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Abstract
Dense assemblies of self-propelled particles undergo a nonequilibrium formof glassy dynamics.
Physical intuition suggests that increasing departure from equilibriumdue to active forces fluidifies a
glassy system.We falsify this belief by devising amodel of self-propelled particles where increasing
departure from equilibrium can both enhance or depress glassy dynamics, depending on the chosen
state point.We analyze a number of static and dynamic observables and suggest that the location of the
nonequilibrium glass transition is primarily controlled by the evolution of two-point static density
correlations due to active forces. The dependence of the density correlations on the active forces varies
non-trivially with the details of the system, and is difficult to predict theoretically. Our results
emphasize the need to develop an accurate liquid state theory for nonequilibrium systems.

1. Introduction

Nonequilibrium glass transitions have recently emerged as a new type of dynamic arrest occurring in particle
systems driven out of equilibriumby active forces [1, 2]. The initial theoretical interpretation, based on the
analysis of simple glassmodels driven by active forces [3], has been confirmed in several computer simulations of
more realistic activemattermodels [1, 4–14, 49]. A number of alternative theoretical approaches have nowbeen
proposed to describe this phenomenon [15–17]. Just as in equilibrium [18, 19], nonequilibrium glass transitions
bear no connection to the jamming transition [20], which corresponds instead to a geometric transition taking
place in the absence of any drivingmechanism.

Although the system is driven far from thermal equilibrium, the corresponding slow dynamics exhibits all
the characteristic signatures of supercooled liquids approaching an equilibrium glass transition [21], such as
caging, dynamical slowing down, non-exponential time correlation functions and dynamic heterogeneity [22].
A unique feature that distinguishes active from equilibrium glasses is the emergence of collective effective
temperatures [3, 23, 24]. Nonequilibrium glass transitions represent an experimentally relevant concept,
because theymay explain various dynamic phenomena observed experimentally in both dense active colloidal
suspensions [25, 26], active granularmaterials [27], and in biological systems [2, 28–31].

The above summary demonstrates that the existence of nonequilibrium glassy dynamics is well-established.
For a number ofmodel systems, phase diagrams,microstructure, dynamic timescales and length scales have
been thoroughly analyzed.However, notmuch is known quantitatively about how active forces influence the
glass transition. In a very trivial sense, adding active forces to an equilibriummaterialmust suppress the glass
transition, as the amount of driving energy then increases [1, 10]. This is equivalent to increasing the
temperature at equilibrium.However, the outcome of departing from thermal equilibrium at constant driving
energy ismuch less trivial, and is in fact not understood. There exist conflicting results in the literature,
suggesting that glassy dynamics is either suppressed (as in hard sphere systems [4, 5]), or enhanced (as in
Lennard-Jones particles [9, 11])when going out of equilibrium. It is unclear whether these seemingly distinct
behaviors are due to a change in the pair interaction, to the details of the active forces ormicroscopic dynamics,
or to a genuine physical effect. If real, then, these results beg the question as towhat physical quantity is themain
indicator to reveal how active forcesmodify the location of the glass transition.

OPEN ACCESS

RECEIVED

10August 2017

REVISED

26 September 2017

ACCEPTED FOR PUBLICATION

5October 2017

PUBLISHED

7December 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017TheAuthor(s). Published by IOPPublishing Ltd on behalf ofDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/aa914e
https://orcid.org/0000-0003-2059-702X
https://orcid.org/0000-0003-2059-702X
mailto:ludovic.berthier@umontpellier.fr
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa914e&domain=pdf&date_stamp=2017-12-07
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aa914e&domain=pdf&date_stamp=2017-12-07
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


In this work, we devise a simplemolecular dynamicsmodel for self-propelled particles where acceleration or
slowing down of the dynamics can both be observed by changing active forces at constant density of the system.
This directly shows that it is in fact very difficult to predict whether active forces willfluidify or glassify a given
material, as they can do both.Having amodel displaying both types of response to active forces allows us to
directly investigate how the departure from equilibrium influences the glassy dynamics, andwhichmicroscopic
quantity is responsible for their evolution. Our numerical analysis reveals that active forces have a strong impact
on themicrostructure of thefluid, which can be readily quantified by two-point static density correlations
functions. The nontrivial evolution of the static structure then primarily accounts for the evolution of the glass
transition, underlying the need to develop amore accurate liquid state theory for activefluids.

