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1.  Introduction

Computer simulations play an important role in the study of 
amorphous materials, since they provide particle-scale reso-
lution of their structural and dynamical properties. There is 
however a huge gap between the timescales accessible in 
conventional simulations and in experiments on molecular 
and polymeric liquids. Despite the continuous increase of 
computing power, simulations timescales are still about 
eight orders of magnitude shorter than experimental ones. 
Numerical analysis is therefore limited to studies of moder-
ately supercooled liquids or poorly annealed glasses [1, 2].

Recently, we have developed a very efficient simulation 
setup by applying the swap Monte Carlo algorithm [3–5] to 
realistic models of polydisperse particles [6–8]. Some of these 
models can be equilibrated even beyond the timescales acces-
sible in the laboratory. Thanks to this simulation approach, 
it becomes possible to scrutinize under experimentally rel-
evant conditions several outstanding issues concerning glass 

formation, such as the entropy crisis [8], the kinetic stability 
of ultrastable glasses [9, 10], jamming [11], and the Gardner 
transition [12–14]. These aspects are central in the current 
debate on the thermodynamic and dynamical properties of 
amorphous materials.

Local structure is another feature that may provide impor-
tant insight into the thermodynamic and dynamic behavior 
of glass-formers [15, 16]. Multi-component mixtures are 
characterized by local ‘compositional’ order, which emerges 
due to preferential interactions between different chemical 
species [17]. Systems with continuous polydispersity might 
have even more complex forms of compositional ordering 
[18–20]. A large body of experimental and simulation studies 
further demonstrated that simple glass-formers, such as col-
loids [21], metallic glasses [22] as well as simple simulation 
models [23–25], display a tendency to form locally favored 
structures as temperature decreases or density increases. The 
symmetry of these local structures is often incompatible 
with the one of the underlying crystalline ground state [26], 
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either because of compositional [27] or geometric frustration 
[28]. In other cases, however, the preferred local order is the 
crystalline one [15], but the latter competes with an alternate 
local structure. The influence of this ‘geometric’ local order 
on the dynamics of supercooled liquids [23, 29] and on their 
rheological properties [30–32] has been the focus of several 
numerical studies. However, these studies were limited to the 
moderately supercooled regime and the ultimate role of local 
structure in the overall picture of glass formation is still under 
debate [16, 33, 34].

One outstanding issue of the local structure description is 
that the spatial correlations associated to the geometric order 
are fairly small. The correlation lengths associated to locally 
favored structures remain small in the range of temperature 
and density accessible to conventional simulations [35, 36]. 
This behavior contrasts with the apparent increase of dynamic 
correlations, as measured from time-dependent multi-point 
functions [1]. These discrepancies might be attributed to 
model dependence [29] or to the existence of different 
dynamic regimes not covered by standard simulations [37], 
but also raise some doubts about the physical relevance of 
local geometric order in the process of glass formation.

In this paper, we address these issues by analyzing a poly-
disperse fluid equilibrated very deeply with the swap Monte 
Carlo algorithm. We carefully analyze the role of composi-
tional fluctuations and identify the preferred geometric motif 
of the system. We find that local compositional order increases 
smoothly with increasing density. On the other hand, the geo-
metric order associated to the preferred icosahedral order starts 
growing markedly only at sufficiently large volume fractions. 
We extract the correlation lengths associated to icosahedral 
structures and compare these results with a representative 
binary Lennard-Jones mixture. We further elucidate the inter-
play between compositional and geometric order in the poly-
disperse system. Finally, we analyze a partially crystallized 
sample that we obtained during long swap Monte Carlo simu-
lation and rule out a conventional fractionation scenario for the 
model at hand. Overall, our results show that size polydisperse 
systems represent good glass-formers that are difficult to crys-
tallize over a broad dynamical range, and are characterized by 
only weak static compositional fluctuations. By comparison 
with earlier models of glass-formers, they appear to contain 
much less local order at equivalent degree of supercooling.

This paper is organized as follows. In section 2 we present 
the numerical methods we use. In section  3 we present the 
results, which we organise into compositional order (section 
3.1), geometric order (section 3.2), followed by an analysis of 
the crystal structure occasionally found in long simulations 
(section 3.3). We conclude the paper in section 4.

