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Violation of the fluctuation-dissipation theorem and effective temperatures in spin ice
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We present numerical tests of the fluctuation-dissipation theorem (FDT) in the dumbbell model of spin ice
with parameters suitable for dysprosium titanate. The tests are made for local spin variables, magnetic monopole
density, and energy. We are able to achieve local equilibrium in which the FDT is satisfied down to T = 0.4 K
below which the system completely freezes. Nonequilibrium dynamics, together with violation of the FDT,
are nonetheless observed following a thermal quench into the noncontractable monopole pair regime. Despite
FDT violation, an approximate linear response regime allows for the identification of effective nonequilibrium
temperatures which are different for each variable. The spin variable appears hotter than the heat reservoir
and the monopole concentration responds with a lower effective temperature, while the energy has a negative
effective temperature. Results are discussed in the context of the monopole picture of spin ice and compared to
the structure of FDT violations in other glassy materials. Prospectives for future experiments are reviewed.
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I. INTRODUCTION

Spin ice materials and models [1] share a number of char-
acteristics with spin glasses [2] and other glassy materials [3].
They show slow dynamics at temperatures below the inter-
action energy scale [4–12], ergodicity breaking between field
cooled (FC) and zero-field cooled (ZFC) protocols [5], and,
under certain conditions, appear to show stretched exponential
slowing down characteristic of supercooled liquids [13]. It is
therefore interesting to borrow tools developed in the field
of spin and structural glasses to analyze spin ice in order
to understand better the similarities and differences between
these different types of frustrated materials undergoing some
kind of ergodicity breaking.

Glassy systems, once inside the ergodicity breaking time
frame, typically violate the fluctuation-dissipation theorem
[14] (FDT) with spontaneous fluctuations and response func-
tions no longer related to one another with a prefactor
corresponding to the temperature of the thermal bath [15–20].
Many glassy materials are seen to “age” as they evolve
through a hierarchical structure of metastable states [21].
Despite this, integrated response functions often remain pro-
portional to their conjugate correlation functions [15,16]
allowing for the definition of an effective temperature [17,18]
replacing that of the thermal bath and associated with the
explored nonequilibrium states. As a consequence the study
of effective temperatures and of the so-called fluctuation-
dissipation ratio has proved a rich and powerful tool to study
glassy materials and their nonequilibrium aging dynamics at
low temperatures [17,19]. FDT violations have been studied
in many disordered materials with slow dynamics, such as
spin glasses [22–25] and structural glasses [26–30]. The same
tools have been applied to scores of nonequilibrium dynam-

ics, like coarsening [31,32], nonequilibrium critical dynamics
[33–37], sheared complex fluids [38–40], and active matter
[41,42]. While FDT violations can of course be generically
expected in nonequilibrium regimes, the specific structure of
the measured FDT violations in glassy materials has helped in
distinguishing different types of aging dynamics [17,19,20].

In this paper we present a numerical study of the fluctuation
dissipation theorem, its satisfaction, and violation within the
monopole picture of spin ice. We show that, annealing below
the FC-ZFC ergodicity threshold [5], the FDT remains satis-
fied, a result that we argue is consistent with the absence of a
hierarchical structure in phase space. However, on making a
rapid quench in temperature, which traps a finite concentration
of “noncontractable pairs” of monopole quasiparticle exci-
tations [43], we find distinct FDT violations, with different
effective temperatures for energy, spin, and monopole degrees
of freedom. In particular, the energy shows a negative effec-
tive temperature reminiscent of kinetically constrained models
of glass forming materials [44–47], where aging dynamics
is similarly controlled by localized defects with thermally
activated dynamics.

We explicitly limit ourselves to the monopole approxima-
tion [48,49], that is, to the dumbbell model [50] in which
the magnetic moments of spin ice materials, localized on the
nodes of the corner-sharing pyrochlore lattice, are replaced
by needles, extended to touch at the centers of the tetrahedra,
forming a diamond lattice of vertices; see Fig. 1. The vertices
carry monopole charges interacting via Coulomb’s law [49].
The monopole picture has been hugely successful in providing
a theoretical framework for such a complex frustrated system,
giving a quantitative description of the thermodynamics and
a good qualitative description of both the static and dynamic
magnetic properties of spin ice materials [51]. To this picture
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FIG. 1. From spins to dumbbells. Left: Pyrochlore lattice of cor-
ner sharing tetrahedra. Tetrahedron centers form a diamond lattice.
Blue and red spheres illustrate monopoles of charge ±Q. Right:
The point dipoles are extended to needles touching at the diamond
lattice sites. The needles carry magnetic flux and and dumbbells of
charge q = ±m/a. In a 2in-2out configuration (top) the vertex
is charge neutral. A 3in-1out (3out-1in) configuration carries a
monopole charge Q = 2m/a (−Q = −2m/a) (center). A 4in (4out)
configuration carries a double monopole charge 2Q = 4m/a (−2Q =
−4m/a) (bottom).

we highlight two further simplifications which should be sep-
arated from the use of the monopole Hamiltonian. First we
limit ourselves to periodic boundary conditions and secondly
we model the real dynamics using Metropolis dynamics. This
choice corresponds, at the microscopic level, to modeling spin
(or in our case needle) flips with a single tunneling rate,
independent of the local environment [52].

This simplest of starting points allows for the identification
of the intrinsic mechanisms that can drive FDT violations.
These should be contrasted with extrinsic mechanisms or
corrections to this simplest of monopole pictures which, as a
consequence, will be identifiable in future work. Such effects
have already been identified in the modeling of observed
slow dynamics at low temperature where the influence of
the rapidly falling monopole density is strongly enhanced
by the presence of defects, of open boundaries, and of the
temperature dependence of the microscopic tunneling process
[10,11,53].

The rest of the paper is organized as follows. In Sec. II
we review the dumbbell model and the numerical techniques
used to study dynamical correlation and response functions.
In Sec. III we review the FDT adapted to spin ice mod-
els. In Sec. IV we show numerical data revisiting the slow
equilibrium dynamics with FDT satisfaction as the monopole
concentration falls at low temperature. In Sec. V we turn to
nonequilibrium dynamics in the noncontractable pair regime
in which our numerical data shows FDT violations. Some
conclusions and perspectives are given in Sec. VI.