Thepaper is organized as follows. In section2wedefineourmodel systemofpurely repulsive, non-aligning, self-
propelledparticles andprovide thedetails of thenumerical simulations.Themain features of the glassydynamics and
the evolutionof the apparent glass transition lineupon increasingdeparture fromequilibriumare reported in
section3.Next, in sections 4 and5we analyze two sets of equal-time steady-state correlations, velocity correlations and
two-point density correlations, respectively.Weconclude in section6with adiscussionof the correlationsbetween the
evolutionof the glassydynamics andof the steady-state structureupon increasingdeparture fromequilibrium.

2. Interpolating betweenhard and soft active particles

Earlier studies of glassy dynamics inmodel active systems used either a hard-sphere interaction [4, 5] or a
Lennard-Jones interaction [9–11]. Both families of studies reported opposite results regarding the influence of
active forces on the glass transition.

To continuously interpolate between these limiting cases, we use theWeeks–Chandler–Andersen truncation
of the Lennard-Jones potential [32], a strategy used before in equilibrium studies [33]. This choice creates a
purely repulsive system that allows us to continuouslymove from simulating a hard sphere-like system at very
low temperatures andmoderate densities (when the typical nearest-neighbor distance is slightly larger than the
range of the potential), to simulating a Lennard-Jones-like system atmoderate temperatures and large densities
(when the typical nearest-neighbor distance is smaller that the range of the potential). The comparisonwith
earlier works suggest that ourmodel should display both an acceleration or a slowing down of the glassy
dynamics, depending on the density regime, allowing us to revisit and unify previous studies.

Tomodel an active liquid,weuse the so-called activeOrnstein–Uhlenbeckparticlesmodel [34] introduced
independently in [35, 36]. In thismodel, the dynamics is overdamped and the particlesmoveunder the combined
influence of the interparticle interactions and the self-propulsion.The self-propulsion ismodeled as an internal
driving force evolving according to theOrnstein–Uhlenbeckprocess. Thus, the equations ofmotion are given by

x= +-˙ [ ] ( )r F f , 1i i i0
1

ht = - +˙ ( )f f . 2p i i i

In equation (1), ri is the position of particle i, x0 is the friction coefficient of an isolated particle, Fi is the force
acting on particle i originating from the interactions, and fi is the self-propulsion force acting on particle i. In
equation (2), tp is the persistence time of the self-propulsion and hi is an internal Gaussian noise with zeromean
and variance h h x d dá ¢ ñ = - ¢( ) ( ) ( )It t T t t2i j ijnoise 0 eff , where á ñ... noise denotes averaging over the noise
distribution,Teff is the single-particle effective temperature, and I is the unit tensor. In the following, we set the
friction coefficient to unity, x = 10 . Notice that fi is the unique driving force in equation (1), which does not
contain an additional Brownian noise term.

The name ‘single-particle effective temperature’ forTeff originates from the fact that an isolated particle
moving under the influence of the self-propulsion evolving according to equation (2) performs a persistent
randomwalkwith the long-time diffusion coefficient equal to =D T0 eff (weuse a systemof units such that the
Boltzmann constant kB is unity).We note that for a systemof interacting self-propelled particles other effective
temperatures can be defined based on different fluctuation-dissipation ratios [3, 23, 37]. These effective
temperatures are, in general, different from the single-particle effective temperature. Sincewewill not be
concernedwith these collective effective temperatures in this work, in the following, for brevity, wewill refer to
Teff as the effective temperature. Importantly, Teff controls the amount of energy injected into the system, and it
represents the analog of the thermal bath for an equilibrium system.

The interparticle forces originate from a potential, = -å  ab¹ ( )F V ri j i i ij where


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for  V s=ab abr 21 6 and zero otherwise. In equation (3), a b, denote the particle speciesA orB,  = 1 (which
sets the unit of energy), s = 1.4AA , s = 1.2AB , and s = 1.0BB (which sets the unit of length). Our unit of time is
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s xAA AA0 .We simulatedN=1000 particles composing a 50:50mixture in a volumeV using periodic
boundary conditions in three spatial dimensions. The truncation of the potential is at the potentialminimum,
and thus the interparticle force is purely repulsive. The repulsive character of the force combinedwith the finite
range of the potential implies that in the low temperature limit the systembecomes equivalent to a hard sphere
system consisting of a binarymixture of spheres of diameters VAA and VBB.

As our control parameters, we use the volume fraction f p V V= +[ ] ( )N V12AA BB
3 3 , the effective

temperatureTeff , and the persistence time of the self-propulsion tp. Since there is no thermal noise, when
t  0p thismodel systembecomes equivalent to a Brownian system at a temperature =T Teff . Therefore, tp

quantifies the increasing departure from equilibrium as tp increases from zero. In this work, we investigate the
dependence of the glassy dynamics on the persistence time andwe also compare the results obtained for active
systemswith those obtained fromoverdamped Brownian dynamics simulations at a temperatureT.We vary the
persistence time between t = 0p and t = 10p and the effective temperature between =T 0.01eff and =T 1.0eff .

