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Discontinuous fluidization transition in time-correlated assemblies of actively deforming particles
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Tracking experiments in dense biological tissues reveal a diversity of sources for local energy injection at
the cell scale. The effect of cell motility has been largely studied, but much less is known about the effect of
the observed volume fluctuations of individual cells. We consider a microscopic model of “actively deforming”
particles where local fluctuations of the particle size constitute a unique source of motion. We demonstrate that
collective motion can emerge under the sole influence of such active volume fluctuations. We interpret the onset
of diffusive motion as a nonequilibrium first-order phase transition, which arises at a well-defined amplitude of
self-deformation. This behavior contrasts with the glassy dynamics produced by self-propulsion, but resembles
the mechanical response of soft solids under mechanical deformation. It thus constitutes an example of an active
yielding transition.
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Active matter represents a class of nonequilibrium systems
that is currently under intense scrutiny [1,2]. In contrast
to externally driven systems (such as sheared materials),
active matter is driven out of equilibrium at the scale of
its microscopic constituents. Well-studied examples include
biological tissues [3], bacterial suspensions [4], and active
granular and colloidal particles [5–8].

Epithelial tissues constitute a biologically relevant ac-
tive system composed of densely packed eukaryotic cells
[3,9–14]. Such tissues display a surprisingly fast and collective
dynamics, which would not take place under equilibrium con-
ditions [10]. This dynamics has been ascribed to at least three
distinct active processes [13]: (i) self-propulsion through cell
motility such as crawling [15], (ii) self-deformation through
protrusion and contraction [16–18], and (iii) cell division
and apoptosis [14]. The vertex model for tissues [12,19,20]
includes the first two of these active processes and predicts
a continuous static transition from an arrested to a flowing
state [21]. Another theoretical line of research is based on
self-propelled particles [22] which display at high density
a nonequilibrium glass transition [23,24] accompanied by
a continuous increase of space and time correlations which
diverge on approaching the arrested phase [25–27]. However,
typical correlation length scales in tissues do not seem to
diverge [9,11,28,29].

To disentangle the dynamic consequences of the various
sources of activity in tissues at large scale, we suggest to
decompose the original complex problem into simpler ones,
and to study particle-based models which only include a
single specific source of activity. This strategy was followed
earlier for self-propulsion, but experiments are instead often
modeled by complex models with many competing pro-
cesses [18,29,30]. We argue that it is relevant to introduce
also simplified models to analyze the effect of active particle
deformation in a dense assembly of nonpropelled soft objects.
Specifically, we model a dense system that is driven out of
equilibrium locally through “self-deformation” rather than
self-propulsion. We study soft particles that actively change
their size, while energy is being dissipated through viscous
damping. As a starting point, we consider the simplest form
of self-deformation, in which the diameter of each spherical

particle oscillates at very low frequency, in a way that is directly
inspired by experimental observations in real tissues [16]. The
interest of such modeling is that activity is thus controlled
by a unique adimensional parameter, a, which quantifies the
relative change of the particle diameter within a deformation
period. Our aim is not to propose a realistic model of a tissue,
but rather to answer a more fundamental physical question
regarding the role of active volume fluctuations in tissue
dynamics. Despite its relevance, such a class of models has,
to our knowledge, not been analyzed before in a statistical
mechanics context.

First we consider the case when each particle’s diameter
oscillates with the same frequency ω, where 1/ω is assumed to
be much longer than the microscopic dissipation time scale of
the system. Our main result is the existence of a discontinuous
nonequilibrium phase transition from an arrested disordered
solid to a flowing fluid state at some critical activity, ac, with no
diverging time scales or length scales. In particular, we observe
a modest increase of one order of magnitude in the relaxation
times of the fluid before the system gets discontinuously
trapped in an arrested phase at a = ac. Our system also
shows a strong hysteresis as seen in equilibrium first-order
phase transitions. This scenario for the fluidization transition
differs markedly from that of self-propelled particles in which
a dramatic continuous slowing down is observed [24–27].
We propose that the correct analogy for our observations
is not with a glass [24] or jamming [23] transition, but
rather with the yielding transition of amorphous solids [31],
which start flowing irreversibly when mechanically perturbed
beyond a force threshold, the yield stress. Therefore, actively
deforming particles undergo an “active yielding transition,”
which represents a novel paradigm for the collective motion
of active materials.