II. MONOPOLE PICTURE AND THE DUMBBELL MODEL

Spin ice materials [54,55] such as dysprosium or holmium
titanate are Ising-like frustrated ferromagnets with mag-
netic degrees of freedom on the sites of the corner sharing
pyrochlore lattice, with moments pointing along the body-
centered diagonal axes that join at the centers of the

tetrahedra, which themselves form a diamond lattice of ver-
tices; see Fig. 1. Interactions, both exchange and dipolar, are
on the one kelvin scale and are captured by the dipolar spin
ice model [56,57] (DSI). The lowest energy states, with spins
on each tetrahedron satisfying the Bernal-Fowler ice rules
[58] of two spins in and two out in each tetrahedron, form
a low-energy extensive band containing the Pauling entropy
of approximately 1

2 ln ( 3
2 ) per spin. The bandwidth of these

states is well below the energy scale of interactions, as the
long-range part of the dipole interactions are almost self-
screened throughout the band [56,59,60]. The separation of
energy scales allows for the interpretation of the magnetic mo-
ments as elements of an emergent magnetostatic field with the
low-energy states constrained by a divergence-free condition
[61,62]. Excitations above the low-energy band are topologi-
cal defects to the emergent field [48] which, being dressed by
the real magnetic fields of the dipoles, carry a magnetic charge
[49]. These are the magnetic monopoles that have been much
studied over the past decade.

The monopole approximation for spin ice is captured by
the dumbbell model [49,51,63] in which the pointlike dipole
moments of the DSI are replaced by magnetic needles which
touch at the centers of the tetrahedra. The magnetic flux is
channeled down the needles, so that they carry dumbbells of
magnetic charge ±m/a, where m is the magnetic moment and
a the distance between tetrahedron centers. Configurations
with two spins in and two out are by construction charge
neutral and the total charge on site i is Qi = 0,±Q,±2Q, with
Q = 2m/a the monopole charge. Also by construction in this
model, the ensemble of Pauling states are exactly degenerate,
so that the model violates the third law of thermodynamics.
The Hamiltonian for excitations above the extensively degen-
erate ground state is

Hdb = u

2

∑
i �= j

(
a

ri j

)
n̂in̂ j − μ

∑
i

n̂2
i , (1)

where n̂i = Qi/Q = 0,±1,±2 is a site occupation variable,
ri j is the distance between sites i and j, u = μ0Q2

4πa is the
Coulomb energy scale, μ0 is the permeability of free space,
and μ < 0 is the chemical potential [52,64,65].

Throughout the paper we follow standard notation for
spin ice simulations and refer to a dimensionless length L,
measured in cubic units. Each cubic cell contains 16 spins
(dumbbells) so that the number of tetrahedra (monopole
sites) is N0 = 8L3. We index diamond lattice sites hosting
the monopoles with i, j and and the pyrochlore lattice sites
hosting the spins by κ, λ. Quantitative measures refer to the
spin ice material Dy2Ti2O7 (DTO) for which we take the
the diamond lattice constant to be a = 4.36 Å, the nearest

neighbor spin distance rnn =
√

2
3 a = 3.56 Å, and cube length

ac = 4a√
3

≈ 10.1 Å (see Fig. 1) [66]. We use the kelvin en-
ergy scale, fixing the Boltzmann constant to unity. Taking an
estimate for the magnetic moment m = 9.87μB [67] yields
u = 2.88 K and μ = −4.35 K.

Dynamics are simulated using a Metropolis Monte Carlo
algorithm for dumbbell flips between their discrete orien-
tations. Through the dumbbell flips the charges associated
with the monopole quasiparticles move, are created, or are
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destroyed in nearest neighbor pairs. The long range nature of
the Coulomb interaction is dealt with using the Ewald summa-
tion method. Time steps are recorded as Monte Carlo moves
per dumbbell (MCS). Spin configurations at each step can be
recovered by replacing each dumbbell by the corresponding
spin.

The emergent monopole picture can also be cast in the
language of a lattice field which can be decomposed into
“longitudinal,” “transverse,” and “harmonic” components via
a lattice Helmholtz decomposition [61,62,68]. The monopoles
can be reconstituted from the longitudinal part (m), with
the leftover, defined by the constraints of fixed spin density,
shared between the other two components. The divergence-
free transverse component (d) has characteristic dipolar
correlations [69,70]. With periodic boundaries and in zero
field, the harmonic term can be set to zero to an excellent
approximation, so that for each microstate the spin at site κ

can be written

Sκ = Sm
κ + Sd

κ . (2)

Vector fields can be built at each site by multiplying the
components by the local unit vectors connecting the diamond
lattice sites with appropriate sign convention [62]. The closed
loops of the transverse component provide the residual en-
tropy as the temperature falls to zero while the energy (of
the monopoles) is carried uniquely by the longitudinal com-
ponent. In Fourier space, the two components fall parallel
and perpendicular to the propagation vector �q defined within
the first Brillouin zone. This apparent fragmentation of the
magnetic moments into two orthogonal parts generates a form
of spin-charge separation in which magnetic monopoles and
transverse spin components develop largely independent fluc-
tuations and response functions.

III. FLUCTUATION-DISSIPATION THEOREM
OUT OF EQUILIBRIUM

A. Fluctuation-dissipation theorem

The fluctuation-dissipation theorem (FDT) relates the equi-
librium fluctuations of an observable A (in this case extensive)
to the linear response to an applied field f conjugate to A,
such that the Hamiltonian at finite f is H ( f ) = H (0) − f A.
Starting an experiment at time t = 0 in equilibrium and ap-
plying a field perturbation at time tw � 0, the variable 〈A(t )〉
is measured at time t � tw, where the brackets stand for an
ensemble average. This setting provides a general form for
the FDT:

χA(t, tw ) = ∂〈A(t )〉
∂ f (tw )

= 1

T
[CA(t, t ) − CA(t, tw )], (3)

with CA(t, tw ) = 〈A(t )A(tw )〉 − 〈A(t )〉〈A(tw )〉. The propor-
tionality constant, 1/T , between left and right hand functions
illustrates the fact that the FDT is indeed explicitly derived in
the conditions of thermodynamic equilibrium. In addition, in
equilibrium the functions depend on a single time variable, the
time difference, t ′ = t − tw. Taking t ′ → ∞ we find the static
limit, χA = ∂〈A〉

∂ f = 1
T [〈A2〉 − 〈A〉2].

