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The recent implementation of a swap Monte Carlo algorithm (SWAP) for polydisperse glass forming mixtures
bypasses computational sluggishness and closes the gap between experimental and simulation timescales in
physical dimensions d = 2 and 3. Here, we consider suitably optimized systems in d = 2, 3, ..., 8 to obtain
insights into the performance and underlying physics of SWAP. We show that the speedup obtained decays
rapidly with increasing the dimension. SWAP nonetheless delays systematically the onset of the activated
dynamics by an amount that remains seemingly finite in the limit d — oo. This shows that the glassy dynamics in
high dimensions d > 3 is now computationally accessible using SWAP, thus opening the door for the systematic
consideration of finite-dimensional deviations from the mean-field description.
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Introduction. A glass emerges when a supercooled lig-
uid past its crystallization point becomes so sluggish that it
falls out of equilibrium. Upon cooling or increasing packing
fraction, the dynamics of glass formers exhibits a marked
slowdown beyond the dynamical onset, thus making this
outcome inescapable [1,2]. In mean-field descriptions, the
structural relaxation time exhibits a power-law divergence at
the dynamical transition [3]. In any finite dimension, although
activated processes wash out this transition, the rapid growth
of the associated relaxation time nonetheless impedes equili-
bration of low-temperature or high-density liquids. Standard
simulation protocols, in particular, do not easily explore the
regime beyond the dynamical transition, because structural
relaxation is already too sluggish.

The application of the swap Monte Carlo algorithm
(SWAP), which exchanges the identity of pairs of particles, to
complex mixtures sidesteps this difficulty [4-6]. By consider-
ing systems with, for instance, a continuous size polydisper-
sity, one can follow the equilibrium liquid up to unprecedented
high packing fractions or low temperatures. Tuning the range
and functional form of polydispersity provides systems for
which the sampling efficiency of swap moves is maximal
within the liquid state, while remaining robust against crystal-
lization and fractionation [7], and keeping equilibrium proper-
ties unaffected. For properly chosen polydispersities in d = 3
this procedure has recently provided a speedup of at least 10'°
compared to standard dynamics, matching the experimental
timescales [7,8], and in d = 2 it has given access to timescales
that are truly cosmological [9]. This computational progress
has triggered the exploration of new glass physics in computer
simulations, notably low-temperature anomalies [10,11], the
Gardner transition [10,12], the rheology of glasses [13], the
extension of the jamming line [14], and the ultrastability of
vapor-deposited glasses [15].
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The efficiency of SWAP has also triggered theoretical
activity aimed at better understanding its physical origin and
its physical implications for the glass transition [16]. Ikeda
et al. [17] present a replica calculation of a mean-field glass
model proposing that SWAP and physical dynamics are ruled
by distinct dynamical transitions. A qualitatively similar result
is obtained by Szamel who obtains two dynamical transitions
for the two dynamics [18]. Brito ef al. [19] obtain a similar
result, and interpret the dynamical transition as an onset of
mechanical rigidity that is again shifted by SWAP. Finally,
Berthier ef al. [20] argue that the onset of thermal activation
past the dynamical transition is also considerably affected by
SWAP. There is thus a general consensus that SWAP can
delay the (avoided) dynamical transition by an amount that is
system dependent, and can speed up the dynamics even past
the dynamical transition.

However, because dynamical transitions are avoided in any
finite d [21], other physical processes might also explain
the dramatic change in dynamics. In particular, structural
imperfections closely tied to local geometry [22], which are
putatively important in the dynamics of low-dimensional glass
formers, could impact SWAP efficiency. Distinguishing one
contribution from the other can be achieved by consider-
ing how SWAP performance evolves with increasing d. A
nonvanishing SWAP efficiency in the limit of d — oo or a
perturbative correction in 1/d would suggest that the mean-
field dynamical transition is indeed shifted, while an exponen-
tial suppression would suggest that nonperturbative features
associated with geometry dominate. Because numerical work
on SWAP has thus far only been concerned with physical
dimensions, d = 2 and 3, distinguishing between these sce-
narios is not currently possible.

