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We introduce GlassMLP, a machine learning framework using physics-inspired structural input to
predict the long-time dynamics in deeply supercooled liquids. We apply this deep neural network to
atomistic models in 2D and 3D. Its performance is better than the state of the art while being more
parsimonious in terms of training data and fitting parameters. GlassMLP quantitatively predicts four-point
dynamic correlations and the geometry of dynamic heterogeneity. Transferability across system sizes
allows us to efficiently probe the temperature evolution of spatial dynamic correlations, revealing a
profound change with temperature in the geometry of rearranging regions.
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Glasses are formed by the continuous solidification of
supercooled liquids under cooling, while maintaining an
amorphous microstructure [1]. Understanding glass for-
mation and the phenomenon of the glass transition has been
the focus of an intense research activity [2,3].
An important feature of supercooled liquids is the growth

of spatial heterogeneity characterizing the relaxation
dynamics, where some regions actively rearrange while
others appear completely frozen [4]. Recently, an important
effort was devoted to understanding the connection between
dynamic heterogeneity and structural properties [5–7].
Several structural parameters were shown to correlate with
the dynamics, including density, potential energy [8,9],
and locally favored structures [10–12], but also more
complicated quantities such as soft modes [13], local yield
stress [14], and Franz-Parisi potential [15]. The search
intensified with the emergence of machine learning (ML)
allowing the detection of correlations from unsuper-
vised [16–19] or supervised [20–26] learning. The explored
methodologies range from simple linear regression and
support vectormachines using a set of handcrafted structural
descriptors [20] to graph neural networks (GNN) with tens
of thousands of adjustable parameters [22,26]. Despite this
versatility, none of the proposed networks can so far predict
dynamic heterogeneities and related multipoint correlation
functions that quantitatively agreewith the actual dynamics.
Here, we bridge this major gap by leveraging and

combining previous ML approaches. We construct a
physics-inspired deep neural network that uses established
structural order parameters as input to predict long-time
dynamics in deeply supercooled liquids. The proposed
methodology, which surpasses the state of the art, allows us

to very efficiently obtain quantitative predictions about
heterogeneous dynamics and hence to gather novel physi-
cal insights about their temperature evolution.
We simulate a Lennard-Jones nonadditive Kob-Andersen

mixture in 3D (KA, [27]) for comparison with earlier
work [22] and a 2D ternary mixture (KA2D) where lower
temperatures can be accessed. We focus on KA2D since its
interactions were adapted to efficiently prevent crystalliza-
tion [28] and enable the use of the swap Monte Carlo
(SWAP) algorithm [29,30]. Equilibrium configurations are
created with N ¼ 1290 particles (Mtype ¼ 3, N1 ¼ 600,
N2 ¼ 330, N3 ¼ 360) and box length L ¼ 32.896 using
periodic boundary conditions and reduced units. We use
SWAP to equilibrate the system and create a statistical
ensemble. The average over equilibrium configurations is
denoted h� � �i. For each configuration,NR ¼ 20 replicas are
created by drawing initial velocities from the Maxwell
distribution to analyze the isoconfigurational ensemble
[13,31] in which one averages over velocities at fixed initial
configuration. We then simulate the dynamics using
molecular dynamics (MD) and calculate for each particle
i the isoconfigurational average of the bond-breaking (BB)
correlation function CiBðtÞ ¼ hnit=ni0iiso, which following
Refs. [13,31] we call “propensity”; CiBðtÞ describes the
number nit of nearest neighbors particle i still has after
a time t relative to its ni0 initial number of neighbors [32].
From the averaged propensity C̄BðtÞ ¼ ð1=N1Þ

P
i∈N1

CiBðtÞ,
we extract a structural relaxation time, τBBα , defined as
hC̄Bðt ¼ τBBα Þi ¼ 0.5. We report results for type 1 but
verified that all findings are independent of particle type.
We focus on three different temperatures: (i) slightly below
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the onset temperature (T ¼ 0.4, τBBα ¼ 1.7 × 103),
(ii) slightly above the mode-coupling temperature (T ¼ 0.3,
τBBα ¼ 3.4 × 104), and (iii) slightly below the mode-cou-
pling temperature (T ¼ 0.23, τBBα ¼ 4.0 × 106). More
details are given in the Supplemental Material [33].
The first step in the ML approach is to select physics-

inspired inputs: a number MS of structural descriptors
constructed for each particle i fromK different observables.
Inspired by the handcrafted features in Refs. [24,25] we
also calculate coarse-grained averages of these descriptors
on different length scales L. The first descriptor is the
coarse-grained local density, ρ̄iL;β ¼