2.  Methods

We study systems composed of N polydisperse additive hard 
spheres of diameter σ in three dimensions. The diameter dis-
tribution is the same as in [7], P(σ) = Aσ−3, σmin � σ � σmax 
with σmin/σmax = 0.4492, where A is a normalization con-
stant. We use the average diameter σ = 1

N

∑N
i=1 σi as the unit 

of length. In the following we mostly focus on samples of 
N  =  8000 particles, but we also carried out simulations for 
N = 64 000 to check for finite size effects. The simulations 
were performed using the swap Monte Carlo algorithm [3, 5, 
38] using the same setup as in [7, 8]. This simulation approach 
is extremely efficient and allows one to equilibrate the fluid 
at least as deeply as conventional laboratory experiments on 
molecular liquids [6]. We note that this is enabled by the com-
bined optimization of both the Monte Carlo algorithm and the 
model parameters, which must be chosen such that the system 
is robust enough against crystallization or phase separation 
[6]. Typical reference volume fractions of the system are onset 
of two-step relaxation (φonset � 0.56) and mode coupling 
crossover (φmct � 0.6). Current conventional simulations can 
equilibrate the fluid up to around φmct [39, 40]. The initial 
configurations were prepared by fast Monte Carlo compres-
sions of a low density fluid [41], which was subsequently 
equilibrated at the target packing fraction. We have checked 
that the configurations analyzed in the following correspond 
to an equilibrium, disordered fluid, by carefully monitoring 
possible signs of crystallization or phase separation [18, 20] 
using the same structural tools described in [7, 8]. One smaller 
sample of N  =  1000 particles showed clear signs of partial 
crystallizationous during long simulations at a high volume 
fraction (φ = 0.648). The structure of this sample will be ana-
lyzed separately in section 3.3.

To probe the spatial structure of the system, we use gener-
alized structure factors

Sw(k) =
1
N
〈δρw(k)δρw(−k)〉,� (1)

δρw(k) = ρw(k)− 〈ρw(k)〉,� (2)

where 〈· · · 〉 is the statistical average and ρw(k) is the Fourier 
transform of a weighted microscopic density

ρw(k) =
∑

j

wj exp (−ik · rj).� (3)

Here, the field wj is a generic particle property and enters as 
a weight in the calculation of the structure factor. In the fol-
lowing, we will consider various fields wj.

The structure of simple mixtures and polydisperse par-
ticle systems is often characterized by some preferred local 
arrangements, also known as locally favored structures [16]. 
To identify this kind of geometric local order we perform a 
radical Voronoi tessellation using the voro++ package [42]. 
In this construction, the total volume is partitioned into cells 
surrounding each particle in the system. Cells are then clas-
sified according to their signature (n3, n4, n5, . . . ), where nq 
is the number of faces of the cell with q vertices. Icosahedral 
local structures correspond to cells with the (0, 0, 12) signa-
ture. In the following, we will further distinguish between 
particles that are at the center of an icosahedral structure and 
icosahedral structures as a whole [23]. A cluster of neigh-
boring icosahedral centers will be called ‘backbone’, while 
a cluster of neighboring icosahedral structures will be called 
‘domain’, see section 3.2.
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3.  Results

3.1.  Compositional order

In simple mixtures of particles, compositional order reflects 
the tendency of particles to coordinate according to their 
chemical species. A typical example is the presence of chem-
ical short range ordering in metallic alloys, which reflects the 
tendency of particles to be surrounded by neighbors of a dif-
ferent chemical species [43]. This effect can be quantified by 
computing partial structure factors and their linear combina-
tions [17]. This amounts to assigning a weight wi equal to 1 or 
0 depending on whether particle i belongs to a given species 
or not.

In a polydisperse system, the relevant microscopic weight 
associated to compositional order varies continuously. Since 
our system is size-dispersed, we are actually interested in the 
spatial structure associated to the diameter field. The simplest 
two-point correlation function that captures the local fluctua-
tions of σi is the diameter structure factor Sσ(k), defined by 
setting wi = σi in equation (3). In figure 1, we show Sσ(k) for 
several volume fractions ranging from the moderately dilute 
regime (φ = 0.5) to highly packed configurations (φ = 0.64). 
The correlation function varies smoothly and weakly as the 
system gets denser. Overall the shape of Sσ(k) strongly resem-
bles the one of the total structure factor S(k) [11], shown in 
figure 1(c) at the largest volume fraction.