3.Glassy dynamics and phase diagram

Infigure 1we show the development of glassy dynamics upon increasing the volume fraction, at two values of
the effective temperature, the highest and the lowest temperature investigated, =T 1.0eff and =T 0.01eff ,
respectively.We illustrate the changes in the dynamics by showing themean-squared displacement

ådá ñ = -
=

( ) [ ( ) ( )] ( )r rr t
N

t
1

0 , 4
A i

N

i i
2

1

2
A

where the summation is over the particles of typeA andNA is the number of these particles. Here and in the
following, we restrict our discussion to the larger particles, particlesA, andwe note that analyzing the dynamics

Figure 1.Time-dependence of themean-squared displacement for a high (a) and low (b) temperature. Black solid lines represent
active systems for persistence time t = 10p and red dashed lines represent Brownian systems (t = 0p ). Dotted lines represent short-
timemotion of an isolated particle for active (black) andBrownian (red) systems. In panel (a), solid lines represent active systems at
f = 0.554, 0.665, 0.707, 0.721, 0.873 (left to right) and dashed lines represent Brownian systems at f = 0.638, 0.873, 0.901, 0.928
(left to right). In panel (b), solid lines represent active systems at f = 0.554, 0.624, 0.652, 0.658, 0.665 (left to right) and dashed lines
represent Brownian systems at f = 0.499, 0.582, 0.610, 0.652 (left to right).
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of theB particles leave the conclusions unchanged. Furthermore, to simplify notationwe do not use
conventional subscripts when referring to quantities pertaining to particlesA only. Thus, we use dá ñ( )r t2 rather
than dá ñ( )r tA

2 and later in section 5wewill use, for instance, g(r) rather than gAA(r).
For an isolated active particle or, alternatively, in a non-interacting system, themean-squared displacement

can be calculated analytically,

d tá ñ = - +t-( ) [ ( ) ] ( )r t T t6 e 1 . 5p
t2

eff
p

At short times, the particlemotion is ballistic and d tá ñ ( ) ( )r t T t3 p
2

eff
2. The long-timemotion is diffusive

and dá ñ ( )r t T t62
eff . Comparing the long-time result with that for an isolated Brownian particle,

dá ñ =( )r t Tt62 , we see that the long time diffusivemotion of an isolated active particle at an effective
temperatureTeff matches that of the isolated Brownian particle at a temperature =T Teff .

As shown infigure 1, the ballistic and diffusive regimes are still observed inmean-squared displacements in
systems of interacting active particles (solid lines, t = 10p ). However, for active particles both the short-time
dynamics and the long-time dynamics changewith the volume fraction. The change in the short-time dynamics
is induced by correlations between active particles velocities and positions, discussed further in section 4. These
correlations are an important feature of active systems [9]. At constant effective temperature, theirmagnitude
decreases with decreasing persistence time and the correlations vanish in the Brownian limit. Generally, for
active systems both the short-time ballisticmotion and the long-time diffusivemotion slow downwith
increasing volume fraction. The slowing downof the short-time dynamics ismore pronounced at higher
effective temperatures (note, however, that at higher effective temperatures the volume fractions are also
somewhat larger). Generally, with increasing volume fraction, at intermediate times a plateau begins to develop
and glassy dynamics emerge.

Figure 1 also shows that for Brownian systemswe have two diffusive regimes, for short times dá ñ =( )r t Tt62

(dotted red line) and for long times dá ñ =( )r t Dt62 , whereD is the long-time self-diffusion coefficient. At
intermediate times a plateau develops between the short time diffusivemotion and the long time diffusive
motion. The presence of the plateau indicates caging of individual particles.

While emerging glassy dynamics in active systems is generally similar to that in Brownian systems, we note
some important quantitative differences. First, in active systems there is a significant slowing downof the short-
time ballisticmotionwhereas in Brownian systems the short-time diffusivemotion is independent of the
volume fraction (and it depends only trivially on the temperature). Second, plateau heights in active systems are
different from those in Brownian systems. This is especially prominent at the higher temperature where the
plateau height for the densest t = 10p active system is around an order ofmagnitude smaller than for the
densest Brownian system (note that the density of the active system is quite a bit lower than that of the Brownian
system). For =T 0.01eff , a well-defined plateau is not observed and instead themean-squared displacement
exhibit a very slow subdiffusive behavior. These latter facts suggest that upon increasing departure from
equilibrium the effective interparticle interaction changes significantly.We comment on this point further in
section 5.

