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When driven by nonequilibrium fluctuations, particle systems may display phase transitions and
physical behavior with no equilibrium counterpart. We study a two-dimensional particle model initially
proposed to describe driven non-Brownian suspensions undergoing nonequilibrium absorbing phase
transitions. We show that when the transition occurs at large density, the dynamics produces long-range
crystalline order. In the ordered phase, long-range translational order is observed because equipartition of
energy is lacking, phonons are suppressed, and density fluctuations are hyperuniform. Our study offers an
explicit microscopic model where nonequilibrium violations of the Mermin-Wagner theorem stabilize
crystalline order in two dimensions.
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The physical world can be described using systematic
theoretical tools and general principles governing the
existence and physical behavior of various phases of matter
and of the transitions between them [1]. Equilibrium
statistical physics is an elegant theoretical construction
based on minimal assumptions from which phase transi-
tions can be predicted [2,3]. Equilibrium and symmetry
principles constrain the range of possible phases that
particle systems exhibit [4]. At large density, an assembly
of repulsive particles crystallizes in dimensions d > 2, but
equilibrium thermal fluctuations prevent the existence of
long-range translational order in d ≤ 2 [5]. This is a
consequence of the Mermin-Wagner theorem [6]. As a
result, 2D equilibrium systems only exhibit quasi-long-
range translational order, which generically occurs passing
through an intermediate hexatic phase with quasi-long-
range orientational order [7–9]. In one dimension, the
system is disordered at any finite temperature.
Equilibrium statistical mechanics is often insufficient to

describe physical phenomena and systems that evolve far
from equilibrium: active matter is not driven by thermal
fluctuations [10], fluids can be stirred by shear flows [11],
biological systems are alive [12], and granular systems are
dissipative [13]. The 2D ordering transition of colloidal
[14,15], granular [16–18], and active [19–23] materials has
been studied. While the nature and sequence of phase

transitions may be affected by nonequilibrium effects, the
absence of long-range translational order has thus far been
robustly confirmed [24]. This situation contrasts with
orientational order: flocking active matter is a celebrated
example where nonequilibrium fluctuations are strong
enough to produce violations of the Mermin-Wagner
theorem leading to long-range magnetic order in driven
2D XY models [26]. A similar result was shown to hold for
sheared 2D Oð2Þ models [27].
Absorbing phase transitions represent a broad class of

nonequilibrium transitions with many physical applications
[28]. Corresponding microscopic models are defined from
local dynamic rules which do not rely on equilibrium
assumptions and break detailed balance. Driven colloidal
suspensions [29] have been described using random
organization particle models [30], which display an absorb-
ing phase transition presumably lying in the conserved
directed percolation (CDP) universality class [31,32]. Upon
increasing the density the system transitions from an
absorbing to a disordered diffusing phase whose non-
thermal behavior has been explicitly demonstrated [33].
At the critical point, the system becomes hyperuniform
[34–38], and hyperuniformity extends to the active dis-
ordered phase if the center of mass is conserved during
binary collisions [39,40]. This model was also recently
studied at large density in relation to random close packing
[41–43], while a recent granular experiment suggests that
coupling to structural ordering can even change the
universality class of the transition [44].
Here we analyze the interplay between nonequilibrium

random organization dynamics and structural order at large
density in a 2D isotropic version of the model [35] with
center-of-mass conservation [39]. The system orders as
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density increases but the nature of this transition differs
from both equilibrium and known nonequilibrium situa-
tions. Remarkably, since equipartition of energy is lacking,
long-wavelength phonons are suppressed and long-range
translational order can emerge. As a result, hyperuniform
two-dimensional crystals spontaneously form far from
equilibrium.
We study a two-dimensional off-lattice model of N