Since the diameter field by itself is weakly coupled to the 
local structure, we consider instead the structure factor Sδσ(k) 
associated to the fluctuating part of the diameter field. To this 
end we use wi = δσi = σi − σ, where σ  is the average par-
ticle diameter. We note that Sδσ(k) is related to Sσ(k) in a non-
trivial way because of the presence of cross terms

Sδσ(k) = Sσ(k) + σ2S(k)− 2σ
N

Re[〈δρσ(k)δρ(−k)〉],� (4)

where Re[(· · · )] is the real part of (· · · ) and ρ(k) is the Fourier 
transform of the microscopic density with wj  =  1. We expect 

Sδσ(k) to capture local composition fluctuations better than 
Sσ(k).

The structure factor Sδσ(k) is shown in figure 1(b). Like 
the full diameter structure factor, Sδσ(k) shows only mild 
changes as a function φ. In contrast to Sσ(k), however, Sδσ(k) 
presents a more complex pattern and a marked suppression 
around wave numbers k∗ ≈ 7, corresponding to typical length 
scales of particles of intermediate sizes. Superficially, this 
dip might indicate an anticorrelation between diameter fluc-
tuations over lengths of order 2π/k∗. This, in turn, suggests 
the presence of local compositional order involving particles 
of different sizes, similar to the chemical ordering known in 
simple binary mixtures [17]. This dip gets more pronounced 
as φ increases, but its depth varies smoothly, see figure 1(d). In 
addition, the smooth evolution of these structure factors does 
not seem to correlate with the evolution of the glassy behavior 
of the system. Note finally that the fluctuations observed at the 
smallest wave number compatible with the simulation cell are 
not systematic and are due to statistical noise.

In polydisperse hard spheres, fluctuations of local volume 
fraction do not occur only via variation of the local number 
density, but can also be mediated by size dispersity. An appro-
priate correlation function to capture these fluctuations is 
the local volume structure factor Sv(k), obtained by setting 
wi = vi = 4πR3

i /3, where Ri = σi/2. We computed Sv(k) 
and found that its overall shape is similar to that of Sσ(k), 
except at small k (not shown). In this regime, Sv(k) behaves 
asymptotically as the spectral density χ(k) [44], for which 
wi =

4π
k3 (sin(kRi)− (kRi) cos(kRi)) in three dimensions. 

This latter quantity, which provides direct insight into hype-
runiform behavior in jammed packings [44, 45], also evolves 
smoothly by increasing density in equilibrium polydisperse 
hard spheres [11]. Thus, we conclude that fluctuations of 
both the local diameter and of the local volume fraction 
evolve gradually with volume fraction and they reveal only 
weak compositional order. This conclusion is consistent with 
the very smooth evolution that we have observed of partial 
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structure factors and pair correlation functions obtained by 
discretizing the particle size distribution into discrete families 
(not shown). The overall conclusion of this analysis of compo-
sitional order is that the present system is a good glass-former 
that presents very weak fluctuations of the composition, and 
remains amorphous and well-mixed even in deep supercooled 
states.

We now look for an order parameter that detects more 
precisely fluctuations of local compositional order in the 
neighborhood of a given particle. Specifically, we consider 
fluctuations of the diameter within the first shell of neigh-
bors. The neighbors of a particle are obtained from the radical 
Voronoi tessellation, see section 2. We introduce the average 
neighbor diameter σ̃(i) of the ith particle

σ̃(i) =
1

nb(i)

nb(i)∑
j=1

σj,� (5)

where the sum runs over the nb(i) neighbors of the ith particle. 
We then compute the joint probability distribution for σ̃ and 
σ, P(σ̃,σ). To account for the polydispersity of the system, 
we actually focus on the conditional probability distribution 
P(σ̃|σ) = P(σ̃,σ)/P(σ). This distribution is shown in figure 2 
for various volume fractions. At small and intermediate 
volume fractions, the average neighbor diameter is essentially 
independent of σ. This confirms that, at least for not too dense 
conditions, smaller particles tend to be surrounded on average 
by larger ones and vice versa. This chemical local ordering is 

however only apparent, as it simply means that each particle 
(small and big) feels the same mean-field environment.

For volume fraction above φ ≈ 0.6, however, the distri-
bution P(σ̃|σ) presents an additional feature at intermediate 
values of σ. In the range 0.8 < σ < 1.1, we clearly see a spot 
displaying an excess of positive correlation between σ and 
σ̃, which becomes more marked with increasing φ. We found 
that a similar excess correlation is also visible when the cen-
tral particle is included in the definition of σ̃(i) in equation (5) 
(not shown). A possible interpretation of this excess correla-
tion is that the system presents local arrangements that involve 
particles of similar sizes, forming more regular and symmetric 
structures. We will show in the next section that this feature is 
due to the appearance of icosahedral structures, which provide 
the most regular local arrangements at high density.