Finally, we also consider the case when each particle de-
forms with a different frequency (see Sec. I in the Supplemental
Material (SM) [32]). In this case, the discontinuous transition
remains robust as long as the width of the frequency spectrum
is narrow enough. Then we also consider the case when each
particle oscillates with a given distribution of frequencies P (ω)
(see Sec. II in the SM). In this case, we show the discontinuous
transition still remains robust. Lastly, we consider the case

2470-0045/2017/96(5)/050601(5) 050601-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.050601


RAPID COMMUNICATIONS

ELSEN TJHUNG AND LUDOVIC BERTHIER PHYSICAL REVIEW E 96, 050601(R) (2017)

di (t)

a < ac a > ac

FIG. 1. (a) Snapshots of the system over one cycle of active
deformation. The green curve is the trajectory of the highlighted
particle during one cycle. The blue arrow represents its displacement
after one cycle �di(t) = �ri(t + 1) − �ri(t). (b) One-cycle displacement
map �di(t) in steady state for the disordered solid phase (a = 0.047 <

ac ≈ 0.049, left) and in the fluid phase (a = 0.051 > ac, right). In
the solid phase, particles approximately return to their position after
each cycle. In the fluid, there are regions of large displacements
where irreversible rearrangements take place. The transition between
reversible and irreversible phases at ac is discontinuous.

when each particle oscillates with a random but time-correlated
noise (Ornstein-Uhlenbeck noise; Sec. III in the SM). In this
case, the transition becomes a nonequilibrium glass transition
with continuously diverging time and length scales. This is
perhaps unsurprising, because the physics becomes similar
to that of self-propelled particles where the active forces are
characterized by finite persistence times. Overall, these results
strengthen our hypothesis for the active yielding transition.

We consider a dense suspension of N soft circular par-
ticles at zero temperature in a two-dimensional square box
of linear size L with periodic boundary conditions. The
interaction between the particles is modeled by a short-ranged
repulsive harmonic potential, similar to jammed foams [33]:
V (rij ) = ε

2 (1 − rij /σij )2H (σij − rij ), where rij = |�ri − �rj |,
σij = (σi + σj )/2, with σi and �ri the diameter and position of
particle i, respectively. The energy scale of the repulsive force
is set by ε, and H (x) is the heaviside function, defined such
that H (x � 0) = 1. In the overdamped limit, the dynamics of
each particle is described by a Langevin equation:

ξ
d�ri

dt
= −

∑

j �=i

∂V (rij )

∂�rj

, (1)

where ξ is a friction coefficient. The dissipation time scale is
τ0 = ξσ 2

0 /ε, where σ0 sets the particle diameter (see below).
Physically, τ0 is the typical time scale for a system described
by Eq. (1) to come at rest without forcing.

We drive the system out of equilibrium by oscillating the
diameter of each particle around its mean value σ 0

i , as shown

in Fig. 1(a):

σi(t) = σ 0
i [1 + a cos (ωt + ψi)], (2)

where T = 2π/ω is the period of oscillation which we use
as our time unit, and a is an adimensional parameter which
quantifies the intensity of the activity. We impose very slow
oscillations, T � τ0, such that the system is always located
near an energy minimum and inertial and hydrodynamic effects
can be neglected. Specifically, we use T = 820τ0. The average
diameters σ 0

i are drawn from a bidisperse distribution of
diameters 0.71σ0 and σ0 with 3:2 proportion, in order to
prevent crystallization. We use σ0 as unit length. We have
introduced in Eq. (2) a random phase ψi for each particle to

constrain the total area fraction φ = ∑
i

πσ 2
i (t)

4L2 to be strictly
constant in time. The case with ψi ≡ 0 would correspond to
affine compressions and expansions, which would then amount
to studying the rheological response of the jammed solid forced
at large scale, not an active material forced locally. We consider
jammed systems with φ = 0.94, as appropriate for confluent
tissues. Most simulations were performed with a very large
system of N = 16 000 particles (typically L ≈ 100σ0). We
converged to this large value using simulations with increasing
sizes, seeking the disappearance of finite-size effects. We also
use finite-size scaling analysis to locate the phase transition
with greater accuracy. For each a value, we prepare fully
random systems and apply the periodic perturbation until the
system has reached steady state, either arrested or flowing.
We then perform steady-state measurements using averaging
over time and initial conditions (in the flowing phase), or over
initial conditions (in the arrested phase).

