coupling theory
of the glass transition for passive particle systems, the structure of system is the input to equations that describe
the decay of density fluctuations. For passive particle systems the only needed input is the static structure factors,
but for active particle systems the input is not only the static factors but also a wavevector-dependent function
that characterizes static velocity correlations, which only exists for nonequilibrium self-propelled particles.

In [9, 15], we showed that this function is important for the dynamics of an active system. For a binary
mixture, in analogy with the partial static structure factors that characterize the number density fluctuations, in
principle we need to introduce three different functions corresponding to the correlations of velocities of the A
particles, velocities of the B particles, and the AB cross-correlations. As stated earlier, we restrict the discussion to
the larger particles and only examine the correlation between velocities of the A particles, which is defined as
follows:

Ny
wi@ =4 ( > (f; + F)(f; + Fye 1t ) . g, (6)

ij=1

where both summations are over the particles of type A, § = q/|q|and & 51( f. + F)istheinstantaneous
velocity of particle i.

The large wavevector limit of this function, wjj(c0) = lim,_,« w}(q), exactly determines the short-time
behavior of the mean-squared displacement in the system of interacting active particles, (6r2(r)) ~ 3w ;(c0)t%.
According to the approximate mode-coupling-like theory sketched in [9] and then detailed in [15], the complete
function w)|(q) enters into the expressions for the so-called vertices of the irreducible memory function, and
thus, together with the static structure factor, it determines the long-time dynamics. If the function w(q)
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Figure 4. Wavevector dependence of the normalized nonequilibrium velocity correlations. These correlations develop and increase in
strength as the persistence time increases, for both large and low T, it is unity for Brownian dynamics. The inset show the persistence
time dependence of the of w);(g — ©00). Unlike the long-time glassy dynamics, the qualitative evolution of nonequilibrium velocity
correlations does not depend on the state point.

evolved differently upon increasing the persistence time at high and low effective temperatures (i.e. for Lennard-
Jones-like and hard-sphere-like systems), it would suggest that the velocity correlations are responsible for the
non-trivial changes in the phase diagram shown in figure 3.

Previous work [11] showed that upon increasing both the persistence time and the importance of the
interparticle interactions, the overall scale of the velocity correlations decreases significantly while their
wavevector dependence becomes more pronounced. The overall scale of the velocity correlations can be
characterized by their large wavevector limit, wjj(c0). We recall that figure 1 indicates that the short-time
dynamics of the self-propelled particles slows down upon increasing the volume fraction at fixed persistence
time, for both high and low effective temperatures. This slowing down of the short-time dynamics is the direct
consequence of the decreasing of wj|(c0) upon increasing the volume fraction at constant persistence time and
effective temperature, and thus increasing the importance of the interparticle interactions.

The focus of this work is the dependence of the (long-time) glassy dynamics on the departure from
equilibrium. To this end, in the inset to figure 4 we show the evolution of w)j(co) with the persistence time for
Ter = 1.0 and 0.01. In both cases we observe approximate power-law dependence of wj(c0) on 7,

w)(00) o< 7;1‘25. Thus, while wy(c0) at Ter = 1.0 is about 50 times larger than that at Tee = 0.01, its
dependence on the persistence time is the same at both temperatures, and, therefore, w;(c0) seems unconnected
to the more complicated evolution of the glassy dynamics reported in figures 2 (a)—(c).

In the main panels of figure 4 we show the evolution of the wavevector dependence of wj (q) upon increasing
the persistence time for To¢ = 1.0 and 0.01. To this end we plot wy (q) /wjj(c0) for different values of 7p- Upon
increasing the persistence time we observe that the oscillations of w;(g) /w};(c0) are becoming more
pronounced, which indicates growing local velocity correlations. However, this increase occurs at every effective
temperature investigated, independently of the evolution of the long-time glassy dynamics. Thus, growing local
velocity correlations and glassy dynamics appear to be largely uncorrelated. In other words, velocity correlations
accompany the nonequilibrium glass transition, they presumably quantitatively affect its location, but they do
not seem to be the main factor responsible for the nontrivial evolution of the phase diagram shown in figure 3.




10P Publishing

NewJ. Phys. 19 (2017) 125006 L Berthier etal

20 T T T T T T T T T

15

35 T T T T T T T T
301 (b)

251

201

g(r)

151

10f .