Defining the normalized response and autocorrelation
functions

χ̃A(t, tw ) = χA(t, tw )

CA(t, t )
,

C̃A(t, tw ) = CA(t, tw )

CA(t, t )
,

(4)

the FDT in Eq. (3) takes the very simple form T χ̃A = 1 − C̃A

and can be tested graphically by making parametric plots of
T χ̃A as a function of 1 − C̃A, with FDT satisfaction corre-
sponding to a straight line of unit slope.

Starting at t = 0 from a nonequilibrium situation such as
a thermal or field quench [71], the FDT may in principle
be violated, requiring the insertion into Eq. (4) of a further
parameter, XA(t, tw ), called the fluctuation-dissipation ratio,
such that

T χ̃A = XA(t, tw )(1 − C̃A), (5)

with XA(t, tw ) = 1 at equilibrium. In principle, if one waits
long enough, so that tw exceeds all relaxation times of the
system, equilibrium behavior and the FDT will be recovered
with XA → 1. However, in glassy regimes the equilibrium re-
laxation times may exceed all possible observation times with
the result that they appear permanently out of equilibrium,
with corresponding violations of the FDT and XA �= 1.

In following such protocols for systems where time-
translation invariance is not satisfied, either t or tw can be
varied as the control parameter, although varying tw can be
extremely time consuming, as each measurement requires an
independent procedure for each value of tw. This problem is
particularly acute when the fluctuation-dissipation XA(t, tw )
has a nontrivial time dependence, since its mathematical
definition via Eq. (5) requires using tw as the appropriate
time variable [72]. This problem can be fully circumvented
in numerical simulations by using the no-field techniques
[24,30,73] described in Appendix, in which the linear re-
sponse to the applied field can be extracted directly from
derivatives of the Boltzmann weights in zero field. With this
innovation, numerical simulations varying t or tw become
equivalent in computational effort as both correlation and re-
sponse functions are evaluated in the same set of unperturbed
simulations.

In certain model systems showing a thermodynamic glass
transition, XA(t, tw ) can be shown to be a constant [16], dif-
ferent from unity, allowing for the definition of an effective
temperature [18],

Teff = T

XA
, (6)

associated with out of equilibrium fluctuations. No such defi-
nition can be made in more realistic models showing glassy
behavior, but XA(t, tw ) does appear approximately linear in
many numerical simulations [27,30,38,39,74] and in some
experiments [28,29].

This phenomenology has been an important development
over the past three decades as it provides a test of possible
universal behavior of the nonequilibrium dynamics of sys-
tems with very long relaxation times. This has been largely
triggered by the analytic study of a broad family of mean-field
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glassy models in their aging regime [15,16,75]. A unique
effective temperature shared by all physical observables is
found in supercooled liquids [27,39,40], which are character-
ized by a clear separation of time scales with a unique slow
relaxation mechanism. Kinetically constrained and non-mean-
field models of glasses partly share this phenomenology [72],
but reveal in addition the possibility of an absolute negative
effective temperature when considering energy fluctuations
and response functions [44–47]. This striking result directly
follows from the thermally activated nature of the microscopic
aging motion in such systems, whereby increasing the temper-
ature leads to an acceleration of the energy decrease, and thus
to negative response functions [44].

By contrast, spin glasses are characterized, at least at mean-
field level, by a more complex hierarchy of relaxation time
scales [76], leading to a fluctuation-dissipation ratio which
becomes a function rather than a simple number. This finding
has direct, deep connections to the Parisi overlap distribution
describing the spin glass order in equilibrium at low temper-
atures [15,77–79]. Physically, one can associate an effective
temperature to each relaxation time scale, and the emergence
of multiple time scales suggests the possibility that distinct
effective temperatures can also emerge.

Critical dynamics in pure ferromagnets also display re-
markable universal violation of the FDT with the fluctuation-
dissipation ratio taking a universal value uniquely dependent
of the universality class [33–37]. Coarsening and domain
growth processes in ordered phases are characterized by
an effective temnperature which asymptotically diverges
or, equivalently, by a vanishing fluctuation-dissipation ratio
[31,32].

With few notable exceptions [25,80] most experiments
dedicated to tests of FDT violations in aging glassy materials
are not performed in the time domain but rather in Fourier
space [28,29,81–84]. In this case, the FDT relates the fluctua-
tion spectral density S(ω) of a given observable at frequency
ω to the out of phase linear susceptibility χ ′′(ω) at the same
frequency:

S(ω) = 2kBT

πω
χ ′′(ω), (7)

and its generalization introduces a frequency-dependent
fluctuation-dissipation ratio as the ratio between the right and
left hand sides of Eq. (7). In the case where the fluctuation-
dissipation ratio is a simple number in the slow regime,
then the time and frequency domain approaches yield similar
results [18], with a linear relation between response and fluc-
tuations with an effective temperature replacing the thermal
bath temperature.

B. Correlation and response functions in spin ice

We adapt the FDT formalism to three different observables
in the dumbbell model of spin ice. The first is the local mo-
ment on each site, Sκ . This is an Ising-like variable whose
conjugate field, hκ , lies parallel or antiparallel to the axis
joining the two tetrahedron centers which the spin connects.
The relevant correlation function

C̃S (t, tw ) = 〈Sκ (t )Sκ (tw )〉 − 〈Sκ (t )〉〈Sκ (tw )〉
〈Sκ (t )Sκ (t )〉 − 〈Sκ (t )〉〈Sκ (t )〉 (8)

is related to the local spin susceptibility χS = ∂〈Sκ 〉
∂hκ

and mea-
surements are taken from a configurational average over the
N spins.

Secondly, we consider fluctuations of the configurational
energy E calculated from Eq. (1) through the response and
correlation functions χ̃E (t, tw ) and C̃E (t, tw ). In the language
of a fluid in the grand ensemble, one might call this a number
enthalpy as for each configuration E = UC − μN contains
both the Coulomb energy UC and the energy cost of creating
N = ∑

i |n̂i| magnetic monopoles. In principle one should
also take into account the cost of creating double monopoles
(tetrahedra with all spins pointing in or out) but for the tem-
peratures used in this paper these can be safely neglected. The
conjugate field for the energy is a dimensionless temperature
change, α = δT

T . The response function in the static limit is
then closely related to the specific heat at constant chemical
potential, Cμ, which is equivalent to the magnetic specific heat
in zero field, χE = ∂E

∂α
= TCμ.