3.2.  Geometric order

Recent numerical and experimental studies provide evidence 
of preferred geometric motifs in simple glass-formers [21, 
23, 25]. These motifs include local icosahedral structures, 
which are the structural building block of some metallic glass-
formers [22], but also polytetrahedral structures [46] or com-
positionally frustrated local crystalline structures [27, 47]. One 
important and delicate question is to what extent these locally 
favored motifs correlate over larger length scales. Malins 
et al [35, 36] have analyzed the structure factors associated to 
locally favored structures in two Lennard-Jones mixtures. The 
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Figure 2.  Conditional probability distribution P(σ̃|σ) = P(σ̃,σ)/P(σ) for several volume fractions, as indicated by the labels.
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results of [35] indicate that icosahedral domains are weakly 
correlated, even though the concentration of icosahedral 
structures is high enough that the domains percolate. Recent 
works [34, 48] have further emphasized that static correlations 
are essentially local in the temperature regime accessible to 
conventional simulations. In this section, we analyze the pre-
ferred local order of the polydisperse model and quantify its 
spatial extent over a very broad range of supercooling.

In figure 3 we show the fraction of most frequent Voronoi 
cells found around the mode-coupling crossover (φmct ≈ 0.6) 
and at the largest volume fraction φ = 0.64. We also include 
results for a smaller sample (N  =  1000) that partially crys-
tallized during our swap MC simulations at a slightly larger 
volume fraction (φ = 0.648). We will discuss in detail the 
structural features of the partially crystallized sample further 
below, see section  3.3. We see that icoshaedral structures, 
associated to (0, 0, 12) Voronoi cells are the most frequent 
ones beyond the crossover volume fraction φmct and amount 
to about 10% of the total number of cells at large volume frac-
tions. We find that at the largest φ about 60% of particles are 
involved in icosahedral domains, i.e. either being at the center 
or at the vertices of a (0, 0, 12) cell. The fraction of particles at 
the center of a (0, 0, 12) cell and that of the particles involved 
in icosahedral domains is shown in figure 3(b) as a function of 
φ. Both quantities increase steadily with increasing φ.

To quantify the spatial correlations associated to icosahe-
dral order, we introduce a microscopic field wi which equals 
1 if the ith particle belongs to an icosahedral structure and 0 
otherwise. We further distinguish between icosahedral back-
bones and icosahedral domains. For the former, wi  =  1 only 
if the ith particle is at the center of a (0, 0, 12) cell. For the 
latter, wi  =  1 if the ith particle is the center of a (0, 0, 12) cell 
or at the vertices of a (0, 0, 12) cell. In contrast to [35], we 
normalize the corresponding structure factors Sb(k) and Sd(k) 
by the average number of particles forming icosahedral back-
bones and domains, respectively, and not by N. This is done 
to remove the trivial part of the state dependence of the cor-
relation functions.

The resulting structure factors are shown in figure 4. The 
domain structure factor Sd(k) shows a peak at k  =  0 at any 
density (including the unstructured, non-glassy fluid at mod-
erate density), whose height decreases with increasing φ. 
This indicates that the icosahedral domains are only weakly 
correlated. The presence of a peak around k  =  0 thus merely 
reflects the icosahedral form factor but not a nontrivial large-
scale correlation. By contrast, correlations in the icosahe-
dral backbone are nearly absent at low density and start to 
increases markedly beyond φ ≈ 0.60. The icosahedral back-
bone thus reveals subtle but nontrivial changes in the struc-
ture of the fluid. Typical snapshots of icosahedral domains 
and backbones at high density are shown in figure 5(a) and 
(b), respectively.