Resolving this question would not only shed light on the
physical origin of the glassy slowdown, but help devise novel
algorithms that further bypass it. Interestingly, sidestepping
the mean-field dynamical threshold could also be key to
general algorithmic improvements in hard problems, such as
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FIG. 1. Structural relaxation time of standard (open symbols)
and SWAP dynamics (solid symbols) for various particle size distri-
butions P(o') with A = 10% in d = 4: flat (circles), 1/o* (squares),
and 1/0* (triangles). For a given A both dynamics are essentially
unaffected by the functional form of P(o).

statistical inference, high-dimensional optimization, and deep
learning [23]. A fundamental grasp of the effectiveness of
SWAP dynamics could thus bolster advances far beyond the
problem at hand. More immediately, if one could generically
push the current limitations of high d simulations, crucial
questions in glass physics could be tackled [21,24,25]. In this
Rapid Communication, we study the dynamics of suitably
optimized polydisperse mixtures of hard spheres in various
spatial dimensions, so as to systematically approach the mean-
field, d — oo description, and provide microscopic insight
into the underlying physics and computational efficiency
across a broad range of dimensions.

Simulation model. We consider size polydisperse systems
with N hard spheres in a hypercubic box of constant volume
V, under periodic boundary conditions ind = 2, 3, ..., 8. We
choose N = 2000 ford < 6and N = 7000 ind = 8 [26]. The
size distribution function has the form P(c) = K/o3, with
normalization constant K for ¢ € [Omin, Omax ], Where o, and
Omax are the minimum and the maximum diameter values,
respectively. The average diameter & = f:“_“‘“ P(o)odo sets
the unit of length, and the standard deviation of the size
distribution, A, quantifies the degree of polydispersity (see
simulation details and model parameters in Ref. [27]). For a
fixed A, this specific choice of size distribution function does
not significantly affect the system dynamics. Figure 1, which
explicitly compares the dynamics at fixed A and various P(o)
in d = 4, confirms that A is the most relevant variable. Our
analysis should therefore be reasonably independent of the
specifics of the model studied.

Standard and SWAP simulations are run for different A
and d. Both dynamical protocols include basic single-particle
translational moves along a vector randomly drawn within
a d-dimensional hypercube of side §¢; SWAP includes ad-
ditional diameter exchanges between two randomly chosen
particles, attempted with probability p = 0.2 (setting p = 0
recovers standard dynamics). While 0 < p < 0.2 monoton-
ically increases sampling efficiency, for p = 0.2 efficiency

saturates, and hence additional swap moves wastefully slow
down simulations [7]. For each volume fraction ¢, the pres-
sure P is measured using pair correlations [28,29], to com-
pute the unitless reduced pressure Z = BP/p for the number
density p = ¢/Vy, with V4 being the average volume of a
d-dimensional hypersphere.

Equilibration is assessed by the complete decay of the self-
part of the particle-scale overlap function

1 N
Q@) = NZG(a_ [ri(2) —r;(0)]), ey

i=1

where ® is a step function and a = 0.36 is a microscopic
length chosen to be close to the typical particle cage size; Q(t)
thus represents the fraction of particles with displacement
smaller than a after t+ Monte Carlo (MC) sweeps, each con-
sisting of N moves. The associated structural relaxation time
7, is defined such that Q(t,) = e~'. We define the relaxation
time for both the standard (z5'Y) and SWAP (z,"*") dynamics.
In all dimensions studied, SWAP equilibrates systems far be-
yond what is computationally accessible with standard Monte
Carlo. After achieving equilibration with SWAP, the system is
evolved using standard dynamics.

Results. In physical dimensions, crystallization competes
with equilibration of deeply supercooled liquids [30]. For
instance, for A < 8% in d = 3 crystallization at high ¢ is
unavoidable. For d > 3, by contrast, crystallization does not
interfere with the metastable fluid phase even for arbitrarily
low A. The nucleation time at finite A in d > 3 is thus as
equally out of computational reach as it is for monodisperse
systems (A = 0) [31-33]. In all d, however, size fractionation
may take place at high A and ¢. In d = 3, fractionation
appears at A 2 10%, which helps crystallization [34,35]. In
practice, this only happens when SWAP is used [20], because
composition fluctuations leading to fractionation are then
much faster. SWAP thus not only accelerates the sampling
of the metastable fluid, but also changes the glass-forming
ability of the system and forces the use of A > 20% ind = 3.
In d = 4, by contrast, fractionation only appears at ¢ = 0.43
for A 2 15%, and is further suppressed at higher A (see
dynamic and static observables in Ref. [27]). For each d, a
A window, within which SWAP efficiency is reasonably good
and fractionation (with or without crystallization) does not
interfere, can thus be found. Qualitative and even quantitative
aspects of the standard Monte Carlo dynamics are otherwise
not remarkably affected by changing A, as expected from
previous studies of naturally polydisperse systems, such as
colloidal suspensions [36].