From the long-time limit of themean-squared displacements we extract the long-time self-diffusion
coefficients, d= á ñ¥ ( ) ( )D r t tlim 6t

2 . Infigure 2, we show the dependence of the diffusion coefficients on the
volume fraction for a number of active systems characterized by a given value of the persistence time and the
effective temperature, t( )T,p eff , and for Brownian systems characterized by the temperatureT. For the highest
temperature. =T 1.0eff , infigure 2(a)we see that the diffusion coefficient decreases with increasing persistence
time at afixed volume fraction. In contrast, at an intermediate temperature, =T 0.1eff , we find a non-
monotonic dependence of the diffusion coefficient on the persistence time at afixed volume fraction. Finally, at
the lowest temperature, =T 0.01eff , wefind that the diffusion coefficient increases with increasing persistence
time at afixed volume fraction for the range of persistence times investigated.We observe that increasing
departure from equilibrium can either promote or suppress the glassy dynamics without changing the pair
interaction between the self-propelled particles, as announced in the introduction.

These results suggest that there is a change in the persistence time dependence of the apparent glass
transition line in the temperature–volume fraction plane. To determine quantitatively the glass transition line,
wefit the diffusion coefficient data to aVogel–Fulcher-like dependence on the volume fraction,

f f= + -( )D A Bln c , whereA,B and fc arefitting parameters. These empirical fits are shown as continuous
lines infigure 2. TheVogel–Fulcher-like formula results in reasonable fits to the data and, therefore, reasonable
estimates for the glass transition volume fraction f f t= ( )T,c c p eff . Other fitting functionswould provide
qualitatively similar results for the evolution of the glass transition lines.

Infigure 3we present the resulting glass-fluid phase diagram in the temperature–volume fraction plane, for
different persistence times. As can be inferred from the dependence of the diffusion coefficient on the volume
fraction, the glass transition volume fraction fc monotonically decreases with increasing tp for =T 1.0eff , and it
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monotonically increases with increasing tp for =T 0.01eff . At intermediate Teff there is a non-monotonic
change of fc upon increasing the persistence time, which signals the crossover between the high and low
temperature regimes. These findings are consistent with both the previously observed increase of the glass
transition temperature for the Lennard-Jones system [11] and the increase of the glass transition packing
fraction for the hard-sphere system [4, 5].

Figure 3 shows for thefirst time that for the samemodel active system increasing departure from equilibrium
can both glassify an activefluid andfluidifies an active glass, depending on the studied thermodynamic state
point. This directly demonstrates that the physical intuition that activity fluidifies the glass is incorrect, as activity
can also solidify the supercooled fluid. In the following two sections we search for correlations between the

Figure 2.Volume fractiondependenceof the long-time self-diffusion coefficient at different persistence times at three representative
temperatures. Thepoints represent results of numerical simulations and the lines areVogel–Fulcher-likefits, f f= + -( )D A Bln c .
For each systemglassy dynamics is observed as the volume fraction increases. The glass transition is shifted to largerf as the persistence
time increases at low Teff (a), decreases at large Teff (c), and is non-monotonic at intermediateTeff (b). Filled symbols are Brownian
dynamics simulations.
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observed non-trivial dependence of the dynamics on the persistence time and the dependence of static (equal-
time) correlations on the persistence time. In section 4we examine the evolution of the correlations between
active particles’ velocities on the persistence time. In section 5we investigate the dependence of density
fluctuations on the persistence time.

4.Nonequilibriumvelocity correlations

While developing a theory for the dynamics of systems of activeOrnstein–Uhlenbeck particles [9, 15]we
discovered that correlations between velocities of self-propelled particles play an important role in the dynamics
of active systems. Subsequent simulational studies [9, 11] showed that in the active systemwith Lennard-Jones
interactions the velocity correlations growupon increasing departure from equilibrium. The correlations
between velocities of different active particles vanish in the limit of zero persistence time and are zero in
Brownian systems. Therefore, these nonequilibrium velocity correlations represent themost natural candidate
to explain how the glass transition departs from its equilibrium counterpart as the persistence time increases.

In [15] amode-coupling-like theory is derived for active particle systems. Aswith themode-coupling theory
of the glass transition for passive particle systems, the structure of system is the input to equations that describe
the decay of density fluctuations. For passive particle systems the only needed input is the static structure factors,
but for active particle systems the input is not only the static factors but also awavevector-dependent function
that characterizes static velocity correlations, which only exists for nonequilibrium self-propelled particles.

