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We show that non-Brownian suspensions of repulsive spheres below jamming display a slow
relaxational dynamics with a characteristic timescale that diverges at jamming. This slow timescale is
fully encoded in the structure of the unjammed packing and can be readily measured via the vibrational
density of states. We show that the corresponding dynamic critical exponent is the same for randomly
generated and sheared packings. Our results show that a wide variety of physical situations, from
suspension rheology to algorithmic studies of the jamming transition are controlled by a unique diverging
timescale, with a universal critical exponent.
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Introduction.—Disordered particle packings solidify
when they are compressed [1–4]. In the absence of thermal
motion [5–8], as in non-Brownian suspensions [9], emul-
sions of large droplets [10], foams [11], and granular
materials [12], this phenomenon is a jamming transition
[4]. Athermal frictionless spheres [13,14] represent an
idealized model to study the jamming criticality [15,16].
At the critical packing fractionφ ¼ φJ, the system is isostatic
[14], the contact number is z ¼ 2d where d is the spatial
dimension, and the system is mechanically marginally
stable [17]. In the jammed phase φ > φJ, the mechanical
response [14,18–22] and low-frequency vibrational modes
[23–26] exhibit algebraic critical behavior. Theoretical
developments [27,28], effective medium theory [29,30],
and an exact analytic solution in the d → ∞ mean-field
limit [31–33] provide a good understanding of the jammed
phase, including numerical values of critical exponents.
By contrast, our current understanding of the unjammed

phase φ < φJ is limited, in particular regarding dynamics.
An important physical observable in this regime is the
diverging shear viscosity of non-Brownian suspensions,
η ∝ ðφJ − φÞ−ν [9,34–36]. Even for idealized frictionless
spheres [34,37], exact mean-field predictions for ν are not
available, but several distinct predictions exist: ν ≈ 2.83 in
Refs. [38–40] and ν ¼ 2 in Ref. [41]. Measured values are
widely spread in the range ν ∈ ½2; 4� [9,34,37,41–46].
Physical situations where dynamics of unjammed packings
is relevant go well beyond steady state shear rheology. In
emulsions, nearly jammed packings are prepared by dis-
persing the droplets in a solvent and performing centrifu-
gation or creaming under gravity [10,47,48], during which

droplets relax. Foams near jamming are also prepared by
foaming solutions and injecting the bubbles into the sample
chamber [49–51], during which bubbles can relax. These
materials can also be probed rheologically by performing
step stress or strain experiments, monitoring the mechanical
response. In simulations, packings are often prepared by
relaxing a random configuration to mechanical equilibrium
[14]. In the unjammed phase φ < φJ, relaxation stops when
particles are just touching, and z < 2d [52]. Critical slow-
ing down of relaxation algorithms near jamming was
reported [53].
Our work generalizes and unifies several pieces of

information that are known from the analysis of computer
models. The diverging shear viscosity is not associated to a
slowing down of particle diffusion, as would be the case in
equilibrium [54]. In fact, particle motion accelerates near
jamming [55,56]. Instead, the relaxation dynamics after
sudden shear cessation is characterized by a timescale τ that
diverges as φJ is approached [45], with the observation
that η ∝ τ ∝ ðΔzÞ−3.7 in d ¼ 3, where Δz ¼ 2d − z [46].
Strikingly, ν seems to depend on dimensionality [46],
unlike other critical exponent of jamming [14] and theo-
retical predictions [38–41]. In Ref. [37], a dynamical matrix
was constructed for unjammed hard spheres packings under
shear. Its spectrum displays, in addition to more traditional
signatures of soft modes near jamming, an isolated low-
frequency mode at some ωmin ≈ Δz1.5 for d ¼ 3. This mode
has no analog above jamming, and it is directly connected
with the shear viscosity, η ≈ ω−2

min [37]. A theoretical
argument to explain this mode was also proposed, which
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predicts ωmin ≈ Δz1.7 [38–40]. Finally, Refs. [13,57] stud-
ied the relaxation dynamics of random packings of soft
particles below jamming after applying a step shear strain.
The ensuing relaxation dynamics slows down algebraically
as φ → φJ, with τ ∝ ðφJ − φÞ−3.3 for d ¼ 3 [57].
Here, we show that all these forms of relaxation

dynamics below jamming exhibit a critical slowing down
approaching jamming characterized by a unique diverging
timescale τ, and a similar relaxation mechanism. Indepen-
dently of the packing preparation, τ is fully encoded in the
packing structure and can be readily accessed via the
standard density of states, so that τ ¼ 1=ð2ω2

minÞ ∝ η.
This diverging timescale is characterized by a universal
exponent that depends neither on the form of the repulsion
potential nor on the preparation protocol, ωmin ∝ Δzα, with
α ≈ 1.6 in d ¼ 3.
Model and methods.—We consider a three dimensional