Finally, we consider fluctuations in the monopole concen-
tration, choosing as for the spins a local measure, |n̂i|, with
conjugate field, a local chemical potential, μi = μ + δμi, and
with the response and correlation functions χ̃Q(t, tw ) and
C̃Q(t, tw ). The response function, χQ = ∂|n̂i|

∂μi
, is closely related

to the monopole compressibility, ∂N
∂μ

.

IV. DYNAMICS AT EQUILIBRIUM

A. Low-temperature dynamics

The evolution of magnetic time scales extracted from
ac susceptibility measurements [5] on Dy2Ti2O7 is largely
captured by stochastic monopole dynamics in the dumb-
bell model [6] and through spin dynamics in the DSI
[10,11,52,85]. On cooling, the measured time scale exhibits
a plateaulike region between 10 K and 4 K before entering
a regime of rapid change in which the characteristic time
increases faster than an Arrhenius law, before leaving the
experimental time window for temperatures below around
0.65 K [5]. The latter also corresponds to the ergodicity break-
ing temperature between field-cooled and zero-field-cooled
protocols for dc susceptibility measurements. The increasing
time scale is directly related to the fall in monopole density,
with the non-Arrhenius behavior mostly due to the Coulomb
interaction between monopoles and the increased screening
length as temperature is reduced. As Coulomb screening falls
to zero at low temperature, one might expect expect the time
scale to approach an Arrhenius law, τ = τ0 exp(−μ/T ), with
μ = −4.35 K [52,64] and τ0 a microscopic time scale.

Experimental results differ in two details. First, the char-
acteristic time slows down beyond this limit [4,5,7–10]
and, secondly, rather than a single time scale, a spread
of times appears at each temperature [86] and some mea-
surements suggest stretched exponential behavior [10,12].
Possible corrections to the monopole picture to account for
these differences include moving from the dumbbell model
back to the spins of the DSI which reintroduces a finite
bandwidth for the Pauling states [10,52,87], considering open
rather than periodic boundaries which can introduce multiple
time scales and stretched exponential decay, or the effects
of defects or configuration-dependent microscopic tunneling
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FIG. 2. Top: Normalized time autocorrelation function of the
spin degrees of freedom at equilibrium. Temperatures are shown in
kelvin and the energy scale is set by parameters from Dy2Ti2O7.
Bottom: Correlation time for the spin degrees of freedom versus the
inverse of the temperature for temperature between 0.8 and 0.4 K
(points). The lines show Arrhenius laws with energy scales |μ| and
2|μ| with μ = −4.35 K.

rates, both of which increase time scales at low temperature
[10,11].

Here we show that finite-size effects, even in this simple
model, also provide corrections to the above theoretical result
and longer than expected time scales at low temperature. We
calculate the spin-spin autocorrelation function, C̃S (t, 0) =
C̃S (t ), with a configurational average made over the N spins.
As this is a local measure, it contains the diagonal terms of
a magnetic correlation function only. Previous studies have
shown that inclusion of off-diagonal terms makes no signif-
icant difference to the measured decay of correlations with
time [6,10], at least down to the magnetic ergodicity temper-
ature, while use of the local function allows for much better
statistics allowing us to extract data at lower temperature.

Data are shown in Fig. 2 for temperatures between 0.8
and 0.4 K, for a fixed system size, L = 6, with correlations
averaged over 2000 initial equilibrium configurations. As can
be seen from the logarithmic time axis, at each temperature
the correlation function falls to zero at a single, well defined
time scale τ and the decay is well represented by an expo-
nential decay, CS (t ) ≈ exp −(t/τ ). The value of τ increases
rapidly with decreasing temperature and exceeds 107 MCS for

T � 0.4 K. Given that the microscopic tunneling rate is
estimated to be in the millisecond range [6], this would corre-
spond to experimental time scales of several hours.

The evolution of τ with inverse temperature is also shown
in Fig. 2. Linear behavior would correspond to an Arrhenius
law, τ = τ0 exp(�E/T ), with a slope giving the characteris-
tic energy scale �E . Shown also is Arrhenius behavior for
both �E = |μ| and �E = 2|μ|. It is clear that, in this tem-
perature range, the behavior remains non-Arrhenius and the
energy scale at the lowest temperature considerably exceeds
that set by the monopole chemical potential. The reason is
that, for L = 6 (1728 diamond lattice sites), on reducing the
temperature, one rapidly enters a regime where the average
number of monopoles in the system is less than two, so that
for most configurations there are none. Setting n = 2

8L3 =
4
3 exp (μ/T ), the density expected for the Coulomb fluid at
low temperature [63], gives a temperature T = 0.62 K, which
is also the threshold temperature of earlier studies. Below this
temperature crossover, monopoles are confined by the peri-
odic boundaries and the system must be excited through an
energy scale of 2|μ| = 8.7 K to create monopoles that are then
free to decorrelate the system. This is the crossover we are
observing in Fig. 2. This finite-size effect is rather stylized to
be directly relevant for experiment but it is consistent with the
effect of adding defects to the DSI, which appear to generate a
longer time scale in the decay of correlation functions [10]. It
also illustrates how mosaics and grain boundaries could lead
to nonuniversal long-time behavior, as seen in the ensemble
of experimental results.

Despite this change of regime to finite-size or mosaic-
driven long time scales, we are able to equilibrate down
to temperatures somewhat below the experimental ergodic
threshold, consistent with the most recent low tempera-
ture neutron scattering and specific heat measurements on
Dy2Ti2O7 [88]. This observation begs a rather subtle ques-
tion concerning the emergence of a topological time scale
characterizing magnetic relaxation which is different from the
local equilibrium time scale exposed here. At low tempera-
ture, a change in the magnetization requires the flipping of
an extended string of spins, giving ultimately a change in
topological sector as the monopole concentration falls to zero
[89]. Although a detailed analysis is beyond the scope of the
present paper, these results suggest the possibility of an er-
godic time scale for such sector fluctuations that exceeds that
for local equilibrium, in which local measures find their zero-
field equilibrium values. Calculation of the response function
for the local spin variable, rather than the bulk magnetization,
allows us to bypass this delicate question, which we leave for
future work.