In [9, 15], we showed that this function is important for the dynamics of an active system. For a binary
mixture, in analogywith the partial static structure factors that characterize the number density fluctuations, in
principle we need to introduce three different functions corresponding to the correlations of velocities of theA
particles, velocities of theB particles, and theAB cross-correlations. As stated earlier, we restrict the discussion to
the larger particles and only examine the correlation between velocities of theAparticles, which is defined as
follows:

åw = + +
=

- -( ) ˆ · ( )( ) · ˆ ( )∣∣
( )q f F f F qq e , 6q r r

i j

N

i i j j
, 1

i
A

i j

where both summations are over the particles of typeA, =ˆ ∣ ∣q q q and x +- ( )f Fi i0
1 is the instantaneous

velocity of particle i.
The largewavevector limit of this function, w w¥ = ¥( ) ( )∣∣ ∣∣ qlimq , exactly determines the short-time

behavior of themean-squared displacement in the systemof interacting active particles, d wá ñ ¥( ) ( )∣∣r t t32 2.
According to the approximatemode-coupling-like theory sketched in [9] and then detailed in [15], the complete
function w ( )∣∣ q enters into the expressions for the so-called vertices of the irreduciblememory function, and
thus, together with the static structure factor, it determines the long-time dynamics. If the function w ( )∣∣ q

Figure 3.Evolution of the phase diagramwith the persistence time of the self-propulsion. The fluid phase at lowf transforms into a
glass at largef at a volume fractionwhich depends both Teff and tp.With increasing persistence time the glass transition lime shifts
towards smaller volume fractions at higher effective temperatures (departure from equilibriumpromotes glassy dynamics) and
towards larger volume fractions at low effective temperatures (departure from equilibrium fluidifies the glass). Filled symbols are
Brownian dynamics simulations.
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evolved differently upon increasing the persistence time at high and low effective temperatures (i.e. for Lennard-
Jones-like and hard-sphere-like systems), it would suggest that the velocity correlations are responsible for the
non-trivial changes in the phase diagram shown infigure 3.

Previous work [11] showed that upon increasing both the persistence time and the importance of the
interparticle interactions, the overall scale of the velocity correlations decreases significantly while their
wavevector dependence becomesmore pronounced. The overall scale of the velocity correlations can be
characterized by their largewavevector limit, w ¥( )∣∣ .We recall thatfigure 1 indicates that the short-time
dynamics of the self-propelled particles slows down upon increasing the volume fraction atfixed persistence
time, for both high and low effective temperatures. This slowing downof the short-time dynamics is the direct
consequence of the decreasing of w ¥( )∣∣ upon increasing the volume fraction at constant persistence time and
effective temperature, and thus increasing the importance of the interparticle interactions.

The focus of this work is the dependence of the (long-time) glassy dynamics on the departure from
equilibrium. To this end, in the inset tofigure 4we show the evolution of w ¥( )∣∣ with the persistence time for

=T 1.0eff and 0.01. In both cases we observe approximate power-law dependence of w ¥( )∣∣ on tp,

w t¥ µ -( )∣∣ p
1.25. Thus, while w ¥( )∣∣ at =T 1.0eff is about 50 times larger than that at =T 0.01eff , its

dependence on the persistence time is the same at both temperatures, and, therefore, w ¥( )∣∣ seems unconnected
to themore complicated evolution of the glassy dynamics reported infigures 2(a)–(c).

In themain panels offigure 4we show the evolution of thewavevector dependence of w ( )∣∣ q upon increasing
the persistence time for =T 1.0eff and 0.01. To this endwe plot w w ¥( ) ( )∣∣ ∣∣q for different values of tp. Upon
increasing the persistence timewe observe that the oscillations of w w ¥( ) ( )∣∣ ∣∣q are becomingmore
pronounced, which indicates growing local velocity correlations. However, this increase occurs at every effective
temperature investigated, independently of the evolution of the long-time glassy dynamics. Thus, growing local
velocity correlations and glassy dynamics appear to be largely uncorrelated. In other words, velocity correlations
accompany the nonequilibrium glass transition, they presumably quantitatively affect its location, but they do
not seem to be themain factor responsible for the nontrivial evolution of the phase diagram shown infigure 3.