Figure 1(a) highlights the trajectory of a particle during one
period. We define the one-cycle displacement, �di(t) = �ri(t +
1) − �ri(t), as shown in Fig. 1(a). Collecting the displacement of
all particles we obtain the steady-state one-cycle displacement
map shown in Fig. 1(b) for both arrested and flowing phases.
In the arrested phase, displacements are all very small and
particles approximately return to the same position after
each cycle, without undergoing configurational change. On
the other hand, at large activity we observe regions of very
large displacements where irreversible particle rearrangements
occur within one cycle. These local plastic events are spatially
disordered, and they coexist with regions where displace-
ments are smaller: the dynamics is spatially heterogeneous.
Clearly, Fig. 1 indicates the existence of an arrested phase
where particles do not move for small a, and of a flowing
phase for large a where irreversible rearrangements take
place during each cycle. In the following we demonstrate
that the transition between these two regimes occurs at a
well-defined activity value, ac, and that it corresponds to a
first-order phase transition.

We start by showing in Fig. 2(a) the probability distribution
of one-cycle displacements, P (δxi), where δxi = |xi(t + 1) −
xi(t)| (we use isotropy and average over x and y directions).
In the flowing phase (a > ac � 0.049), P (δxi) has a broad,
nearly exponential tail, stemming from particles involved in
local rearrangements (or localized particle’s motions whose
displacements are larger than the diameter). As a result, all
particles move significantly during each cycle. As shown
below, the accumulation of these local plastic events over many
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FIG. 2. (a) Probability distribution of the one-cycle particle dis-
placements P (δxi) for different activities a. The distribution changes
discontinuously between flowing (a > ac � 0.049) and arrested
(a < ac) phases. (b) Averaged one-cycle displacement squared at
steady state for different system sizes N . 〈d2〉 is large above ac, and
drops discontinuously to nearly zero below ac. The black vertical
line represents ac(N → ∞). (c) The critical activity ac(N ) tends
to a finite value �0.049 as 1/N → 0. (d) Evolution of 〈d2〉 for
N = 4000 as the activity is cycled at finite rate between a = a1 > ac

and a = a2 < ac. The blue curve represents the steady-state value.
The hysteretic response gets sharper as da

dt
decreases.

cycles gives rise to diffusive behavior and structural relaxation
at large times. On the other hand, in the solid phase (a < ac),
the exponential tail in P (δxi) disappears and is replaced by a
narrow distribution characterized by an average displacement
per cycle that is considerably smaller. We show below that
these small displacements do not produce diffusive but only
localized dynamics.

Crucially, the behavior of P (δxi) changes abruptly when a

crosses ac. We quantify this observation using a dynamic order
parameter for this phase change: 〈d2〉 = 〈| �di(t)|2〉, where the
brackets represent an average over time and particles in steady
state. (To check if the system has reached a steady state,
we measure the averaged one-cycle displacement squared∑

i | �di(t)|2 as a function of simulation time t .) A similar
quantity was defined in the context of the yielding transition
in oscillatory shear [34,35]. In Fig. 2(b), we plot 〈d2〉 as a
function of activity for different system sizes. The flowing
phase is characterized by large particle displacements with
〈d2〉 � 0.01, whereas in the arrested phase, 〈d2〉 is about 20
times smaller. Furthermore, 〈d2〉 jumps discontinuously at a
well-defined critical activity, ac(N ). To determine ac(N ) we
perform eight independent simulations from different initial
configurations at each activity. We define ac such that the eight
runs remain diffusive for a > ac after a large time, t = 104. In
addition to the sharpness of the phase change, we also observe
finite-size effects, since ac(N ) decreases weakly with N . As
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FIG. 3. (a) Mean-squared displacements are diffusive for a > ac,
but remain localized for a < ac, with a sharp discontinuity at ac. (b) A
similar discontinuous behavior is observed for the self-intermediate
scattering function Fs(q,�t), which decays rapidly to 0 above ac, but
does not decay below ac. (c) shows the typical time scales (D−1 and τ )
and dynamic length scales (ξ1 and ξτ ), which only increase modestly
by about 1 decade as a → a+

c . Below ac we find a metastable flowing
phase where D−1 and τ can be measured (isolated points) before the
system fully arrests. (d) shows the inverse diffusion constant D−1 as
a function of activity a when a finite frequency bandwidth �ω/ω is
introduced, showing that the arrested phase is now characterized by
a very low diffusivity.

shown in Fig. 2(c), when plotted against 1/N , it is clear that
ac extrapolates to a finite value ac ≈ 0.049 when N → ∞.