B. FDT at equilibrium

In Fig. 3, we show the parametric plot for the local spin
correlation and response functions, χ̃S and C̃S for T = 1 K,
where equilibration is easily achieved. The data is taken by
varying total time t with tw held fixed, with L = 6. The system
is started at t = 0 in an equilibrium configuration and results
are averaged over 5000 independent runs. The longest times
correspond to 1 − C̃S ≈ 1, so that spins are fully decorre-
lated. As expected, the FDT is satisfied with a high degree of
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FIG. 3. FDT for spin ice in equilibrium. Top: Parametric plot of
T χ̃S vs 1 − C̃S , for the spin-spin autocorrelation function and spin
susceptibility for the dumbbell model for T = 1 K. The line shows
the predicted FDT result. Bottom: Parametric plot of T χ̃E vs 1 −
C̃E , for the energy autocorrelation function and susceptibility for the
dumbbell model for T = 0.6 K. The line shows the predicted FDT
result.

accuracy over the whole spectrum of correlation and response.
Lowering the temperature, the correlation times increase but,
as shown above, local equilibrium can be achieved down to
T = 0.4 K, with corresponding satisfaction of the FDT. This
is illustrated in Fig. 3, lower panel, where we show data for
the energy E at T = 0.6 K, temperature close to the magnetic
ergodicity breaking and for which the FDT is also clearly
satisfied.

However, the exponentially diverging time scale guaran-
tees that equilibration, local or otherwise, is excluded at
lower temperatures. For example, our results suggest that
moving to T = 0.2 K would give a relaxation time scale
τ ∼ τ0 exp(40) ∼ 107 years for dysprosium titanate. Over
the vast majority of this time scale a finite system would
have a monopole population of zero, which ensures that a
system near equilibrium would be completely frozen through-
out any experimental time window. As a consequence, low

FIG. 4. Noncontractable pair of charges (left). Flipping the cen-
tral spin does not annihilate the charges but instead creates two
double charges (right).

temperature states with measurable dynamics must, by con-
struction, be far from equilibrium.

V. NONEQUILIBRIUM DYNAMICS

A. Noncontractable pairs

A class of nonequilibrium states showing measurable
dynamics at ultralow temperatures are those with a finite con-
centration of “noncontractable” monopole pairs [43], which
are illustrated in Fig. 4. Here, annihilating the nearest neigh-
bor monopole pair would lead to an energy gain, |2μ| − u =
5.82 K, so that far below this energy scale such defects would
disappear at equilibrium. However, the constraints of spin ice
are such that flipping the spin separating the monopole pair
creates a pair of double monopoles rather than annihilating
the charge. As a consequence, charge annihilation requires
movement of the quasiparticles around an external path and
passage over an energy barrier. As a result such a pair can
be locked in a metastable state over a finite period of time
after the system is quenched from a high temperature state
(the opposite temperature protocol would not yield any inter-
esting metastability). A detailed discussion of this process was
provided in Ref. [43].

Here we confirm the key role played by the Coulomb
interaction through a study of the dumbbell model. A minimal
path for monopole annihilation is a hexagon of six tetrahe-
dra with a maximum separation of third nearest neighbor on
the diamond lattice. Using the parameters quoted here for
Dy2Ti207 the energy barrier, �E for the annihilation of an
isolated noncontractable pair is around 1.4 K. Such a barrier
would give an Arrhenius time scale, τ ∼ τ0 exp(14) ∼ 106

MCS at T = 0.1 K, which suggests the existence of slow, but
accessible dynamics down to this temperature scale.

Monopole-monopole interactions are the key to the pair
formation. A nearest neighbor monopole interaction cor-
responds to second neighbor spin interactions, while the
isotropic nature of the monopole picture comes explicitly
from summing terms of the original DSI to infinite distance
[56]. Hence, even though truncating the Coulomb potential
could speed up the numerics, the long range interactions
would still be playing a crucial role.

To access such states we performed thermal quenches [43]
from an initial temperature T0 = 1 K, where the equilibrium
monopole concentration is relatively high, to a target, much
lower temperature T . In Fig. 5 we show the time evolu-
tion of 〈n〉 = 〈N /N〉 and 〈E〉 with the time spent since the
quench. Starting from the equilibrium monopole concentra-
tion at T0 = 1 K, n ∼ 0.2 per tetrahedron, 〈n(t )〉 falls rapidly,
for all temperature. For T = 0.3 K and above, the monopole
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FIG. 5. Monopole concentration (top) and energy (bottom) fol-
lowing a quench at t = 0 from T0 = 1 K to a final temperature T . For
a quench below 0.3 K, a plateau regime appears for both quantities.

concentration falls towards its (very low) equilibrium value in
a few hundreds of Monte Carlo steps. Below this crossover
temperature, the quench is sufficiently violent to trap a finite
concentration of noncontractable pairs, forming a concentra-
tion plateau whose lifetime increases rapidly with decreasing
the quench temperature T . This behavior is accurately paral-
leled in the energy function as, once the free particles have
been annihilated, the energy depends almost entirely on the
small concentration of isolated and locally confined charge
pairs; see Fig. 5.

The apparition of two time scales following a quench
means that spin ice undergoes a simple form of aging,
whereby correlation functions depend on both times t and
tw following the quench and not just the time difference,
t − tw, as in equilibrium. In Fig. 6 we show the normal-
ized local charge correlation function, C̃Q(t, tw ), following a
quench to T = 0.12 K for different fixed values of tw. In the
initial regime in which free monopoles are annihilated, the
correlation function depends strongly on tw but it becomes
independent, for tw > 100 Monte Carlo steps, as one enters
the regime of metastable pair confinement. In this regime the

FIG. 6. Normalized time autocorrelation functions of the local
charge as a function of total time t for different waiting time tw after
a quench from T = 1 K to T = 0.12 K. The aging of the correlation
is trivial in the sense that the correlation reaches its equilibrium be-
havior very quickly (about 100 MCS) compared to the equilibration
time.

correlation function depends on t − tw only, as in equilib-
rium, although we stress that the system remains far from
equilibrium. Similar behavior is found for both energy and
spin correlations, despite the fact that most spins spend the
majority of their time completely frozen.