Figure 4.Wavevector dependence of the normalized nonequilibrium velocity correlations. These correlations develop and increase in
strength as the persistence time increases, for both large and low Teff , it is unity for Brownian dynamics. The inset show the persistence
time dependence of the of w  ¥( )∣∣ q . Unlike the long-time glassy dynamics, the qualitative evolution of nonequilibriumvelocity
correlations does not depend on the state point.
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5. Two-point density correlations

Since the dependence of the velocity correlations on the persistence time is uncorrelated to the evolution of the
glassy dynamics, we turn our attention to other,more conventional static correlations, namely density
correlations. In this sectionwe investigate equal-time correlations of the density fluctuations by examining the
pair correlation function in real and Fourier space.We show that the dependence of pair correlations upon
increasing the departure from equilibrium strongly correlates with the evolution of the glassy dynamics reported
infigures 2(a)–(c), andwe provide a physical interpreation of the results.

5.1. Pair correlation function g(r)
Infigure 5we show the evolution of pair density correlations in the direct space upon increasing the persistence
time. Specifically, we show the pair correlation function characterizing correlations between theA particles,

åå d= á - - ñ
= ¹

( ) ( ∣ ∣) ( )r rg r
N

r
1

, 7
A i

N

j i

N

i j
1

A A

where both summations are over theA particles.
For both high and low effective temperatures we observe a very strong sharpening and growth of thefirst

peak of the pair correlation function. Thismay be interpreted as an increasing ‘adhesion’ between self-propelled
particles upon increasing the persistence time. The height of thefirst peak of g(r) is 4.5 to 7 times larger for
t = 10p than for the Brownian limit at the same packing fraction.While the quantitative details of the evolution
of the first peak changewith the effective temperature, qualitatively the evolution is very similar. Thus, the
sharpening and growth of the first peak of the pair correlation function is a general feature of self-propelled
particles which does not seem to be correlatedwith the non-trivial evolution of the glass transition line.

On the other hand, the position of thefirst peak has a very different behavior in the two panels shown in
figure 5. It shifts to larger distances for =T 1.0eff but remains essentially at the same position for =T 0.01eff . As a

Figure 5.Evolutionof thepair correlation function g(r)withpersistence time at f= =( )T 1.0, 0.638eff (a) and f= =( )T 0.01, 0.582eff

(b), using the same color coding for tp as inpreviousfigures. Themainpanels show thefirst peak and the insets focuson the secondary
peaks at larger r.

8

New J. Phys. 19 (2017) 125006 L Berthier et al



result, the effective diameter of the particle increases with tp for =T 1.0eff but is approximately constant for
=T 0.01eff . This effective inflation of the particles for the higher temperaturemay be held responsible for the

slowing down of the dynamics as tp increases, as the systembecomes effectivelymore crowded. Strikingly, this
effect is absent for the lower temperature.

In the insets infigure 5, we show that the secondary peaks of the pair correlation function change in a
qualitatively different way upon increasing departure from equilibrium. Specifically, the amplitude of the
secondary peaks increases with increasing tp for =T 1.0eff (indicating enhanced local structure)while it
decreases with increasing tp for =T 0.01eff (indicating decreasing local structure). This qualitatively different
change does correlate with the evolution of the glass transition lines, where enhanced (suppressed) structure
seems to promote (suppress) the glassy dynamics. As shown in the next subsection, the rather subtle changes of
the secondary peaks in the direct space translates intomore visible changes of the static structure factor in the
Fourier domain.

5.2. Static structure factor S(q)
The contrast between the evolution of the density correlations with increasing departure from equilibrium at
high and low temperatures is easier to observe in the Fourier domain.We show infigure 6 the partial static
structure factor for theA particles,

åå=
= =

- -( ) ( )·( )S q
N

1
e , 8q r r

A i

N

j

N

1 1

i
A A

i j

where both summations are over theA particles.
We observe infigure 6 that the amplitude of all the peaks of the static structure factor increases with

increasing the persistence time for the higher effective temperature, =T 1.0eff . In contrast, the amplitude of the
peaks decreases with increasing the persistence time for the lower effective temperature, =T 0.01eff . Therefore,
the evolution of the peak height of the structure factor correlates directly with the evolution of the fitted glass
transition volume fraction, fc .We alsofind that the oscillations of the structure factor decay slower with

Figure 6.Evolution of the static structure factor with the persistence time at f= =( )T 1.0, 0.638eff (a) and f= =( )T 0.01, 0.582eff

(b).With increasing tp the height of allfirst peaks of S(q) increases at =T 1.0eff while it decreases at =T 0.01eff . The qualitative
evolution of the pair structure factor directly correlates with the evolution of the apparent glass transition lines infigure 3.
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increasing tp, which directly reflects the sharpening and growth of the first peak of the pair correlation function
discussed in section 5.1 above.