50∶50 binary mixture of large and small soft spheres with
diameter ratio 1.4. The potential energy of the system is
given by E ¼ P

i>jðϵ=2Þð1 − rij=σijÞ2Θðσij − rijÞ, where
ΘðxÞ is the Heaviside step function, rij is the distance
between particles i and j, σij ¼ ðσi þ σjÞ=2 and σi is the
particle diameter of particle i. We study the athermal
overdamped dynamics of the model,

ξ
dr⃗i
dt

¼ −
∂E
∂r⃗i ; ð1Þ

where r⃗i is the position of particle i, and ξ is the viscous
damping. We focus on the unjammed phase φ < φJ, where
the system relaxes at long times into a zero-energy
configuration. We use the small particle diameter σ, ϵ,
and ξσ2=ϵ as units of length, energy, and time.
We consider two types of initial configurations. First, we

start from random initial configurations. We place N
spheres randomly in the box at packing fraction φ, and
solve Eq. (1) until E=N ≤ 10−18. We prepare 1000 inde-
pendent initial configurations for each packing fraction.
Second, we use steady-shear initial configurations. We
perform overdamped simple shear simulations of the same
model at finite shear rate _γ to reach steady state. For these
simulations, we use the algorithm developed in Ref. [44],
where the pressure p and the shear rate _γ are fixed and φ
fluctuates during the simulation. We checked that the
configurations obtained from a constant-density shear
protocol lead to the same results, and thus that our
conclusions do not depend on the choice of specific
ensemble. We sample configurations from the simulations
at p ¼ 10−5 and _γ ≥ 10−8, where the shear viscosity is
Newtonian. After steady state is reached, we suddenly stop
the shear, fix the volume of the simulation cell, and again
solve Eq. (1) until E=N ≤ 10−18. For each shear rate, which
we specify using the corresponding average density hφi, we
obtain 50 independent initial configurations. We use
standard periodic boundary conditions for the random

case, and Lees-Edwards boundary conditions for the
sheared case [58]. The number of particles is N ¼ 3000,
unless otherwise noted.
Relaxation dynamics.—We first study the relaxation

dynamics from random initial configurations. Figure 1(a)
shows the typical time evolutions of the potential energy
EðtÞ at various packing fractions. It displays a simple
exponential relaxation at low density, but it exhibits two
time regimes at higher density with a power-law decay t−1

at short times, followed by an exponential decay e−t=τ at
long times. The final relaxation time τ increases rapidly as
φJ is approached. We simultaneously measure the time
evolution of the contact number zðtÞ in Fig. 1(b) [59]. It
decreases with time for t < τ, which implies that contact
breaking and restructuring occurs on this timescale. On the
other hand, zðtÞ becomes nearly constant for t > τ, which
suggests that the final exponential decay of the energy takes
place with a fixed contact network. Note that zðtÞ
approaches a finite value as t → ∞, and particles are still
touching in the final configurations, even though φ < φJ.
This is a natural consequence of the overdamped dy-
namics where particle overlaps approach 0þ as t → ∞,
i.e., particles are just “kissing” when they stop moving. The
contact number zðt → ∞Þ continuously approaches the
isostatic value z ¼ 6 as φ → φJ. The time fluctuations
of the data seen at high density for N ¼ 3000 become very
weak in much larger systems, N ¼ 106. In the following,
we focus on the results for N ¼ 3000.
We also study the relaxation dynamics from steady-shear

initial configurations, see Figs. 1(c) and 1(d). In contrast to
the random case, the energy decays exponentially EðtÞ ∼
e−t=τ over the entire time domain, consistent with Ref. [45].