We substantiate further the discontinuous nature of the
transition by studying hysteresis effects. In Fig. 2(d), we
measure how 〈d2〉 changes as we slowly cycle the activity
a(t) between a = a1 > ac and a = a2 < ac at a constant rate
da
dt

. We obtain the evolution for 〈d2〉 by averaging over 103

such cycles. We observe hysteresis cycles that become sharper
and narrower as the sweeping rate becomes slower. Such
phenomenology is again representative of first-order phase
transitions.

We now turn to the long-time dynamics and measure the
mean-squared displacement (MSD) at steady state: �r2(�t) =
〈|�ri(�t) − �ri(0)|2〉 [see Fig. 3(a)] . In the flowing phase (a >

ac), the system becomes diffusive at long times �r2(�t →
∞) ≈ 4D�t , which defines the diffusion constant D. In
the arrested phase instead, the MSD saturates to a small,
finite value at long times, demonstrating particle localization
in this regime. As a result, we find that D > 0 above ac

and D = 0 below, with an abrupt change at ac, as shown
in Fig. 3(c). This sharp change in the long-time dynamics
is also detected using the intermediate scattering function:
Fs(q,�t) = 〈ei �q·[�ri (�t)−�ri (0)]〉, which decays from 1 to 0 when
particles move on average a distance 2π/|�q|. In Fig. 3(b),
we show the time decay of Fs(q,�t) for q = 2π , which
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corresponds to particles diffusing over a distance comparable
to their diameter. Above ac, Fs(q,�t) decays to 0 relatively
rapidly. We extract a relaxation time τ as Fs(q,τ ) = 1/e, with
again a discontinuous change between the two phases. We
extract a relaxation time τ as Fs(q,τ ) = 1/e, and so τ = ∞
below ac.

In Fig. 3(c) we report D−1 and τ as a function of activity
a. Both measures of long-time dynamics increase modestly
by about 1 decade as a → a+

c , and they do not diverge. In
addition, just below ac, we find that the flowing phase can
be “metastable” for a long time of order 30τ before suddenly
evolving toward the arrested phase. Within this metastability
window, long-time dynamical properties can be measured and
we plot D−1 and τ for this metastable liquid phase as isolated
points in Fig. 3(c), which appear as the continuation of data
at a > ac. These observations confirm that both time scales
do not diverge at ac and illustrate the first-order nature of the
phase transition at ac.

In Fig. 3(c), we also plot two dynamic correlation length
scales measured in the flowing phase which only increase
modestly without divergence at ac. These dynamic length
scales are obtained from analysis of a four-point dynamic
structure (see [36] for details about this classic measure of
spatially heterogeneous dynamics). In particular, we have
studied dynamic correlations both over a delay time �t = 1
to probe spatial correlations of the one-cycle displacement
map [see Fig. 1(b)], which gives us the one-cycle correlation
length ξ1. We also measured the dynamic length scale ξτ

characterizing the long-time dynamics by setting �t = τ .
Both length scales increase modestly as a → a+

c , revealing
collective motion in the flowing phase in the absence of any
criticality at the fluidization transition.

Finally we discuss what happens if the frequency of
the driving force becomes distributed, instead of a single
monochromatic frequency ω = 2π/820τ0. Assuming the driv-
ing frequency for each particle is drawn from a flat distribution
over the interval [ω − �ω

2 ,ω + �ω
2 ], we discover that, at steady

state, the long-time dynamics becomes diffusive for all values
of a (see Sec. I in the SM for more details). From these
long-time dynamics, we plot the inverse diffusion constant
D−1 as a function of activity a in Fig. 3(d) for different
frequency bandwidths �ω. We observe a clear discontinuous
transition from a slow liquid (D ∼ small) for a < ac to
a fast liquid (D ∼ large) for a > ac. The values of D in
the fast liquid phase are not strongly affected by �ω and
neither is the critical activity ac. In the slow liquid phase,
however, D becomes progressively slower as �ω → 0 and
finally the arrested-liquid transition is recovered in the limit

of monochromatic frequency. Next, we also consider what
happens when we prescribe a frequency distribution P (ω) with
mean 2π/820τ0 and variance �ω2 to each particle’s diameter
σi(t). We also find the discontinuous transition remains robust
as long as �ω is narrow enough (see Sec. II in the SM). Finally
we consider a random but time-correlated noise in σi(t) with
correlation time 820τ0 (Ornstein-Uhlenbeck noise; see Sec. III
in the SM). In this case the discontinuous transition becomes
a glass transition with diverging time scales and length scales.