The correlation identified between glassy dynamics and structure factor implies that to understand the gross
features of nonequilibrium glass transitions in active systems, onemustfirst understand how increasing
departure from equilibrium affects the static structure of the active fluid at the level of two-point quantities. This
first step is crucial, as some theories for the nonequilibrium glass transitions use the nonequilibriumpair
correlation S(q) as input for a dynamical theory of the driven glassy dynamics [9, 15]. This initial step is usually
not emphasized in equilibrium studies [21], as there exist very accurate theories predicting the equilibrium S(q)
from the sole knowledge of the pair interaction [38].

5.3. Physical interpretation: potential ofmean force u(r)
There have been a few attempts to develop a theory for the static structure of activefluids. Oneway to develop
such a theory is to start with an approximatemapping of the nonequilibrium activefluid onto an effective
equilibrium fluid [36, 39–41]. Having an effective equilibriummodel one could then use thewell established
framework of the equilibrium liquid state theory to calculate the pair correlation function and the static
structure factor. Farage et al [39] showed that such a procedure results in very accurate predictions for the pair
correlation function, at least far from the glassy regime.However, Rein and Speck [42] found that the structure
of the simulated nonequilibrium activefluid can be quite different from that of the simulated effective
equilibrium fluid.Obviously,morework is needed in this area [43]. In particular, we note that no comparison
between functions characterizing density correlations obtained from simulations and the same functions
calculated using liquid state theorywas performed in the glassy regime that is of interest for the present work.

A different way to evaluate the static structure of an activefluid is to use the very recently proposed
‘integration through transients’ approach [17]whichwas originally developed to describe sheared colloidal
suspensions [44]. So far, this approachwas only used to analyze transient glassy dynamics (i.e. the dynamics after
active forces have been turned on) but in principle it could be used to calculate equal-time steady-state
properties.

In fact, to get some insight into the evolution of the density correlations upon increasing the persistence time
it would be nice to have an effective, persistence time-dependent potential. In other words, wewould like to
investigate a potential that, if used in an equilibrium simulation, would result in the nonequilibriumpair
correlation functions shown infigure 5. Finding an effective potential resulting in a given pair correlation
function is a separate project.Moreover, it is not even obvious that such a potential could always be found for
our nonequilibriumpair correlation functions.

Instead, herewe look at the evolution of the generalized potential ofmean force,

= -( ) [ ( )] ( )u r T g rln , 9eff

on the persistence time to obtain some physical intuition about the effective interaction experienced by the
particles. Recall that u(r) only represents a gross approximation to the real pair interaction between the particles,
even at thermal equilibrium.We present numerical results for u(r) infigure 7. At both high and low
temperatures, the evolution of u(r) signals the emergence of short-range adhesive forces,manifested through the
developement of a narrownegative well near the interparticle distance.

However, at =T 1.0eff the potential ofmean force reveals a striking feature, that is not observed at
=T 0.01eff .We observe that the repulsive interaction becomesmuch steeper with increasing the persistence

time, and the spatial range of the repulsion extends to larger distances. The particles, therefore, effectively
become stiffer and, perhapsmore dramatically, they also appear larger with increasing persistence time. It is
reasonable to assume that this apparent ‘expansion’ of the particles directly accounts for the observed shift of the
glass transition towards smaller volume fractions with increasing tp for =T 1.0eff . In otherwords, glassy
dynamics is promoted in this regime because self-propulsionmakes the active suspension effectivelymore
crowded than its equilibrium counterpart. The evolution of the local structure forT= 1.0 also explains the
drastic decrease in the height of the intermediate-time plateau in themean-squared displacements shown in
figure 1(a).

For =T 0.01eff , an apparent expansion of the particles is barely visible. This is physically reasonable, as the
equilibrium system is already very close to the hard sphere interaction, and it is difficult tomake this hard-core
interaction steeper. In this regime, themain effect of increasing the persistence time is the emergence of a short-
range effective adhesion between the self-propelled particles. The emergence of adhesion through self-
propulsionwas noted before in the fluid regime [25, 45], andwe find here that it is quite pronounced for dense
assemblies of self-propelled hard spheres aswell, as surmised in [5]. In that case, it is not surprising that the glass
transition is shifted to largerf, as this behavior is well-known from equilibrium studies of adhesive spheres [46].
Therefore, the physical reason that self-propelled hard spheres undergo a delayed glass transition is not that they
are ‘driven’ out of equilibriumby active forces, it ismuchmore subtle. Instead, active forces induce an effective
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adhesion between the particles, whichmodifies the local structure of the fluid towards the one of equilibrium
sticky spheres. It is this effective stickiness which eventuallyfluidifies the dense fluid. This interpretation also
accounts for the subdiffusive plateau dynamics reported infigure 1(b), which stems physically from the
existence of two length scales controlling the intermediate time dynamics, the cage size and the adhesion range.