In Fig. 7 we show C̃Q(t, tw ) for different quench temper-
atures, for fixed tw = 2000 MCS. As anticipated [43], the
relaxations closely follow an exponential decay from which
one can extract an associated time scale, τQ. As shown in the
lower panel, the temperature evolution of τQ(T ) closely fol-
lows an Arrhenius law, with an energy barrier �EQ ≈ 1.3 K,
close to but slightly lower than the estimated Coulomb energy
barrier (≈1.4 K) for activated monopole hopping around a
hexagon ring. This small difference could be explained by tak-
ing into account the interactions between the bound monopole
pairs. Taking this to be a random dipole interaction of order

δE ∼ μ0m2

πL3
(9)

gives an energy scale δE ∼ 0.1 K. This scale, which is the
correct order of magnitude, could then be used as a parameter
in a stochastic decay model [43] that captures the small shift
in time scales from the Coulomb estimate.

B. FDT violations in the noncontractable pair regime

The existence of a nonequilibrium regime with measurable
fluctuations allows us to test the FDT in a nonequilibrium
environment for the three designated variables, |n̂i|, Sκ , and E .
In each case data was collected both for fixed t varying tw � t
and for fixed tw varying t � tw. The resulting parametric plots
are shown in Figs. 8 and 9. To help with interpretation, we re-
mind the reader that a short time difference t − tw corresponds
to a small value of the horizontal axis, 1 − C̃A ∼ 0, and that
the equilibrium FDT appears as a straight line of slope unity
in this representation.
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FIG. 7. Top: Normalized time autocorrelation functions of the
local charge as a function of total time t for fixed waiting time
tw = 200 after a quench from T = 1 K. Bottom: Estimated relaxation
times τQ from the data in the upper panel are well described by an
Arrhenius law with energy scale �E ≈ 1.3 K.

The FDT is clearly violated in all cases. Remarkably, in
each case we observe that the fluctuation-dissipation ratio,
X (t, tw ), is approximately constant over the accessible range
of correlations, allowing for the association of an effective
nonequilibrium temperature, Eq. (6). However, this temper-
ature appears different for each variable, which shows that the
nonequilibrium problem does not simply translate to an effec-
tive equilibrium problem, with phenomenology reproduced
by a minimal variational principle. On the contrary, this is a
more complex situation in which each quantity has its own
fluctuation amplitude without the constraints set by the second
law of thermodynamics. This type of finding is consistent
with results for glassy systems characterized either by well-
separated time scales [18,75,79], or systems with independent
degrees of freedom [90,91].

Figure 8 shows data for charge fluctuations, calculated
using both tw (upper) and t (lower) as the variable parameter.
The data are consistent for short times, giving approximately
linear behavior and a constant value for XQ around XQ ≈ 2.3.
Hence the data in this region depends on the time difference

FIG. 8. Top: Parametric fluctuation-dissipation plot for the local
charge density, |n̂i| following a quench to T = 0.1 K (see Sec. III).
The variable parameter is the waiting time 500 < tw < t at fixed t =
3.6 × 105 MCS. Results are for L = 6 and data are averaged over
4 × 105 initial configurations. The solid black line corresponds to
equilibrium FDT with dotted lines representing constant X values as
shown. Bottom: As for upper panel with fixed tw = 500 MCS and
variable parameter tw < t < 8 × 105 MCS.

t − tw only, as in equilibrium. For 1 − C̃Q greater than 0.5 the
two methods give different results, indicating a clear two time
dependence. Mathematically the fluctuation-dissipation ratio
is defined by using tw as the variable [72], and this representa-
tion should therefore be preferred. Indeed, the data indicate a
much simpler structure of the FDT plot in this representation
with a well-defined effective temperature characterizing the
charge degrees of freedom over the entire time regime.

Figure 9, upper panel, shows data for the local spin vari-
ables Sκ with tw as the variable parameter. The small scale on
both the horizontal and vertical axes reflects the inaccessible
relaxation time scale for the spin degrees of freedom as most
of the spins remain completely static over the simulation time
scale. As a result only small corrections from C̃S = 1 are
observable. The parametric plot of response and correlations
can nevertheless be approximated reasonably well over this
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FIG. 9. Top: Parametric fluctuation-dissipation plot for the local
spin variable, Sκ , following a quench to T = 0.1 K (see Sec. III).
The variable parameter is the waiting time 500 < tw < t at fixed t =
3.6 × 105 MCS. Results are for L = 6 and data are averaged over
4 × 105 initial configurations. The solid black line corresponds to
equilibrium FDT with dotted line representing constant X values as
shown. Bottom: As for upper panel for the energy variable, E .

correlation range by a constant fluctuation dissipation ratio,
X ≈ 0.7, with some very weak departure from linearity. Data
collected varying t for fixed tw (not shown) are very similar.
We have also tested magnetic fluctuations through the total
moment �M(t ). The data is much harder to collect for the
reasons discussed above, but our results are compatible with
those for the local spins, suggesting that local and global spin
degrees of freedom are characterized by similar violations of
the FDT with an equal fluctuation-dissipation ratio, as also
seen in pure Ising models at criticality [36].

A fluctuation ratio, X < 1 (X > 1), corresponds to an ef-
fective temperature that is higher (lower) than the equilibrium
temperature. We find that the effective temperature for the
charge variable |n̂i| is lower than the equilibrium temperature,
Teff = T/XQ ≈ 0.04 K, while that for the spin variable, Sκ , is
higher with Teff = T/XS ≈ 0.14 K for quenches performed at
the bath temperature T = 0.1 K.

Given that the monopoles are objects made up of spin
textures it seems surprising that the nonequilibrium response
to them and to the spin degrees of freedom are different.
The difference finds its origin in the emergent Helmholtz de-
composition of the moments into longitudinal and transverse
fragments. The two fragments interact only weakly through
the constraint fixed by the total spin density [62], allowing
an apparent separation of the magnetic charge made from the
longitudinal component and the total spin.