(a)

(b)

(c)

(d)

ShearRandom = 0.600

= 0.620

= 0.630

= 0.635

= 0.640

= 0.642

= 0.608

= 0.626

= 0.635

= 0.639
t -1

z = 6 z = 6

FIG. 1. (a), (b) Time evolution of the potential energy density
E=N and contact number z starting from random initial configu-
rations for various packing fraction φ. Symbols and lines are
typical results for a single configuration with N ¼ 3000 and 106,
respectively. (c), (d) The same as (a), (b) with initial configuration
drawn from the sheared steady state with N ¼ 3000.
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The contact number changes very little during the relax-
ation. This suggests the steady-shear initial configurations
(i.e., instantaneous configurations in the steady-state shear
flow) have almost the same contact networks as those of the
final configurations, and they undergo exponential relax-
ation from the beginning.
Vibrational density of states.—We expect that the final

exponential decay of the energy towards zero can be
controlled by the potential energy landscape around the
final configurations. Although the potential energy is
nearly zero (E=N ≤ 10−18) in the final configuration,
particles still have well-defined contacts, and thus the
second derivative of the potential and the Hessian exist.
Thus, we can calculate the vibrational density of states
(VDOS) of the final configurations. After removing rattlers
[60], we diagonalize the Hessian of each final configura-
tion to obtain the eigenvalues λk and eigenvectors
e⃗k ¼ ½e⃗1;k; e⃗2;k � � � e⃗N;k�, where k is the mode index.
Since the system is hypostatic, we find NΔz=2 zero modes
for each final configuration, as expected from the Maxwell
criterion [17]. After removing these zero modes, the VDOS
is calculated as DðωÞ ¼ ð1=NÞPk δðω −

ffiffiffiffiffi
λk

p Þ.
In Fig. 2 we show the VDOS for both random and

sheared configurations at various densities, averaged over
independent final configurations. In both cases, the VDOS
has three frequency regimes: a sharp edge at large fre-
quency, a plateau at intermediate frequencies, and an
isolated peak at low frequency. With increasing φ, the
plateau and the isolated peak shift to lower frequency and
become better separated. The high frequency edge and the
intermediate plateau are well-known features of the VDOS
seen above jamming, with an onset frequency for the
plateau which scales linearly with the excess contact
number [27]. Recently, the effective medium theory, which
correctly predicts the VDOS of jammed configurations
[29], was extended to the unjammed region φ < φJ and
predicted ω� ∝ Δz [61]. Our data agree with this predic-
tion. A novel feature of the reported VDOS is the isolated

low-frequency mode. The corresponding peak appears
broad in Fig. 2 because we performed an ensemble average,
but we find a unique isolated mode (referred to as ILM) at
frequency ωmin in each individual configuration. This ILM
was previously observed for sheared non-Brownian hard
spheres [37]. The ILM we find should be similar to the one
detected in sheared hard spheres, and our results show that
it can be accessed from the standard analysis of VDOS of
soft particles. To our knowledge, the presence of the ILM
has not been observed for unjammed packings obtained
from random initial conditions, and our results suggest that
it will always be present in unjammed packings in a wide
variety of preparation protocols.
We now connect the ILM to the relaxation time τ of

the relaxation dynamics. To this end, we parametrically
plot τ against 1=2ω2

min for each individual configuration
(the energy relaxation along a mode k follows e−2λkt) in
Fig. 3, which confirms that τ ¼ 1=2ω2

min is precisely obeyed
for configurations at different packing fractions and from
different preparation protocol. We conclude that the final
exponential relaxation of the energy in both random and
sheared cases occurs along the ILM. We also find that the
ILM dominates very strongly over all other modes for the
sheared configurations [62], which presumably explains
the absence of a power-law relaxation regime in that case.
Critical behavior.—We now focus on the critical behav-

ior of ωmin (and thus of τ) near jamming. To avoid the
unwanted effect of sample to sample fluctuations of φJ
[14], we plot parametrically in Fig. 4 ωmin against Δz,
measured in each individual configuration. Clearly, the two
data sets fully overlap without any rescaling over the entire
range. Thus, the link between ωmin and Δz is universal,
independent of the preparation protocol. This observation

Random ShearRandom

(a) (b)

= 0.600

= 0.620

= 0.635

= 0.642

= 0.608

= 0.626

= 0.635

= 0.639

FIG. 2. The vibrational density of states DðωÞ for final
configurations obtained after relaxation from (a) random and
(b) steady-sheared initial configuration.
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FIG. 3. Parametric plot of the relaxation time τ in the ex-
ponential regime of the relaxation against 1=ð2ω2

minÞ measured
for each individual configuration. The dashed line indicates that
τ ¼ 1=ð2ω2