P
j∈Ni

β
e−Rij=L, where

the sum runs over all Ni
β particles of type β within distance

Rij ¼ jRi − Rjj < 20 of particle i. Particle positions are
evaluated in the inherent structures Ri. Similar in philoso-
phy to Ref. [23] we additionally choose three different
physics-inspired descriptors: the coarse-grained potential
energy, Ēi

L;β ¼
P

j∈Ni
β
Eje−Rij=L=ρ̄iL;β, extracted from the

pair potential Ei ¼ P
j≠i VðRijÞ=2, the local Voronoi

perimeter p̄i
L;β ¼

P
j∈Ni

β
pje−Rij=L=ρ̄iL;β, using the perim-

eter pi of the Voronoi cell around particle i, extracted using
the software Voro++ [39], and finally local variance of
potential energy, ΔEi

L;β ¼
P

j∈Ni
β
ðEj − Ēi

L;βÞ2e−Rij=L=ρ̄iL;β.

As coarse-graining lengths we choose MCG ¼ 16 values
L ¼ f0.0; 0.5;…; 7.5g. In addition to coarse graining the
descriptors separately for each of the Mtype types we also
calculate the coarse-grained average by iterating over all
particles independently of type. In total, this procedure
therefore produces a set ofMS ¼ KMCGðMtype þ 1Þ ¼ 256

descriptors. To simplify the learning, each descriptor is
shifted and rescaled to have zero mean and unit variance
over the training set.
We then apply a supervised ML procedure to train a

multilayer perceptron (MLP) to give a prediction X i
MLP

[40] for the propensity of particle i. Between the input and
output layers, we introduce three hidden layers with 2, 10,
and 10 nodes, respectively, as sketched in Fig. 1. In total,
our model has around 650 fitting parameters, about 100
times less than the GNN proposed in Ref. [22], and slightly
fewer than the networks used in Refs. [24,25] due to a
significant reduction in the number of structural descriptors
MS. The intermediate layer with only two nodes is a
bottleneck layer. Its introduction is crucial to prevent
overfitting of the training data and represents a major
difference from the MLP suggested in Ref. [25] where
unsatisfying results were reported. We name our deep
neural network “GlassMLP.” We use NS ¼ 300 initial
structures, which are equally divided into training, vali-
dation, and test sets. During learning, we compute for each
configuration as loss function the mean absolute error
between true and predicted labels [22,24,25]. In the loss we
also include terms that penalize deviations from the true
variance and spatial correlations of the propensities. Both

quantities are evaluated by averaging over all particles in
the configuration for which the loss function is evaluated.
For the training we apply stochastic gradient descent with
an Adam optimizer [41]. The hyperparameters used for
training are the same for all times and temperatures. The
training of GlassMLP on one state point requires less than
five minutes on a Laptop GPU (NVIDIA T600 Laptop).
To quantify the performance of GlassMLP we compute

the Pearson correlation coefficient ρP ¼ covðCiB;X i
MLPÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðCiBÞvarðX i
MLPÞ

p
, between the true propensities CiB and

the network output, X i
MLP. Perfect predictions would yield

ρP ¼ 1 while random ones correspond to ρP ¼ 0. As
shown in Fig. 2(a), we find that ρP depends nonmonotoni-
cally on time and is maximal around t ≈ τBBα =3.
Furthermore, the predictability considerably increases at
lower temperatures and reaches values up to ρP > 0.8,
which is significantly better than previously proposed
techniques on KA models [16,17,22,24,25]. A direct
comparison to GNNs [22] is presented below for the 3D
KA model.
We now go beyond establishing the quality of a corre-

lation and focus on the probability distribution of the
propensity. Figure 2(b) shows an excellent agreement
between GlassMLP predictions and MD results. Minor
discrepancies exist in the tails for small propensities, as
the network slightly underestimates variances. Poor results
are instead obtained by the ridge regression method sug-
gested in Refs. [24,25], which always outputs nearly
Gaussian distributions. This shows that using a nonlinear
neural network such asGlassMLP is important to capture the
complex shape of the distributions. See the Supplemental
Material [33] for further comparison between methods [33].
Because GlassMLP performs excellently at the single-

particle level, we now apply it to spatial correlations, thus

FIG. 1. Sketch of the GlassMLP network. The physics-inspired
input is extracted from the initial inherent structure and inserted
via the input layer. The network parameters are trained in a
supervised learning procedure from propensities calculated using
molecular dynamics simulations. After training, the network is
able to predict the propensities of a new set of configurations
(blue high propensity, red low one).
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promoting GlassMLP as a new tool to probe dynamic
heterogeneity [42]. First, we show snapshots of the pre-
dicted and calculated propensities for different timescales
in Fig. 3(a). The MD results show how marginally
rearranged active clusters at small times (white and red)
coarsen with time and become both larger and more
strongly contrasted to the unrelaxed background (blue)
[43]. GlassMLP is able to predict remarkably well the
location and the geometry of the relaxing clusters from the
sole knowledge of the initial structure.
Spatially heterogeneous dynamics is quantified by the