15 1.75 2 225 25

Figure 5. Evolution of the pair correlation function g(r) with persistence time at (T.¢ = 1.0, ¢ = 0.638) (a)and (T = 0.01, ¢ = 0.582)
(b), using the same color coding for 7, as in previous figures. The main panels show the first peak and the insets focus on the secondary
peaks atlargerr.

5. Two-point density correlations

Since the dependence of the velocity correlations on the persistence time is uncorrelated to the evolution of the
glassy dynamics, we turn our attention to other, more conventional static correlations, namely density
correlations. In this section we investigate equal-time correlations of the density fluctuations by examining the
pair correlation function in real and Fourier space. We show that the dependence of pair correlations upon
increasing the departure from equilibrium strongly correlates with the evolution of the glassy dynamics reported
in figures 2(a)—(c), and we provide a physical interpreation of the results.

5.1. Pair correlation function g(r)
In figure 5 we show the evolution of pair density correlations in the direct space upon increasing the persistence
time. Specifically, we show the pair correlation function characterizing correlations between the A particles,

Ny Ny

g(r) = Nizz«s(r - ), %

A =1 j=i

where both summations are over the A particles.

For both high and low effective temperatures we observe a very strong sharpening and growth of the first
peak of the pair correlation function. This may be interpreted as an increasing ‘adhesion’ between self-propelled
particles upon increasing the persistence time. The height of the first peak of g(r) is 4.5 to 7 times larger for
7, = 10 than for the Brownian limit at the same packing fraction. While the quantitative details of the evolution
of the first peak change with the effective temperature, qualitatively the evolution is very similar. Thus, the
sharpening and growth of the first peak of the pair correlation function is a general feature of self-propelled
particles which does not seem to be correlated with the non-trivial evolution of the glass transition line.

On the other hand, the position of the first peak has a very different behavior in the two panels shown in
figure 5. It shifts to larger distances for To¢ = 1.0 but remains essentially at the same position for To = 0.01. Asa
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Figure 6. Evolution of the static structure factor with the persistence time at (T = 1.0, ¢ = 0.638) (a) and (T = 0.01, ¢ = 0.582)
(b). With increasing 7, the height of all first peaks of S(q) increases at Tegr = 1.0 while it decreases at Ter = 0.01. The qualitative
evolution of the pair structure factor directly correlates with the evolution of the apparent glass transition lines in figure 3.

result, the effective diameter of the particle increases with 7, for Ter = 1.0 but is approximately constant for
T = 0.01. This effective inflation of the particles for the higher temperature may be held responsible for the
slowing down of the dynamics as 7;, increases, as the system becomes effectively more crowded. Strikingly, this
effect is absent for the lower temperature.

In the insets in figure 5, we show that the secondary peaks of the pair correlation function change in a
qualitatively different way upon increasing departure from equilibrium. Specifically, the amplitude of the
secondary peaks increases with increasing 7, for T = 1.0 (indicating enhanced local structure) while it
decreases with increasing 7, for Tor = 0.01 (indicating decreasing local structure). This qualitatively different
change does correlate with the evolution of the glass transition lines, where enhanced (suppressed) structure
seems to promote (suppress) the glassy dynamics. As shown in the next subsection, the rather subtle changes of
the secondary peaks in the direct space translates into more visible changes of the static structure factor in the
Fourier domain.

5.2. Static structure factor S(q)

The contrast between the evolution of the density correlations with increasing departure from equilibrium at
high and low temperatures is easier to observe in the Fourier domain. We show in figure 6 the partial static
structure factor for the A particles,

Ny Ny

‘A i=1j=1

where both summations are over the A particles.

We observe in figure 6 that the amplitude of all the peaks of the static structure factor increases with
increasing the persistence time for the higher effective temperature, To¢ = 1.0. In contrast, the amplitude of the
peaks decreases with increasing the persistence time for the lower effective temperature, To¢ = 0.01. Therefore,
the evolution of the peak height of the structure factor correlates directly with the evolution of the fitted glass
transition volume fraction, ¢,. We also find that the oscillations of the structure factor decay slower with
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increasing 7;,, which directly reflects the sharpening and growth of the first peak of the pair correlation function
discussed in section 5.1 above.