minÞ is exactly obeyed for both random and sheared
configurations.
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implies that the relaxation dynamics from a wide variety of
initial configurations below jamming (quantified by τ) is
universal, and is directly linked to the shear viscosity η of
the suspension. We fit the data in Fig. 4 close to the
jamming transition (Δz < 0.3) with a power law
ωmin ≈ Δzα, and find that α ≈ 1.6 works well. This value
is close to 1.5, the previously reported value for sheared
non-Brownian hard spheres [37]. The measured exponent
would decrease if we could include data for larger Δz in the
fit. Of course, α could increase a little if data for even
smaller Δz could be included. A more precise numerical
determination of α would also require a precise finite size
scaling analysis, and is a worthwhile goal for future work.
The VDOS approach used here seems the easiest route for
this task. We finally calculated the mean values ofΔz and φ
for the given ensemble of random and sheared configura-
tions. We find that Δz ∝ ðφJ − φÞ works well for both
cases, which is consistent with the result for sheared hard
spheres in three dimensions [37].
Nature of isolated low-frequency mode.—Finally, we

show that the ILM is qualitatively different from any other
mode in the spectrum. Let us consider the evolution of the
potential energy obtained by deforming the system along
each eigenvector, r⃗i ≡ r⃗0i þ xe⃗i;k, where r⃗0i is the position
of particle i in a relaxed configuration, and x is the
amplitude of the deformation. We can then track E ¼
EðxÞ for each mode. We find that EðxÞ has a parabola shape
for all the modes except for the ILM. Figure 5 shows that
EðxÞ for the ILM is finite for x < 0, but zero for x > 0.
Namely, the potential energy along the ILM is a one-sided
harmonic potential. In addition, the contact number jumps
discontinuously from zðx > 0Þ ¼ 0 to a finite value for
x < 0, which is again different for other modes. This one-
sided potential energy landscape connects the mechanical
vacuum of unjammed configurations with zero potential

energy to the slightly compressed sphere packings obtained
when the system is undergoing its relaxational dynamics.
The curvature of the potential is given by ω2

min, which thus
controls the long-time relaxation dynamics. The direct
connection to the shear viscosity stems from the numerical
observation that under simple shear, particle displacements
are essentially occurring along the ILM. It is remarkable
that a single mode captures essentially the entire relaxa-
tional physics, rather than a more complex spectrum
associated to more complex time dependences as is
typically the case in disordered materials [3].
Conclusion.—We studied the relaxation dynamics of soft

particles in the unjammedphase.We considered two types of
initial configurations, random and steady sheared. Despite
differences at short time, the relaxation is always exponen-
tial at large times, E ∼ expð−t=τÞ. All final configurations
display an isolated low-frequency mode at frequency ωmin,
and the relation τ ¼ 1=ð2ω2

minÞ is accurately obeyed for each
individual configuration, independently of their preparation
protocol. The final relaxation process thus occurs along the
isolated low-frequency mode, which represents the softest
mode that can simultaneously and collectively remove all
overlaps from the final packing. Ourmain quantitative result
is that the late stage of the relaxation dynamics is universal,
ωmin ∝ Δzα, with α ≈ 1.6 in d ¼ 3.
Our results, on the one hand, establish the universality of

the relaxation of athermal particles near the jamming
transition. Because the relaxation from two extreme types
of initial configurations exhibit the same slowing down, we
expect the same in many other physical situations, such as
creaming emulsions and injecting foams. It would be
interesting to study other protocols. We are currently study-
ing dynamics after a step shear strain quantitatively. In this
case [57], the stress exhibits a power law decay ∝ t−1=2 at

Random Shear
= 0.600
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= 0.630

= 0.635

= 0.640

= 0.642

= 0.608

= 0.622

= 0.628

= 0.635

= 0.638

= 0.640

FIG. 4. Parametric plot of the frequency of the slow mode,
ωmin, against the distance to isostaticity Δz ¼ 6 − z for each
individual configuration. The dashed line indicates ωmin ∝ Δz1.6,
which is valid at low frequency for both random and sheared
configurations.

FIG. 5. The one-sided potential energy landscape along the
mode with the lowest frequency ωmin measured for a single
configuration at φ ¼ 0.64. It follows the harmonic behavior
E ¼ 1

2
ω2
minx

2 (indicated by the dashed line) for x < 0. The
discontinuous change of the contact number at x ¼ 0 is also shown.
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short times, followed by an exponential decay, which is
similar to our findings with random initial conditions, since
stress scales as E1=2 for harmonic spheres. Also, it is
interesting to study the relaxation dynamics for the inertial
dynamics, mimicking granular materials, where all the
contacts would break during the relaxation. On the other
hand, our results open a new way to study the viscosity
divergence at the jamming transitionwithout applying shear.
The exact mean-field solution was recently derived for
several properties of jammed configuration [32], but this
approach is still unable to predict the exponents α and ν
discussed in our Letter. Our results suggest that these critical
exponents can be theoretically analyzed by studying the
simpler problem of the quench dynamics in the unjammed
phase without applying a shear flow.
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