To determine the correlation length associated to icosahe-
dral domains and backbones, we fitted to the low k portion of 
the structure factors Sd(k) and of Sb(k), respectively, using the 
Ornstein–Zernicke function,

Sα(k) =
Sα(0)

1 + (ξαk)2 ,� (6)

where α = d or b. We restricted our fits to k  <  2.2. We checked 
that the trends found using this approach are consistent with 
those obtained by manually rescaling the structure factors so 
as to optimize data collapse at small k. In figure 6 we show 
the variation of the correlation lengths ξα as a function of φ 
for both icosahedral domains and backbones. The domain 
correlation length remains approximately constant around 1 
interparticle distance throughout the studied range of volume 
fraction. This confirms that the peak observed around k  =  0 
in Sd(k) has a trivial origin. By construction, the backbone 
correlation length ξb is smaller than ξd, but it increases mark-
edly (by about a factor of three) upon increasing φ beyond the 
mode-coupling crossover density. The maximal value reached, 
ξd ∼ 0.5, remains however quite modest and this small growth 
of the correlation length should be contrasted with the striking 
visual impression provided by the snapshot in figure  5(a) 
where the configuration appears full of icosahedral structures. 
For comparison, we also include the static point-to-set [49, 
50] correlation length obtained in [8], scaled to roughly match 
the backbone length around the MCT crossover. We see that 
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the relative increase of ξPTS over the studied range of densities 
is qualitatively similar to the one of the icosahedral backbone. 
It would be interesting to further investigate the connection 
between order agnostic correlations, such as point-to-set cor-
relations, and locally favored structures, as already suggested 
in [29, 51, 52].

A different approach to characterize the extent of icosahe-
dral order is to compute the gyration radius

Rg =


 1

M

M∑
j=1

(rj − rb)
2




1/2

,� (7)

where rb = 1
M

∑M
j=1 rj. M is the number of connected icosahe-

dral particles, see [35]. The results for the backbone gyration 
radius are included in figure 6. Rg increases by increasing φ 
following the trend of the correlation function. We also found 
that the domain gyration radius tends to substantially over-
estimate the correlation length, consistent with the results 
of [35]. We note that Rg is not well defined as soon as the 
cluster percolates through the system and therefore we do not 
show these results here. Moreover, percolation of icosahedral 
domains has no obvious connection with the (swap) dynamics 
of the system, which evolves smoohtly throughout the studied 
temperature regime [8].

It is interesting to compare the behavior of the model at 
hand with one of the Wahnström Lennard-Jones mixture [53], 
which is a binary glass-former displaying a fairly strong ico-
sahedral ordering [23]. We computed the backbone correla-
tion length and gyration radius for this model, using the same 
parameters, density and units as in [23, 35, 53]. Both quantities 
increase markedly by decreasing temperature already above 
the mode-coupling crossover, see figure  6(b). The domain 
correlation length also increases slightly at sufficiently low 
temperature, but the absolute values of all these lengths remain 
small, because geometric frustration is strong in this system 
[54]. The behavior of this Lennard-Jones mixture is thus quali-
tatively similar to the one of the polydisperse system, but the 
latter differs for two main reasons. First, the structure of the 
polydisperse system remains highly disordered in the moder-
ately supercooled regime and only starts to develop some geo-
metric order well beyond the crossover volume fraction φmct. 
Thus, the increase of the local order is shifted to a considerably 
deeper degree of supercooling compared to the Wahnström 
Lennard-Jones mixture. Second, we recently showed [11] 
that icosahedral structures are actually more distorted than in 
simple mixtures due to local compositional fluctuations.

We now shed some light on the interplay between geo-
metric and compositional order. In figure  2 we noticed the 
emergence of an excess correlation in the P(σ̃|σ) distribution, 
which becomes increasingly visible at larger densities. We 
argue that this correlation is due to the growing icosahedral 
order. In figure 7 we show the distribution Pico(σ̃|σ) restricted 
to particles at the center of an icosahedron, evaluated at the 
largest volume fraction. The clear correlation between σ and σ̃ 
corresponds nicely to the feature observed in the full distribu-
tion P(σ̃|σ). A plausible interpretation of the excess correla-
tion in P(σ̃|σ) is that icosahedra tend to be more regular and 
spherical than other structures. At sufficiently high density, 
a high degree of sphericity also likely implies that particles 
involved in the local structure have similar sizes, thus a cor-
relation between σ and σ̃. Note that this trend by itself does 
not imply fractionation, which should lead to a much sharper 
structural change.