Finally, we note that the above described changes in the potential ofmean force and the pair correlation
function are notwell captured by the approximatemappings of active systems onto effective equilibrium
systems described in the literature. In particular, these approximations fail badly for lowTeff as they fail to
predict effective adhesion between the particles. They can, however, very qualitatively reproduce the effective
‘inflation’ of the particles for soft interactions, and the qualitative change in the steepness. These results shows
that derivingmore accurate effective interactions for nonequilibrium active particles is an important
research goal.

6.Discussion

Systems of interacting self-propelled particles undergo a glass transitionwhich hasmany of the features
associatedwith glass transitions in equilibrium systems. The transition is characterized by a dramatic slowing
downupon a small change in control parameters, either temperature, effective temperature, or density.When
glassy dynamics set in, the particles become confined in cages of neighboring particles. Consequently, a plateau
develops in themean-squared displacement and the intermediate scattering function. Importantly, profound
changes in the dynamics are accompanied by very small changes in the static structure of the particles as
observed in two-body correlation functions.

There are, however, differences in the specifics of the transition that become apparent as one increases the
departure from equilibrium,which for our system is achieved by increasing the persistence time tp. For larger tp

there is a decrease in the short-time ballistic dynamics due to velocity correlations. The effect of these velocity
correlations on the short-time dynamics is correctly captured through amode-coupling-like theory whichwe
developed previously [9, 15].

Figure 7.Evolution of the potential ofmean forcewith the persistence time at f= =( )T 1.0, 0.638eff (a) and f= =( )T 0.01, 0.582eff

(b). For =T 1.0eff , particle appear larger for larger tp (whichmakes the systemmore glassy), while they appearmore sticky at =T 0.01eff

(whichfluidifies the system).
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Furthermore, increasing tp results in particles with smaller cages, which is easily seen in the lower plateau
height of themean-squared displacements, and a larger effective radius, which is easily observed in an increase in
the peak position of the pair-correlation function g(r) at the same packing fraction.While the system continues
toflowwith increasing tp, there are differences in the structure. However, atfixed tp these structural changes are
small and a glass transition still exists. The persistence time dependence of the glass transition can be inferred
from the decay of the oscillations of g(r) at afixed volume fraction. A faster decay indicates a larger glass
transition packing fraction. This feature can be observedmore easily in the evolution of the peak height of the
static structure factor S(q)with increasing tp. A smaller height of S(q) atfixed packing fraction leads to a larger
glass transition packing fraction.

We can gain some insight into the effect of activity by examining the potential ofmean force
= -( ) [ ( )]u r T g rlneff .While it is important to emphasize that, strictly speaking, u(r) only hasmeaning for

equilibrium systems, it does allowus to gain some insight into how to think about the effect of activity on the
behavior of systems. The potential ofmean force is reminiscent of systemswith short-range attractions,
commonly called sticky spheres.With increasing tp the attractive range decreases, but the effective particle size
increases. The former effect ismore pronounced at lower effective temperatures where thewidth of thewell of
u(r) is very small and the latter effect seems to be the dominant feature at higher effective temperatures. This
shows that predicting the effect of increasing departure from equilibrium is not trivial, and depends on the
specifics of the studiedmodel.

Our conclusion is reminiscent of previous findings in equilibrium studies of the glass transition.When the
pair structure evolves significantly by varying an external parameter, then the qualitative evolution of the
location of the glass transition can be correctly inferred from the sole knowledge of pair density correlations.
Good examples are the effect of increasing the adhesion strength in adhesive hard spheres [46], or increasing the
density in ultra-soft colloidal particles [47]. However, in order to quantitatively predict the location of the glass
transition, it is well-established that two-point density functions are insufficient at equilibrium [48], and that
higher-order correlations become relevant [21]. This cautionary remark presumably also applies to active forces,
and thesemore complicated correlations should also be studied in the present nonequilibrium context.

Overall, our work demonstrates that nonequilibrium glass transitions appear robustly in dense active
materials, and thatmuch remains to be done at the theoretical level to derive predictive theories, even for very
simplemodels of active particles. Another promising line of research concerns the physical properties of the
glass phase, where the influence of the nonequilibrium self-propulsion dynamics on the properties of the glass
has not yet been carefully explored.
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