In conclusion, we have introduced a microscopic model
for active materials where local energy injection stems from
active change of the particle sizes. We consider different
types of size fluctuations (monochromatic frequency, mixed
frequencies, and time-correlated noise). This model is inspired
by experimental observations of volume fluctuations of cells
in epithelial tissues [16,17]. For the first two cases, our
model exhibits a discontinuous arrested (or nearly arrested)
to liquid phase transition as the amplitude of self-deformation
is increased. This transition is strikingly different from
observations in self-propelled particles [25–27] in which
continuous slowing down of several decades can be observed,
accompanied by growing dynamic length scales, reminiscent
of glassy dynamics in dense fluids [24]. It also differs markedly
from the static transition discovered in the vertex model,
which is akin to a continuous rigidity transition [21]. We
propose that a better analogy is with the yielding transition in
periodically driven soft amorphous solids, where irreversible
rearrangements and particle diffusion result from applying
a mechanical forcing above the yield stress. Evidence that
yielding corresponds to a nonequilibrium dynamic first-order
transition is mounting [34,35,37], the difference with our
system being the scale at which the mechanical force is
acting. Interestingly, when we consider time-correlated noise
in the particle size fluctuations, this transition becomes a
glass transition. This is as we expect because we no longer
have a characteristic frequency in our system and thus we
no longer have universality with the yielding transition of
a periodically driven system. Instead, a better analogy to
this type of forcing is that of self-propelled particles. It is
interesting to test if fluidlike dynamics observed in biological
tissues might fit into one of these three different kinds of size
fluctuations.
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The main ingredient in our active self-deforming particle model, is to allow the diameter of each particle to change
with time t. Suppose we denote the diameter of particle i as σi(t). We then specify a deterministic (or possibly
stochastic) dynamics for σi(t), separate from the dynamics for ri(t) (or the particle’s position). This will then break
the microscopic detailed balance because we are injecting energy to the system locally. Our main result in the
main text is to draw a connection between our active system to yielding transition in driven systems. This suggests
that active and driven systems (although both are distinct classes of non-equilibrium systems) may share the same
universality class at the fluidization transition.

In the main text, we consider a deterministic sinusoidal oscillation in the particle’s diameter σi(t) with a single
driving frequency ω:

σi(t) = σ0
i [1 + a cos(ωt+ ψi)], (1)

where ψi is a random phase difference for each particle and a is the activity parameter. The driving frequency
ω = 2π/(820τ0) is the same for all particles and is taken to be much longer than the energy relaxation timescale τ0.
We then discover a discontinuous fluidization transition at some critical activity ac.

In this Supplementary Information (SI), we explore three other possible modes of particle’s size fluctuations. In
the first part, we allow different driving frequencies ωi for each particle i. In this case we find that the discontinuous
transition remains robust, however, the fully arrested phase now becomes a nearly arrested liquid phase with very low
diffusion constant. Thus we discover a novel route to a kind of liquid-liquid transition. In the second part, we consider
a distribution of frequencies (with the same distribution for each particle). Here, we discover that the discontinuous
fluidization transition discussed in the main text remains robust as long as the width of the distribution remains
narrow enough, as expected. Finally in the last part, we consider a random size fluctuation with a coloured noise. In
this case the discontinuous transition is destroyed and should become a non-equilibrium glass transition with forces
that have a finite persistence times. But the model then becomes a physically different active system, where the very
idea of particle reversibility is lost.

These additional results demonstrate that oscillatory driving (with some characteristic frequency) is necessary for
the transition, thus, strengthening our hypothesis about similarity to the yielding transition in periodically driven
systems.