The correlation identified between glassy dynamics and structure factor implies that to understand the gross
features of nonequilibrium glass transitions in active systems, one must first understand how increasing
departure from equilibrium affects the static structure of the active fluid at the level of two-point quantities. This
first step is crucial, as some theories for the nonequilibrium glass transitions use the nonequilibrium pair
correlation S(q) as input for a dynamical theory of the driven glassy dynamics [9, 15]. This initial step is usually
not emphasized in equilibrium studies [21], as there exist very accurate theories predicting the equilibrium S(q)
from the sole knowledge of the pair interaction [38].

5.3. Physical interpretation: potential of mean force u(r)

There have been a few attempts to develop a theory for the static structure of active fluids. One way to develop
such a theory is to start with an approximate mapping of the nonequilibrium active fluid onto an effective
equilibrium fluid [36, 39—-41]. Having an effective equilibrium model one could then use the well established
framework of the equilibrium liquid state theory to calculate the pair correlation function and the static
structure factor. Farage et al [39] showed that such a procedure results in very accurate predictions for the pair
correlation function, at least far from the glassy regime. However, Rein and Speck [42] found that the structure
of the simulated nonequilibrium active fluid can be quite different from that of the simulated effective
equilibrium fluid. Obviously, more work is needed in this area [43]. In particular, we note that no comparison
between functions characterizing density correlations obtained from simulations and the same functions
calculated using liquid state theory was performed in the glassy regime that is of interest for the present work.

A different way to evaluate the static structure of an active fluid is to use the very recently proposed
‘integration through transients’ approach [17] which was originally developed to describe sheared colloidal
suspensions [44]. So far, this approach was only used to analyze transient glassy dynamics (i.e. the dynamics after
active forces have been turned on) but in principle it could be used to calculate equal-time steady-state
properties.

In fact, to get some insight into the evolution of the density correlations upon increasing the persistence time
it would be nice to have an effective, persistence time-dependent potential. In other words, we would like to
investigate a potential that, if used in an equilibrium simulation, would result in the nonequilibrium pair
correlation functions shown in figure 5. Finding an effective potential resulting in a given pair correlation
function is a separate project. Moreover, it is not even obvious that such a potential could always be found for
our nonequilibrium pair correlation functions.

Instead, here we look at the evolution of the generalized potential of mean force,

u(r) = —Tegt In[g (M)], )

on the persistence time to obtain some physical intuition about the effective interaction experienced by the
particles. Recall that u(r) only represents a gross approximation to the real pair interaction between the particles,
even at thermal equilibrium. We present numerical results for u(r) in figure 7. At both high and low
temperatures, the evolution of u(r) signals the emergence of short-range adhesive forces, manifested through the
developement of a narrow negative well near the interparticle distance.

However, at Toe = 1.0 the potential of mean force reveals a striking feature, that is not observed at
T.r = 0.01. We observe that the repulsive interaction becomes much steeper with increasing the persistence
time, and the spatial range of the repulsion extends to larger distances. The particles, therefore, effectively
become stiffer and, perhaps more dramatically, they also appear larger with increasing persistence time. It is
reasonable to assume that this apparent ‘expansion’ of the particles directly accounts for the observed shift of the
glass transition towards smaller volume fractions with increasing 7, for Tege = 1.0. In other words, glassy
dynamics is promoted in this regime because self-propulsion makes the active suspension effectively more
crowded than its equilibrium counterpart. The evolution of the local structure for T'= 1.0 also explains the
drastic decrease in the height of the intermediate-time plateau in the mean-squared displacements shown in
figure 1(a).

For T = 0.01, an apparent expansion of the particles is barely visible. This is physically reasonable, as the
equilibrium system is already very close to the hard sphere interaction, and it is difficult to make this hard-core
interaction steeper. In this regime, the main effect of increasing the persistence time is the emergence of a short-
range effective adhesion between the self-propelled particles. The emergence of adhesion through self-
propulsion was noted before in the fluid regime [25, 45], and we find here that it is quite pronounced for dense
assemblies of self-propelled hard spheres as well, as surmised in [5]. In that case, it is not surprising that the glass
transition is shifted to larger ¢, as this behavior is well-known from equilibrium studies of adhesive spheres [46].
Therefore, the physical reason that self-propelled hard spheres undergo a delayed glass transition is not that they
are ‘driven’ out of equilibrium by active forces, it is much more subtle. Instead, active forces induce an effective
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Figure 7. Evolution of the potential of mean force with the persistence time at (To¢ = 1.0, ¢ = 0.638) (a) and (T = 0.01, ¢ = 0.582)
(b). For Tese = 1.0, particle appear larger for larger 7, (which makes the system more glassy), while they appear more sticky at Togr = 0.01
(which fluidifies the system).

adhesion between the particles, which modifies the local structure of the fluid towards the one of equilibrium
sticky spheres. It is this effective stickiness which eventually fluidifies the dense fluid. This interpretation also
accounts for the subdiffusive plateau dynamics reported in figure 1(b), which stems physically from the
existence of two length scales controlling the intermediate time dynamics, the cage size and the adhesion range.