In equilibrium, the monopoles are deconfined objects, free
to move independently, interacting only via a Coulomb force
which falls to zero at large distance. However, in the noncon-
tractable pair regime, the monopoles are locally confined and
can only diffuse via double moves in which the first separates
the particles to a second neighbor distance and the second
restores the nearest neighbor pair. The double move requires
the crossing of an energy barrier with a consequent drastic
reduction in monopole mobility. It is possible that the reduced
effective temperature reflects this reduced mobility. Effec-
tive temperatures that are lower than the bath temperature
have been observed in a few other systems as well [35,92].
However, in parallel with the reduced monopole mobility
there is an overall enhancement of spin fluctuations associ-
ated with the enhanced monopole concentration, leading to an
increased effective temperature for the complete spin degrees
of freedom. Such an increase in effective spin temperature is
compatible with the case of glasses and spin glasses following
a temperature quench [22,25,27,74].

The response to nonequilibrium energy fluctuations is at
first sight even more surprising. The data shown in Fig. 9
(lower panel) yield a negative slope, indicating a negative
effective temperature. We observe XE ≈ −0.7, and so Teff =
T/XE ≈ −0.14 K, again using tw as the appropriate variable
parameter. Varying t at fixed tw yields qualitatively simi-
lar results. Negative temperatures have also been observed
in kinetically constrained models of glasses showing slow
dynamics [44–46]. Here, the negative value for XE was as-
sociated with a dynamic evolution via thermally activated
processes involving localized defects rather than by the evo-
lution within a hierarchical free energy landscape provided
by a mean-field analysis. This is indeed the case also here:
Noncontractable pairs are essentially isolated, decaying via
the thermally activated process discussed above. Intuitively,
increasing the temperature (which is the field conjugate to
the energy) therefore increases the rate of relaxation of
the number of pairs. Consequently, after the initial decay
following the quench, a linear increase of the applied temper-
ature at tw lowers the observed energy after a fixed time t − tw
as energy relaxes faster at higher temperature, which then
naturally gives a negative response to a positive impulse field.
As a result, the fluctuation-dissipation ratio between response
and correlation becomes negative. It is a nontrivial finding
that the negative fluctuation-dissipation ratio takes, to a good
approximation, a unique value, thus mimicking an equilibrium
system with a negative absolute effective temperature.

VI. DISCUSSION

In this paper we have shown numerically that the dumb-
bell model of spin ice can be forced into a nonequilibrium
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regime in which the fluctuation-dissipation theorem is vio-
lated. This is the noncontractable pair regime [43] in which
neutral pairs of magnetic monopoles are locally confined by
the constraints of spin ice. The pairs relax via the passage
over an energy barrier of the order of one kelvin, allowing
for slow but measurable dynamics down to 100 mK. We have
measured FDT violations associated with three quantities:
Local spin variables, local monopole occupation number, and
total energy. Despite the expected FDT violation, in each
case the relation between fluctuations and response was found
to be approximately linear, allowing for the definition of
effective nonequilibrium temperature. This very simple struc-
ture of the FDT violation is not trivial at all and could not
have been anticipated on simple grounds. It therefore seems
remarkable that a unique quantity, the fluctuation-dissipation
ratio, is able to characterize the time-dependent relation be-
tween response and correlation functions in the far from
equilibrium aging regime of spin ice. The effective temper-
atures were found to be different in the three cases. The spin
variables appear to be at a higher temperature than that of the
heat reservoir and the monopole concentration responds at an
apparent lower temperature, while the energy has an effective
temperature which is negative.

The difference in response temperature for the spin and
monopole variables appears as a direct consequence of the
fractionalization of dipolar elements into magnetic monopoles
[49]. As the monopoles only eat up a small fraction of the
total spin density [61], the monopoles and total spin can
behave quasi-independently, which is the case here. The spin
activity is enhanced with respect to equilibrium at such low
temperatures of approximately 100 mK, which reflects the
higher effective temperature but the monopoles are locally
confined into pairs and have considerably reduced mobility. It
is possible that this is reflected in the reduced effective temper-
ature. In aging and sheared supercooled liquids characterized
by a single glassy time scale, a unique value of the effective
temperature is observed [27,39], but in that case all observ-
ables are dynamically strongly coupled. Clearly, spin ice has
a richer physical behavior with two independent variables.

In kinetic models of glass-forming materials, the negative
energy response to an increase in the temperature is a direct re-
sult of the thermally activated relaxation over energy barriers.
In these models [44–47], microscopic or mesoscopic objects
indeed relax independently via local energy barriers. As a
consequence, on heating, the energy is relaxed more easily
towards its lower equilibrium value via the faster motion of
the defects, thus producing negative response functions and
negative fluctuation-dissipation ratio. Clearly, the bound pair
regime of spin ice is another example of this physics as the
bound pairs are essentially independent, two-body metastable
states. The similarity of the results for the energy degree
of freedom shows that the analogy extends to the out of
equilibrium regime. It would be interesting to see whether
the measured value of the fluctuation-dissipation ratio, XE ≈
−0.7, can be theoretically rationalized in the framework of the
diffusion-annihilation process proposed in Ref. [43], follow-
ing the type of field-theoretical analysis done for kinetic glass
models [44–46].

It would also be interesting to study FDT relations in arti-
ficial spin ice [93–96] and colloidal ice systems [97]. These

mesoscopic systems have the advantage that monopoles are
directly observable in real space and that the accuracy of the
monopole picture can be tuned to some extent [98,99]. In
these experimental systems the initial paradigm is slightly dif-
ferent in that attaining equilibrium, real or effective [100,101],
for any situation is a formidable challenge so that an experi-
ment in which the FDT were satisfied would already be a very
interesting result. From here, performing quenches into the
noncontractable pair regime with observation of FDT viola-
tions would seem a feasible project.

The above analogies with glass-forming materials and
kinetic glass models therefore confirm that, despite FDT vio-
lations, the noncontractable pair regime does not have the kind
of hierarchical energy landscape structure that characterizes
spin glasses [43]. The noncontractable pairs do themselves
carry a magnetic dipole moment so that there is a collective
dipolar interaction between them. It is therefore conceivable
that they could show dipolar glass behavior on a much lower
temperature scale, but the separation of energy scales here is
such that a regime of this kind is beyond the scope of our
work.