(a) (b)

Figure 5.  (a) Particles in icosahedral domains for a configuration 
at φ = 0.64. Red particles are at the center of a (0, 0, 12) cell, 
orange ones are at the vertices. (b) Icosahedral backbones of the 
configuration in (a). The white bonds connect neighboring centers 
of (0, 0, 12) cells.
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Figure 6.  Length scales of icosahedral order. Domain correlation 
length ξd, backbone correlation length ξb and backbone gyration 
radius Rg as a function of (a) φ in the polydisperse system and (b) 
1/T in the Wahnström mixture. Open circles in panel (a) represent 
the scaled PTS length ξPTS/7 as obtained in [8]. The vertical arrows 
indicate the location of the MCT crossover.
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Figure 7.  (a) Conditional probability distribution Pico(σ̃|σ) for 
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(squares) as a function of φ.
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To confirm that icosahedra are indeed the most regular 
structures in the model, we measure the asphericity of the 
Voronoi cell by computing the normalized standard deviation 
of the distances from the ith particle

si =
1
r̃i

√√√√ 1
nb(i)

nb(i)∑
j=1

(rij − r̃i)2,� (8)

where r̃i = (
∑nb(i)

j=1 rij)/nb(i) and rij are respectively the 

average nearest neighbors distance from the ith particle and 
the distance between particles i and j. We expect this measure 
to be closely related to other measures of regularity (i.e. tet-
rahedricity) previously introduced in the study of simple par-
ticulate systems [55, 56]. First, we observe from figure 7(b) 
that the average asphericity of the Voronoi cells decreases as 
the system gets denser, as expected. We find that icosahedra 
are appreciably more regular than the other structures. By 
restricting ourselves to the most spherical structures, we find 
that the proportion of icosahedra is significantly higher than 
in the bulk. Specifically, we computed the Voronoi cell statis-
tics for the 2% most spherical particles at φ = 0.64. We find 
that 28% of these highly spherical structures are icosahedral, 
which should be contrasted to their bulk average of about 
10%. Among the highly spherical structures, the proportions 
of all other main signatures are lower than in the bulk. This 
confirms that icosahedral structures, despite the enhanced 
compositional disorder [11], still provide the most regular and 
spherical arrangements in the system.

3.3.  Partial crystallization

The structural analysis carried out so far concerns equilibrium, 
disordered fluid states. However, like any supercooled fluid, 
the model at hand is thermodynamically metastable and suffi-
ciently long simulations with the swap Monte Carlo algorithm 
may trigger a fluctuation towards the ground state. In systems 
with sufficiently high polydispersity, reaching the crystalline 
ground state may involve fractionation into families of par-
ticles characterized by similar diameters [19]. However, this 
process may take extremely long times, and alternate crystal-
lization scenarios, not involving fractionation, have also been 
observed [57, 58].

In this section, we focus on a sample of N  =  1000 particles 
at a volume fraction φ = 0.648, which partially crystallized 
during the course of a long enough Monte Carlo swap simu-
lation. Crystallization was easily detected by an anomalous 
behavior of the pressure and dynamic behavior, as well as 
by visual inspection of the particles configuration. We have 
found a few of such crystallization events during the course 
of our studies, but these only happened at very large densities 
(φ > 0.645), i.e. beyond the range of volume fractions corre
sponding to the laboratory glass transition (φ = 0.635 − 0.645 
[8]), and after long simulations times, see below. These sam-
ples were excluded of all published analysis of dense super-
cooled liquid states [7, 8]. In the following, we provide some 
quantitative insight into the structure of the partially crystal-
lized sample and highlight the differences compared to the 

normal fluid states. Note that from the viewpoint of glass 
transition studies, these crystallization events are only prob-
lematic when they occur on time scales comparable to the 
structural relaxation time τα, which controls the equilibration 
of density fluctuations. In a related study we have shown that 
it is possible to alleviate this problem by introducing non-
additive pair interactions, which help to suppress crystalliza-
tion events even further [6].

Visual inspection of the particles configurations in 
figure  8(a) immediately shows that the system phase sepa-
rates into a disordered and a crystalline region. We found 
that particles in the crystalline region are clearly associated 
to (0, 3, 6) and (0, 0, 12, 8) Voronoi cells. The proportions of 
these cells can thus be used as a marker of the system insta-
bility, since they increase markedly upon partial crystalliza-
tion, see figure  3. Particles located at the center of (0, 3, 6) 
and (0, 0, 12, 8) cells are the smallest and the largest particles, 
respectively, and are highlighted accordingly in figure  8(a). 
Thus, while the disordered region has a local polydispersity 
similar to the one of the homogeneous fluid, the crystalline 
one comprises only a subset of the particles, and is completely 
devoid of particles of intermediate sizes. This is demonstrated 
in figure 8(b), where we compare the overall diameter distri-
bution P(σ) to the one measured in the crystalline region, i.e. 
for particles at the center of either (0, 3, 6) or (0, 0, 12, 8), and 
in the disordered region.