four-point susceptibility χ4ðtÞ ¼ N1½hC̄2BðtÞi − hC̄BðtÞi2�
shown in Fig. 3(b). Its time dependence is similar to the
one of the Pearson correlation, with a maximum at
t ≈ τBBα =3 that grows upon cooling. This similarity suggests
that GlassMLP is particularly powerful in analyzing
strongly heterogeneous dynamics. The effect is further
enhanced due to the increased structural origin for dynamic

heterogeneities at lower temperatures observed in earlier
work [42]. Figure 3(b) also highlights that GlassMLP
accurately predicts the time and temperature evolution of
χ4ðtÞ. To our knowledge, no ML technique has previously
been able to predict χ4ðtÞ at a comparable quantitative level.
This susceptibility quantifies the average number of corre-
lated particles during structural relaxation [44] and can be
accessed experimentally [45,46].
The evolution of χ4ðtÞ results from two factors [47,48]: a

growing length scale characterizing the decay of dynamic
correlations, and a growing strength of these correlations.
We now show that GlassMLP can even disentangle them.
Let us define the four-point structure factor, S4ðq; tÞ ¼
N−1

1 hWðq; tÞWð−q; tÞi, with Wðq; tÞ ¼ P
i∈N1

½CiBðtÞ−
hC̄BðtÞi� exp½iq · Rið0Þ�. See the Supplemental Material
[33] for the analysis of its real space counterpart. The
measured S4ðq; tÞ, shown in Fig. 4(a), displays a peak at
small qwhich contains all relevant information about spatial
dynamic correlations. For this function the predictionsmade
by GlassMLP are again in excellent agreement with mea-
surements. It is notoriously difficult to quantitatively extract
a correlation length scale ξ from S4ðq; tÞ as one needs
systemsmuch larger than ξ [49–52]. Previous works tackled
this challenge by simulating very large systems which
becomes a real challenge at low temperatures where long
timescales are also needed. GlassMLP fully solves this
problem by transferring results from small to large systems.
One can train GlassMLP on reasonably small (but not too
small) systems and then apply it to very large (N ¼ 82 560)
equilibrium configurations obtained using SWAP.
GlassMLP predicts the propensity field and hence
S4ðq; tÞ for these configurations at essentially no cost
because the network is already trained and the slow
dynamics of large systems is never simulated. The trans-
ferability in system size is possible because the bond-
breaking correlation and S4ðq; tÞ have been shown to be
independent of system size for the chosenN values [52,53].
See the Supplemental Material [33] for finite-size
analysis [33]. This method allows us to obtain for the first
time reliable data for S4ðq; tÞ over an extended range of
times, temperatures, and wave vectors; see Fig. 4 [54]. We
find that an Ornstein-Zernicke functional form, S4 ≈ 1=½1þ
ðqξÞ2� does not describe the numerical data over the entire
range of temperature for q > 0.2 and a higher-order term is
needed. This was proposed theoretically using mode-
coupling theory [55] with a quartic term, and in the East
model [56] where a fractal exponent q0.58þD is found.
Neither proposal is consistent with our data. Because
dynamic heterogeneity appears increasingly contrasted with
more compact boundaries at lower temperatures [43], we
introduce a cubic term q3 by analogy with Porod’s law
describing two-phase systems with sharp interfaces [57]:
S4ð0.2 < q < 0.6; tÞ ¼ χ̃4ðtÞ=½1þ ðξqÞ2 þ AðξqÞ3�. This
expression contains the minimal ingredients to describe
both the evolution of the characteristic length scale ξ

FIG. 2. Performance of GlassMLP applied to the KA2D model.
(a) Time evolution of the Pearson correlation between GlassMLP
predictions and MD results for different temperatures. (b) Prob-
ability distributions of propensity calculated from MD (full line),
GlassMLP (dotted line), and ridge regression (dashed-dotted line)
for different timescales at T ¼ 0.23.