A strong dependence of the SWAP dynamics on A is ob-
served in the dynamically sluggish regime, beyond the onset
of slow diffusion at ¢y [Figs. 2(a)-2(d)]. As an illustration, we
consider the evolution of the SWAP efficiency ratio 75'¢/7,"*
measured at a fixed tjfd /To with 79 = 17,(¢o). In Fig. 3(a),
we specifically consider 75¢/79 = 5 x 103, but the results
are qualitatively robust for 5'9/7y > 1 (see dynamical and
static observables in Ref. [27]). At low A, SWAP dynamics
is indistinguishable from standard dynamics and its efficiency
increases monotonically. This efficiency, however, essentially
saturates beyond a certain A, resulting in its overall sigmoidal
growth. We empirically fit the results to a generalized lo-
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FIG. 2. SWAP efficiency t:¢/75%%® as a function of the relaxation
time of the standard dynamics (representing the sluggishness) for
different polydispersities A in (a) d =3, (b) d =4, (c)d =5, and
(d) d = 6. Sluggish dynamics at low A cannot be reached in d = 3
because crystallization interferes. In all d, SWAP performs better as
A increases, and saturates at larger A.

gistic function, S(A) = Aexp(aA)/[B + exp(bA)], with fit
parameters A, a, b, and B (where A is the plateau height, B
controls the onset of saturation, and a, b = 1), to quantify the
crossover polydispersity A defined such that S(Ag) = 0.9A.
We obtain Ag~ 10% ind =3,~7.5% ind =4,~7%ind =5,

and ~6.5% in d = 6. In d =2 and 3, the trend is almost
hidden by crystallization, and had gone unnoticed in previous
work. The shrinking of A, with increasing d is nonetheless
very clear. No theoretical framework formally predicts the
saturation with A and the associated scaling with dimen-
sion. Physically, we interpret these results as follows. The
amplitudes of particle size fluctuations, which help uncage
particles in SWAP dynamics, increase with A, which accounts
for the initial growth of efficiency with A. The diffusion
of particle diameters beyond a typical size, however, itself
becomes slower than the structural relaxation when A is large,
because the diameter and position dynamics are intimately
coupled [7]. Increasing A thus no longer improves SWAP
efficiency, and this saturation develops earlier in larger d,
where the vibrational dynamics (or, loosely speaking, caging)
itself occurs over a length scale decreasing with d.

The most remarkable feature of the efficiency results is
the weakening of SWAP performance with increasing d.
Figure 3(b) shows that the efficiency decays rapidly with
increasing d (nearly exponentially, at least up to d = 8)
for various t5%/7y. The decay of SWAP performance be-
comes more prominent when estimated beyond the accessible
regimes of the standard dynamics, such as where 15" " /19 =
5 x 103—see Fig. 3(c) (and dynamical and static observables
in Ref. [27]).

In order to examine explicitly whether or not this strong
suppression is due to nonperturbative effects, we consider how
SWAP impacts the avoided mean-field dynamical transition
@q. We estimate ¢q for both standard dynamics and SWAP
by fitting the growth of the relaxation time to the critical
scaling form 7, o (¢q — @)~ [21] (see the mode coupling
analysis in Ref. [27]). As expected [37], this scaling form
captures the data increasingly well as d increases. In d = 2,
it does not have a good regime of validity, but its validity
eventually reaches up to three decades in the computationally
accessible regime. We find that y is fairly insensitive to both
dimension [21] and polydispersity [38]. Three features of the
results are particularly noteworthy. First, collapsing r(;j‘d /To by

rescaling ¢/ <p§td clearly reveals that SWAP postpones the pu-
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FIG. 3. (a) Evolution of SWAP efficiency t59/75"® with A, measured at 8¢/7y = 5 x 103. Saturation to a plateau height, A, occurs at
a lower A and at a lower A as d increases. (b) Same quantity (at saturation) measured at r;‘d /To =5 x 10*, 5 x 103, and 103 as a function
of d. Exponential fits are denoted as solid lines. (c) Estimated SWAP efficiency at 5% /1y = 5 x 103, which is roughly the edge of the
computationally accessible regime using SWAP. The dramatic speedup in d = 3 decreases rapidly with d, but remains larger than four decades