Finally, we note that the above described changes in the potential of mean force and the pair correlation
function are not well captured by the approximate mappings of active systems onto effective equilibrium
systems described in the literature. In particular, these approximations fail badly for low T as they fail to
predict effective adhesion between the particles. They can, however, very qualitatively reproduce the effective
‘inflation’ of the particles for soft interactions, and the qualitative change in the steepness. These results shows
that deriving more accurate effective interactions for nonequilibrium active particles is an important
research goal.

6. Discussion

Systems of interacting self-propelled particles undergo a glass transition which has many of the features
associated with glass transitions in equilibrium systems. The transition is characterized by a dramatic slowing
down upon a small change in control parameters, either temperature, effective temperature, or density. When
glassy dynamics set in, the particles become confined in cages of neighboring particles. Consequently, a plateau
develops in the mean-squared displacement and the intermediate scattering function. Importantly, profound
changes in the dynamics are accompanied by very small changes in the static structure of the particles as
observed in two-body correlation functions.

There are, however, differences in the specifics of the transition that become apparent as one increases the
departure from equilibrium, which for our system is achieved by increasing the persistence time 7. For larger 7,
there is a decrease in the short-time ballistic dynamics due to velocity correlations. The effect of these velocity
correlations on the short-time dynamics is correctly captured through a mode-coupling-like theory which we
developed previously [9, 15].
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Furthermore, increasing 7, results in particles with smaller cages, which is easily seen in the lower plateau
height of the mean-squared displacements, and a larger effective radius, which is easily observed in an increase in
the peak position of the pair-correlation function g(r) at the same packing fraction. While the system continues
to flow with increasing 7, there are differences in the structure. However, at fixed 7, these structural changes are
small and a glass transition still exists. The persistence time dependence of the glass transition can be inferred
from the decay of the oscillations of g(r) at a fixed volume fraction. A faster decay indicates a larger glass
transition packing fraction. This feature can be observed more easily in the evolution of the peak height of the
static structure factor S(q) with increasing 7,,. A smaller height of S(q) at fixed packing fraction leads to a larger
glass transition packing fraction.

We can gain some insight into the effect of activity by examining the potential of mean force
u(r) = —Tor In[g (r)]. While it is important to emphasize that, strictly speaking, u(r) only has meaning for
equilibrium systems, it does allow us to gain some insight into how to think about the effect of activity on the
behavior of systems. The potential of mean force is reminiscent of systems with short-range attractions,
commonly called sticky spheres. With increasing 7, the attractive range decreases, but the effective particle size
increases. The former effect is more pronounced at lower effective temperatures where the width of the well of
u(r) is very small and the latter effect seems to be the dominant feature at higher effective temperatures. This
shows that predicting the effect of increasing departure from equilibrium is not trivial, and depends on the
specifics of the studied model.

Our conclusion is reminiscent of previous findings in equilibrium studies of the glass transition. When the
pair structure evolves significantly by varying an external parameter, then the qualitative evolution of the
location of the glass transition can be correctly inferred from the sole knowledge of pair density correlations.
Good examples are the effect of increasing the adhesion strength in adhesive hard spheres [46], or increasing the
density in ultra-soft colloidal particles [47]. However, in order to quantitatively predict the location of the glass
transition, it is well-established that two-point density functions are insufficient at equilibrium [48], and that
higher-order correlations become relevant [21]. This cautionary remark presumably also applies to active forces,
and these more complicated correlations should also be studied in the present nonequilibrium context.

Overall, our work demonstrates that nonequilibrium glass transitions appear robustly in dense active
materials, and that much remains to be done at the theoretical level to derive predictive theories, even for very
simple models of active particles. Another promising line of research concerns the physical properties of the
glass phase, where the influence of the nonequilibrium self-propulsion dynamics on the properties of the glass
has not yet been carefully explored.
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