FIG. 3. Dynamic heterogeneities in MD simulations and
GlassMLP. (a) Snapshots of a representative configuration with
L ¼ 131.6 for different timescales at T ¼ 0.23, where blue
regions with high propensity move very little. (b) Susceptibility
χ4ðtÞ against time t for different temperatures as in Fig. 2. Further
snapshots in the Supplemental Material [33].
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[Fig. 4(b)] and of the geometry of dynamic heterogeneity
[Figs. 4(c) and 4(d)]. The correlation length shows a
maximum slaved to τBBα , which grows as temperature
decreases. The temperature dependence is relatively weak,
which stems from both the use of the bond-breaking
correlation [52] and of the isoconfigurational average
[42,58,59]. Interestingly, the prefactor A is essentially zero
at high temperature, but grows to dominate theq dependence
ofS4 at lowT. These results reveal that at lower temperatures
interfaces separating dynamically correlated domains
become sharper while the domains become geometrically
more compact [43,60,61].
We close with a brief analysis of the 3D KA model to

which the GNN of Ref. [22] was initially applied. The aim
is to compare GlassMLP and the GNN and to show
the performance of GlassMLP for a different model. For
the benchmarking, and to present a fair comparison, we
use the same dataset and the pretrained GNNs provided
by Ref. [22] and similarly define the propensity as the
isoconfigurational average of particle displacements,RiðtÞ,
instead of CiBðtÞ. The setup for GlassMLP is as in 2D; we

simply replace the perimeter pi with the surface area si

from the Voronoi decomposition. Comparing the perfor-
mance of GlassMLP with the GNN at T ¼ 0.44 in Fig. 5(a)
using the Pearson correlation coefficient ρP, we confirm
that our network performs much better near structural
relaxation while having fewer fitting parameters (factor
of 100) and requiring less training data (factor of 10).
Importantly, the improvement in performance is more
obvious in the susceptibility χ4ðtÞ in Fig. 5(b) which shows
much better agreement with the MD result than the GNN,
confirming GlassMLP as a versatile tool to analyze
dynamic heterogeneity in glass-formers. Very recent work
[26] on GNNs using relative particle motion and learning
on edges instead of vertices was shown to yield Pearson
correlations at the structural relaxation time comparable to
ours, but no information was provided regarding dynamic
heterogeneity.
In summary, we have developed GlassMLP, a deep

neural network which uses physics-inspired descriptors
as input to predict long-time structural relaxation solely
from the initial structure. Improved performance is reached
from (i) using prior knowledge about glass transition
physics as inductive bias for neural networks [23];
(ii) including spatial correlations into the loss function;
and (iii) adjusting the architecture of the deep neural
network to avoid overfitting. Using transferability across
system sizes allows one to extract physically meaningful
four-point dynamical structure factors and to analyze their
physical evolution when approaching the glass transition.
Although GlassMLP’s performance is remarkable, the
trained networks do not detect any outstanding features,
which is consistent with the conclusions in Ref. [62]. The
success of GlassMLP therefore demonstrates the impor-
tance of combining physics-inspired inputs and deep neural
networks able to extract inherent complex and nonlinear
features from them, with relative weights that are presum-
ably model dependent.

FIG. 4. Evolution of length scales and geometry of dynamic
heterogeneity in the 2DKA model. (a) Four-point structure factor
slightly below the structural relaxation time τBBα =3 for different
temperatures T and system sizes N. Dashed lines are fits
S4ðq; tÞ ¼ χ̃4ðtÞ=½1þ ðξqÞ2 þ AðξqÞ3� as rationalized in the main
text. (b) Length scales ξ extracted from nonlinear fits described in
the main text. Only points for which the Pearson coefficient
ρP > 0.5 are shown. (c) Rescaled four-point structure factor vs
rescaled wave number qξ for the MLP, N ¼ 82 560 data. Dashed
lines corresponds to ½1þ ðqξÞ2�−1 and dashed-dotted line is∼q−3.
Inset shows enlarged data for large qξ. (d) Higher-order prefactor
A, extracted from fitting S4ðq; tÞ as described in the main text.

FIG. 5. Comparison of two different ML techniques to predict
the isoconfigurational average of displacements RðtÞ for the 3D
KA model. (a) Pearson correlation coefficient ρP for different
times t at temperature T ¼ 0.44. The vertical dotted line marks
structural relaxation t ¼ τα and the dashed-dotted line is the
maximal achievable correlation. (b) Susceptibility χ4ðtÞ com-
pared to the ground truth (MD).
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The method proposed here could easily be extended to
include further descriptors and be applied to other types of
systems, including experiments on glass-forming colloidal
liquids or granular glasses, where potentially different
descriptors can be used. Our findings on spatially corre-
lated dynamics pave the way for a more rigorous analysis of
dynamic heterogeneity in deeply supercooled liquids to
better understand their physical origin, and the interplay
between heterogeneous structure [15] and dynamic facili-
tation [43] close to the experimental glass transition.
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