ind = 8.
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FIG. 4. (a) The structural relaxation time ‘L';‘d (open symbols)
collapses for different d upon rescaling ¢/¢3¢. The gap between
SWAP and standard dynamics shrinks and saturates with increasing
d. For d =2 and 3, we set A =23% and for d > 3, A = 10%.
(b) The relative gap between the dynamical transition densities for
the two different dynamics (g5 — ¢5'4)/ @5 also saturates at high A
(inset) and the saturation height asymptotically approaches a nonzero
value (=0.037) as ~1/d.

tative dynamical transition in all dimensions [Fig. 4(a)]. Sec-
ond, while ¢4 monotonically grows with polydispersity [39],
its relative impact ()" — 59)/¢54 eventually plateaus on
a scale consistent with the estimates for Ay [see Fig. 4(b)].
This suggests that the shift of dynamical transition is
directly correlated with the SWAP efficiency, as both quan-
tities evolve similarly with A. Third, the plateau height, h =
(@™ — ) /@59 at the maximum polydispersity considered
in Fig. 4(b), decays to a nonzero value (~0.037) with a
correction that scales with dimension as ~1/d. Our results
thus suggest that the gain in SWAP efficiency survives in the
limit d — 00, and that perturbative corrections survive all the
way down to d = 3, independently of nonperturbative effects.
How can one explain the relatively rapid suppression of
swap efficiency despite the slow decay of the density gap
(03" — 0§ /@3 to a nonzero value? While the relative
increase of ¢q is qualitatively consistent with mean-field
treatments in d = 3 [17,18], the saturation and the asymptotic
behavior of the gap with d were not anticipated. Plugging this
result into the critical scaling forms 7, = A(¢q — ¢)~7, and
we obtain an approximate expression for the efficiency ratio

_L,;td/_[swap ~ _L,;td (hwgsltd)y~ (2)

For a given value of 75, the key contribution to the efficiency
gain therefore arises from the term (hp§®)?. Because asymp-
totically ¢3¢ ~ d 27 [21], this gain decreases rapidly with

increasing d—qualitatively consistent with Figs. 3(b), 3(c)

and 4(b). Because t, diverges upon approaching ¢4 in high
dimension, however, one should always be able to identify
sufficiently sluggish systems for SWAP to speed up sam-
pling. In intermediate dimensions, the approach remains suffi-
ciently productive to obtain equilibrium configurations much
beyond the dynamical transition of the standard dynamics.
Figure 3(c) provides a rough estimate of how useful SWAP
can be in accessing regimes that are not accessible by the
standard dynamics in high dimensions. For instance, in d =
8 a speedup of roughly 10* should remain computationally
achievable.

Conclusion. We have shown that SWAP improves sam-
pling in dimensions d > 2 by generically delaying the dy-
namical transition that indicates the emergence of activated
dynamics in the standard dynamics. This finding in itself
does not directly reveal the microscopic nature (dynamical
or thermodynamic) of the standard dynamics in the regime
@34 < ¢ < """, where SWAP provides most of its dynam-
ical speedup, but offers a platform for assessing this ques-
tion in the future. Because the gap between the dynamical
transition of the standard and the SWAP dynamics remains
finite in the limit d — oo, SWAP can efficiently be used to
study pure glass physics in reasonably large dimensions, far
from the regime in which significant local structure [22] or
orientational ordering [40] might interfere. In other words,
although caging imperfections go away exponentially quickly
with increasing dimension, SWAP can still break cages in high
d. Even within this analysis, the two-dimensional speedup is
remarkably large, and techniques specifically tailored to iden-
tify local structural weaknesses, (e.g., Refs.[41-44]) might
thus help obtain additional microscopic insights. More gen-
erally, our observations suggest that the standard dynamical
transition might not be as strong an algorithmic constraint as
previously conceived in problems ranging from physics to in-
formation theory. If a proper sampling scheme can be devised
and exploited in those problems, other stunning algorithmic
advances might thus be within reach.

Data associated with this work are available from the Duke
Digital Repository [47].
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