The bound pairs are formed following a quench from 1 K,
where the monopole concentration is still high, to target tem-
peratures below 0.3 K. Above this quench temperature the
pairs fail to form and the concentration falls rapidly to the
equilibrium value as if the system had been annealed. For a
finite size system in this temperature range most microstates
of the equilibrium measure have zero monopoles so that spin
fluctuations essentially stop here. On annealing we were able
to equilibrate down to around 0.4 K and the FDT was sat-
isfied down to this limit, consistent with recent specific heat
measurements [88] and with preliminary magnetic noise mea-
surement [102]. Hence, for the chosen variables, following an
annealing protocol, we find that the system progresses from an
equilibrium to a frozen state without an intermediate regime
showing nonequilibrium dynamics.

There is of course the potential for the development of
hierarchical dynamics through the existence of closed loops
of spin flips moving the system from one constrained spin ice
configuration to another through the band of Pauling states.
However, in the dumbbell model, like in the nearest-neighbour
spin ice model, such states are degenerate so that any hi-
erarchy must be entropy driven. The time and length scales
necessary to address such subtle questions are at present out
of reach. Moving back to the dipolar spin ice model lifts this
degeneracy, opening up the possibility of a loop glass and
hierarchical behavior on the energy scale of this bandwidth;
that is, around 150 mK [60]. Reopening the bandwidth takes
us beyond the monopole picture [13,56,59] and into a realm
in which defects and realistic boundaries will also be essential
ingredients [10]. That is, glassy behavior could be possible on
this small energy scale but our results suggest that it will be
extrinsic, depending on corrections to the monopole picture
and to the translational symmetry of the pyrochlore lattice.

In preliminary experiments [102] measuring magnetic
noise and response in the frequency domain, the FDT is con-
firmed over the full frequency spectrum down to 0.6 K. There
is partial confirmation down to 0.4 K but, at this lowest tem-
perature, time scales are so long that measurements are limited
to the relatively high frequency, short time scale regime. These
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preliminary measurements therefore confirm the results from
the monopole picture that exclude FDT violations in this tem-
perature range. Corrections to this picture, although of great
interest, will be subtle and present considerable experimental
challenges.

Far from equilibrium states in spin ice materials, with
high monopole density, are attainable through field assisted
monopole avalanche quench protocols [71,103,104] with
quenches going well below the required 300 mK. Magnetic
noise measurement below this temperature range is a chal-
lenging experimental problem but our results suggest that
the effort could be worth it as it will offer a robust regime
of nonequilibrium response with measurable FDT violations.
The origin of these violations can be found in the simplest
monopole description of spin ice and they should resist the
many corrections to this picture offered here and in the wider
literature.
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APPENDIX: COMPUTATION OF RESPONSE FUNCTIONS
WITHOUT INTRODUCING A FIELD

The usual way to determine the response function of a
given observable A is to run two different kinds of simulations:
The first one with the Hamiltonian without perturbation, H0,
and the second one with the perturbed Hamiltonian, H0 − f A,
which defines the field f conjugate to the observable A. We
wish to measure the time-integrated response function and so
the time evolution of the field f is

f =
{

0 if t < tw,

ε if t � tw.
(A1)

In both kinds of simulations, the time evolution of A(t ) is
computed, and then an ensemble average is done over a series
of independent initial configurations. The response function is
eventually obtained as the finite derivative

χ (t, tw) = ∂〈A(t )〉ε
∂ f

≈
ε→0

1

ε
{〈A(t )〉ε − 〈A(t )〉0}t�tw . (A2)

Numerically, ε has to be small so that the finite derivative
is a good approximation to the true derivative (linear response
regime), but it cannot be too small; otherwise, the signal
would be smaller than the statistical noise.

Another point to mention is the fact that each tw requires
two sets of simulations (with and without the conjugated
field), which ultimately results in a heavy computational load.
This led us to implement instead a no-field method to obtain
the direct response functions from unperturbed simulations
[24,30,73].

If P({σ } → {σ ′}) is the probability to accept a Monte Carlo
move from the configuration {σ } to the configuration {σ ′},

then

〈A(t )〉 =
∑

ic

A(t ) P[{σ (tw)} → {σ (t )}], (A3)

where the sum runs over independent initial configurations.
The integrated linear response is thus given by

χ (t, tw) =
∑

ic

A(t )
∂

∂ f
P[{σ (tw)} → {σ (t )}], (A4)

where the derivative with respect to the field can be evaluated
exactly.

Using a Markov chain of single spin flip with Metropolis
rates, one can express the total probability as a product over
each attempted Monte Carlo move,

P
[{σ (tw)} → {σ (t )}] =

t∏
t ′=tw

W (t ′ → t ′ + 1), (A5)

with the probabilities W (t → t + 1) directly following from
the Metropolis acceptance rate, namely⎧⎪⎪⎨
⎪⎪⎩

0 if σ (t +1) cannot been reached from σ (t ),
1 if �H < 0,

e−β �H if �H � 0 and the spin flip is accepted,

1 − e−β �H if �H � 0 and the spin flip is rejected.

One can then express the derivative in Eq. (A4) to get

∂

∂ f
P[{σ (tw)} → {σ (t )}]

= P[{σ (tw)} → {σ (t )}]
t∑

t ′=tw

∂

∂ f
lnW (t ′ → t ′ + 1),

(A6)

so that finally

χ (t, tw) =
∑

ic

A(t )

(
t∑

t ′=tw

∂

∂ f
lnW (t ′ → t ′ + 1)

)

× P[{σ (tw)} → {σ (t )}]
≡ 〈A(t )R(tw, t )〉, (A7)

which defines the quantity

R(tw, t ) =
t∑

t ′=tw

∂

∂ f
lnW (t ′ → t ′ + 1). (A8)

If the observable is A, and its conjugate field is f , then
−βH → −βH + β f A, and then one can express the deriva-
tives explicitly:

∂

∂ f
lnW (t ′ → t ′ + 1)

=
⎧⎨
⎩

+β �A if �H � 0 and the spin flip is accepted,
− β �A

eβ�H−1 if �H � 0 and the spin flip is rejected,
0 otherwise.

The key point of the method is the evaluation of integrated
response functions in Eq. (A7), which involves the product
of two physical observables that can be evaluated explicitly
during the course of the simulation followed by an ensemble
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average with no perturbing field. Thereore, linear response
is valid by construction and a single set of simulations is
needed as the perturbing field is never applied. In addition,
several physical observables can be analyzed in the course of

a single simulation. The only drawback is that the statistical
noise affecting Eq. (A7) can become quite large, especially if
long time scales are needed and this may imply using a large
number of initial configurations.
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