The symmetry of the crystal is that of aluminum diboride, 
AlB2, with small and large particles playing the role of B and 
Al atoms, respectively. The crystal structure has an hexagonal 
symmetry and is formed by interleaved layers of small and 
large particles. The typical shape of the first coordination shell 
around a large particle of the crystal is illustrated in figure 9, 
where we show the structure of a (0, 0, 12, 8) Voronoi cell. The 
typical size ratio γ ≈ 0.5 between the small and large particles 
forming the crystal is close to the one (γ = 0.58) of AlB2-
forming binary hard colloids [59] and lies in the stability range 
(0.42 � γ � 0.59) expected from theoretical studies of binary 
hard spheres [60, 61]. Finally, we note that the Voronoi tessel-
lation of the AlB2 lattice comprises indeed only (0, 0, 12, 8) 
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Figure 8.  (a) Snapshot of a partially crystallized sample at 
φ = 0.648. Red and yellow particles are centers of (0, 0, 12, 8) 
and (0, 3, 6) cells, respectively, and define the crystalline region 
of the sample. The remaining particles constitute the disordered 
portion of the sample and are shown as transparent white spheres. 
(b) Distribution of the diameter P(σ) in the crystalline region (red 
curve with shaded area), in the disordered region (black curve), and 
in the bulk (dashed curve).
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and (0, 3, 6) cells, centered around Al and B atoms respec-
tively, see e.g. [62].

To investigate the structure of the partially crystallized 
sample more quantitatively, we compute the distribution of 
the compositional order parameter (σ̃,σ). In contrast to the 
equilibrium fluid states studied in the previous sections, the 
partially crystallized sample displays a complex distribution 
P(σ̃,σ) characterized by multiple spots. Two of these spots, 
marked by arrows in figure 10, are clearly associated with the 
crystalline region of the sample and involve the smallest and 
the biggest particles in the sample. Note that, to enhance visu-
alization, we show here the full distribution P(σ̃,σ) instead 
of P(σ̃|σ). By computing the Voronoi statistics restricted to 
specific ranges of σ and σ̃, we confirmed that the crystalline 
spots indicated by arrows in figure 10 correspond to (0, 3, 6) 
and (0, 0, 12, 8) Voronoi cells. Note, however, that some of 
the smallest particles have values of σ̃ comparable to the ones 
found in fluid states. Visual inspection of the particle configu-
rations indicates that these small particles populate the dis
ordered portion of the sample.

The distribution P(σ̃,σ) displays two additional spots 
located at intermediate values of σ and characterized by a 
distinct positive correlation. One of these spots, between 
0.8 < σ < 1.1, is associated to icosahedral structures and is 
similar to the one found in the fluid samples. By contrast, 
no clear structural signature stands out in the second spot 
between 1.1 < σ < 1.351. Surprisingly, we found that par-
ticles that contribute to the two central spots of P(σ̃,σ) are 
not spatially segregated from one another and are character-
ized by very similar local polydispersities2. Thus, the exist-
ence of a positive correlation between σ and σ̃ does not imply 
per se fractionation and may be attributed instead to a subtle 
local geometric ordering. Overall, our results confirm that, in 
practice, crystallization and phase separation in polydisperse 
hard spheres follow a more complex pattern than predicted by 
existing theoretical models [19].

Finally, we estimated the crystallization time by per-
forming additional simulations of independent samples of 
1000 particles at several volume fractions. Crystallization 
was detected by inspecting the evolution of the percentage 
of (0, 0, 12, 8) cells, which typically fluctuates between 0.5% 
and 2% for fluid states and exceeds 5% in partly crystal-
lized samples. For φ = 0.635 and φ = 0.643 no crystalliza-
tion events were observed during simulations covering 600τα 
and 200τα, respectively, where τα is the structural relaxation 
time measured from the self intermediate scattering function 
[8]. Thus, in this density regime and for this system size, our 
swap Monte Carlo simulations can safely probe the structure 
of the metastable equilibrium fluid. For φ = 0.648, two inde-
pendent samples out of 10 crystallized during simulations 
of about τx = 6 × 108 Monte Carlo steps, corresponding to 
about 30τα. A conservative upper bound to the crystallization 
rate 1/(τxV) is thus 3 × 10−12 in reduced units3. We empha-
size that this value may still be strongly affected by finite size 
effects induced by the periodic boundary conditions.