I. MIXED FREQUENCIES FOR DIFFERENT PARTICLES

Instead of the same driving frequency ω for all particles, here, we shall consider a different driving frequency ωi for
each particle i:

σi(t) = σ0
i [1 + a cos(ωit+ ψi)] (2)

where ωi is taken randomly from a uniform distribution on the interval [ω0 − ∆ω
2 , ω0 + ∆ω

2 ]. The average frequency,
ω0, is taken to be at 2π/(820τ0) or the same as the monochromatic frequency used in the main text, so that we can
make a direct comparison with the results in the main text. Note that in this model, the global packing fraction is
no longer strictly conserved, but it can fluctuate up to 0.3% (for ∆ω/ω0 . 0.02%) around its initial packing fraction
φ = 0.94.

We perform additional simulations with N = 1000 for different values of activity a. Here, we consider two values
of ∆ω/ω0: 0.002% and 0.02%. For each simulation, we start from an initially random configuration and measure the
average displacement squared between time t and time t+ T , where T = 820τ0, as defined in the main text:

d2(t) =
1

N

N∑
i=1

|ri(t+ T )− ri(t)|2 (3)
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to check if the system has reached a steady state or not.
At steady state, we can then measure the mean squared displacement (MSD) as a function of delay time ∆t:

∆r2(∆t) =

〈
1

N

N∑
i=1

|ri(∆t)− ri(0)|2
〉

(4)

where the angle bracket indicate ensemble averaging over 80 independent simulations from different initial configura-
tions but with the same a and ∆ω/ω0.

Fig. ??(a) shows ∆r2 as a function of ∆t for different a’s at fixed ∆ω/ω0 = 0.02%. The long time dynamics
(∆t → ∞) of ∆r2 appears to be diffusive for all values of activity a. Thus we can estimate the diffusion constant
D as a function of activity a. Fig. ??(a) also suggests a transition from a slowly-relaxing liquid (D ∼ small) to a
fast-relaxing liquid (D ∼ large) at some critical activity 0.05 < ac < 0.055.

To quantify this more precisely, we plot the inverse diffusion constantD−1 as a function of a in Fig. ??(b) for different
values of frequency bandwidth ∆ω/ω0. D−1 is proportional to the relaxation timescale of the liquid phase. Here we
see that D jumps discontinuously at the critical activity ac ' 0.05. Thus we demonstrate that the discontinuous phase
transition remains robust with respect to mixed driving frequencies (as long as the frequency bandwidth is narrow
enough). We also discover that the arrested phase (when the driving is fully monochromatic) is now replaced by a
liquid phase with extremely low diffsuion constant (for a < ac), which is characterised by a relatively small diffusion
constant D (the particles have moved less than one particle diameter after 1000 cycles!). In the limit ∆ω → 0,
or approaching the monochromatic frequency limit, the relaxation timescale for the slow liquid becomes longer and
longer and eventually recovers the arrested phase described in the main text. This novel liquid-liquid transition has
been observed in some equilibrium systems, but this is the first example where it has been observed in active systems.

Fig. ??(c) shows the autocorrelation function (see main text for definition) of the steady state liquid phase as
a function of activity a at fixed ∆ω/ω0 = 0.02%. This also indicates a liquid-liquid transition at critical activity
ac. It might be interesting in the future to explore if similar liquid-liquid transition may also be observed in active
self-deforming systems such as tissues as well as in periodically sheared systems.
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FIG. 1. (a) shows the steady state mean squared displacement ∆r2 as a function of delay time ∆t for different activities a’s at
fixed ∆ω/ω0 = 0.02%. (b) shows the inverse diffusion constant D−1 as a function activity a for different frequency bandwidth
∆ω/ω0 = 0%, 0.002%, and 0.02% (c) shows the autocorrelation function Fs(q,∆t) as a function of delay time ∆t at fixed
∆ω/ω0 = 0.02%.

II. PRESCRIBING A FREQUENCY SPECTRUM IN EACH PARTICLE’S SIZE FLUCTUATION

In the second part, we now prescribe some frequency distribution P (ω) for each particle i (all particles having the
same distribution P (ω), which is quite different from the part I). The size fluctuation of particle i can then be written
as a Fourier transform of P (ω):

σi(t)− σ0
i

aσ0
i

=

∫
dω P (ω)ei(ωt+ψi) (5)
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(only the real part of the complex number is considered). In the case of monochromatic driving frequency: P (ω) =
δ(ω − ω0), we will then recover the monochromatic sinusoidal fluctuation discussed in the main text:

σi(t)− σ0
i

aσ0
i

= ei(ω0t+ψi) (6)

where ω0 = 2π/(820τ0).
Now let us consider, instead, a frequency spectrum centred around ω0 with a width ∆ω. Without loss of generality,

we can assume P (ω) to be Gaussian:

P (ω) =
1√

2π∆ω2
e−

(ω−ω0)2

2∆ω2 . (7)

Substituting Eq. (??) to Eq. (??), we obtain the size fluctuation for particle i:

σi(t)− σ0
i

aσ0
i

= e−
∆ω2

2 t2 cos(ω0t+ ψi). (8)

Thus the particle’s size still oscillates sinusoidally with frequency ω0 like in the main text except that the oscillation

now decays exponentially due to the prefactor e−
∆ω2

2 t2 .
Consequently if the width of the frequency spectrum ∆ω is narrow enough, the oscillation decays much longer than

the observation time and we expect the results obtained in the main text to remain unchanged. To estimate the
maximum value of ∆ω, we note that the decay timescale in the particle’s size oscillation is of order ∼ 1/∆ω. In the
main text, the longest relaxation time scale is given by τα at the critical value ac, which is of order ∼ 102 in units of
periods (or 2π/ω0). Thus the we require the frequency bandwidth to be less than: ∆ω/ω0 . 0.01 = 1%. It should
also be remarked that, in principle, it is possible to have a frequency-dependent phase difference ψi(ω), in which case,
the situation may be similar to one described below.

III. RANDOM SIZE FLUCTUATION WITH COLOURED NOISE

Finally, we consider a random size fluctuation of particles’ diameters as follow:

σi(t) = σ0
i (1 + fi(t)) (9)

where fi(t) is an Ornstein-Uhlenbeck process satisfying:

ḟi = − 1

T
fi +

√
2

T
aηi(t) (10)

with T as the relaxation timescale and a as the noise strength. Here, a corresponds roughly to activity in the oscillatory
driving model. ηi(t) is a Gaussian random noise with zero mean and unit variance. fi(t) is then effectively a coloured
noise with zero mean and variance:

〈fi(t)fj(t′)〉 = δija
2e−|t−t

′|/T . (11)

Eq. (??) can be solved numerically as follows:

fi(t+ ∆t) = fi(t)−∆t
1

T
fi(t) +

√
2∆t

T
aηi(t). (12)

Fig. ?? shows the typical time evolution of one particle’s diameter as a function of time t for different relaxation times
T ’s and activities a’s.

We now perform simulations with N = 4000 for different values of activity a. Here we fix T to be 820τ0 to compare
with the results of the main text. Again we measure d2(t) to check if the system has reached a steady state or not.
At steady state, we can then measure the MSD, ∆r2 as a function of delay time ∆t as before. The result is plotted in
Fig. ??(a). As can be seen from the MSD, the long time dynamics of MSD becomes more sub-diffusive for decreasing
a. This is reminiscent to glass transition with the glass transition point close to a = 0. Similarly the auto-correlation
function (Fig. ??(b)) indicates a diverging relaxation timescale as a→ 0.
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FIG. 2. (a) shows the time evolution of one particle’s diameter for two different relaxation times T ’s (a is fixed to be 0.01). (b)
shows the time evolution of one particle’s diameter for two different activities a’s (T is fixed to be 820τ0).

Thus by switching the dynamics for σi(t) from oscillatory to noisy, we destroy completely the discontinuous phase
transitions. This is as we expect because in yielding transition, the phase transition coincides with the breakdown of
microscopic reversibility. In order for the notion of microscopic reversibility to be meaningful, we require some forms
of oscillatory driving with some characteristic frequency. In the Ornstein-Uhlenbeck type of size fluctuation, we no
longer have this periodicity and thus the phase transition is destroyed and instead the physics becomes similar to
the one of self-propelled particles where active forces are characterized by finite persistence times. This situation has
been studied before and falls into a different universality class. Overall, these results strengthen our hypothesis for
the active yielding transition.
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FIG. 3. (a) shows the mean squared displacement (MSD) ∆r2 as a function of delay time ∆t for different activities a’s. (b)
shows the autocorrelation function Fs(q,∆t) as a function of delay time ∆t.
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FIG. 4. shows the distribution of particles’ displacements δxi at steady state (see main text for definition) for different system
sizes for (a) cyclic swelling model with monochromatic frequency as in the main text, and (b) random swelling model with
coloured noise.