4.  Conclusions

We characterized the local structure of a fluid of polydisperse 
hard spheres over a wide range of volume fractions, where 
conventional computer simulations fail to equilibrate. We 
showed that local compositional order increases smoothly 
with increasing the volume fraction, with little correlation 
with the glassy evolution of the system. Concomitantly, local 
geometric order associated to icosahedral particle arrange-
ments grows steadily at very large volume fractions. We 
extracted correlation lengths associated to icosahedral struc-
tures using weighted structure factors and the gyration radius. 
These correlation lengths increase appreciably only at large 
packing fractions and their absolute values remain small over 

)b()a(

Figure 9.  Structure of a representative (0, 0, 12, 8) cell found in 
the crystalline region. In panel (a) spheres are drawn to scale. In 
panel (b) spheres are scaled to half of their size and bonds are added 
between neighboring particles to highlight the hexagonal symmetry 
of the crystal. In (b) small and large particles are shown as yellow 
and red spheres, respectively.
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Figure 10.  Joint probability density P(σ̃,σ) for the partially 
crystallized sample at φ = 0.648. The spots indicated by the arrows 
are associated to the crystallized portion of the sample, and are 
characterized by Voronoi cells with the indicated signature.

1 The most frequent signatures in this spot are (0, 0, 12, 5) and (0, 1, 10, 6), 
with 14% and 12% respectively.
2 The local polydispersities of the two spots are in the range 20–21%. They 
were measured by computing the distribution of diameters of particles in the 
corresponding range of σ and of their reespective neighbors.

3 The time unit is given by one Monte Carlo step, comprising N attempts 
to either displace a particle or swap the identities of a pair (i, j) of particles 
such that |σi − σj| < 0.2.
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the entire glassy regime we could probe. It is interesting to 
compare this behavior with the results for the Wahnström 
Lennard-Jones mixture, which is a glass-forming model dis-
playing a large amount of icosahedral structures. The mea-
sured growth of icosahedral length scales is qualitatively 
similar in the two models, but the glassy regime explored in 
the Wahnström mixture is much narrower. Thus, in the regime 
probed by conventional simulations, the local structure of the 
polydisperse model appears highly disordered, as is the case 
in simple binary mixtures of hard [34] or quasi-hard spheres 
[29]. This indicates that the role of local structure is not only 
system-dependent [29], but also highly state-dependent.

Finally, we characterized the structure of a partially crys-
talline sample of N  =  1000 particles obtained during long 
simulations at a packing fraction φ = 0.648. We found that 
the system demixes into a fluid of particles with similar 
polydispersity as the parent system and an AlB2 crystal com-
prising only the smallest and largest particles of the sample. 
We emphasize that crystallization only occurs at a packing 
fraction that lies beyond the estimated laboratory glass trans
ition, in a regime where crystal growth, driven by physically 
realistic dynamics, would be extremely slow on observational 
time scales [63]. The fact that swap Monte Carlo simulations 
involve non-physical moves, which accelerate sampling of 
configuration space, makes it difficult to infer the absolute 
glass-forming ability of the models using ordinary dynamics, 
but we expect that the relative trends across systems, see [6], 
will be preserved. Investigations to tackle these issues are 
currently under way. Comparing the glass-forming ability of 
these models with experimental systems represents a major 
challenge that is left for future investigations.

Continuously polydisperse systems can be regarded as an 
extreme case of multicomponent mixtures. At first glance, 
these systems may appear peculiar [64], for instance because 
of their formally infinite mixing entropy [65, 66]. However, 
their glassy phenomenology strongly resembles the one 
of conventional glass-formers [8]. Moreover, our detailed 
structural characterization demonstrates that the local struc-
ture of polydisperse system at hand shows qualitatively 
similar features as other representative glass-formers such as 
colloidal [21] and metallic glasses [22], which also display 
growing icosahedral order. Thus, overall, our results con-
firm that continuous polydisperse systems can be regarded 
as good models to study the glass transition. Whether more 
general classes of glass-formers, such as molecular or poly-
meric liquids, display or not a pronounced local geometric 
order remains an open question to be addressed in future 
numerical studies.
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