particles of diameter σ in a square simulation box of linear
size L with periodic boundary conditions. The packing
fraction ϕ ¼ ðNπσ2Þ=ð4L2Þ is the first control parameter.
At each discrete time t, pairs of overlapping particles are
displaced in opposite directions along the axis connecting
their centers, see Fig. 1(a), so that particles move away
from each other by a random amount drawn from a flat
distribution in the interval ½0; ϵ�; ϵ is the second control
parameter. If a particle overlaps with several neighbors, its
displacement is the sum of each pairwise contribution.
These microscopic rules conserve the position of the center
of mass [34]. Particles that jump at time t are active. The
global activity, fðtÞ, is the fraction of active particles at
time t. It is the order parameter for the absorbing phase
transition. We studied ϵ ¼ 0.2, 0.1 to push the critical
density to a large value [32,41], and have varied the
remaining parameter ϕ, finding equivalent results.
We first follow the evolution of the system starting from

fully random initial conditions for ϵ ¼ 0.1 and several

packing fractions. As shown in Fig. 1(b), the evolution of
hfðtÞi reveals two distinct types of behaviors. The system
reaches an absorbing phase with vanishing activity at low
ϕ, while it remains active over the numerical time window
at larger ϕ. Visual inspection of the particle configurations
during these dynamics reveals that the system develops
structurally ordered domains which coarsen with time. At
low ϕ, the coarsening is interrupted after a finite time,
and absorbing configurations resemble polycrystals, see
Figs. 1(c)–1(d). In finite systems at large density, a single
crystalline domain eventually fills the box while keeping a
finite level of steady state activity, see Fig. 1(e). As usual
for coarsening [45], the timescale to reach such ordered
steady states diverges with system size.
Previous work [30–32] suggested that random organi-

zation models belong to the conserved directed percolation
(CDP) universality class. Numerical results are consistent
with this hypothesis, although the set of critical exponents
are so close to the DP (directed percolation) class that the
distinction between the two is numerically challenging. We
now establish that the exponents we measure are consistent
both with CDP and previous numerics. To analyze steady
state physics above the transition we randomly select a fully
ordered configuration reached after coarsening has finished
well above ϕc, and follow its relaxation towards steady
state at different ϕ, as shown in Fig. 2(a). In practice we
fix N ¼ 95 706 and slightly vary the system size L ∈
½302.03; 302.58� to change ϕ. This protocol allows us to
measure the evolution of the characteristic timescale τr to
reach an absorbing state (below ϕc) or active steady state
(above ϕc), while the relaxation of the activity appears
algebraic at ϕc, hfðtÞi ∼ t−α. In Fig. 2(a), we have used the
known CDP value, α ¼ 0.42.
Above ϕc, we expect the steady state activity to obey

f∞ ≡ hfðt → ∞Þi ∼ ðϕ − ϕcÞβ; ð1Þ

with β ¼ 0.64 for CDP. The corresponding numerical
results are shown in Fig. 2(b) for several system sizes.
They follow Eq. (1). We define a susceptibility associ-
ated to the fluctuations of the activity in steady state,
χ ¼ Nðhf2i − f2∞Þ, which is expected to diverge as

χ ∼ ðϕ − ϕcÞ−γ; ð2Þ

where γ ¼ 0.49 was reported [32]. The agreement with the
data in Fig. 2(c) is excellent. We can finally measure
relaxation times on both sides of the transition. For ϕ < ϕc
we define the relaxation time τr as the number of steps
needed to reach an absorbing state with fðtÞ ¼ 0. Above
ϕc, it is defined as the first time at which the value of hfðtÞi
attains its stationary value f∞, within a tolerance which we
arbitrarily set to 0.005. In Fig. 2(d), these two timescales
are shown to diverge at the critical point as

τr ∼ jϕ − ϕcj−νk ; ð3Þ

(b)(a)

(c) (d) (e)

FIG. 1. Model and absorbing phase transition. (a) Dynamic
rules: at each time step t, pairs of overlapping particles (red) are
displaced in opposite directions by the same random amount.
(b) Time dependence of the average fraction of active particles
starting from random initial conditions for N ¼ 4 × 104. The
activity vanishes for low ϕ, whereas a dynamic steady state with a
finite activity is reached at large ϕ. (c)–(d) Absorbing configu-
rations resemble polycrystals (the color codes for orientational
order), while (e) active configurations are fully ordered [linear
size in (c)–(e) is L ¼ 50].
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with an exponent νk ¼ 1.3 again consistent with the CDP
value. Overall, our numerics demonstrates that despite the
much larger value of the critical packing fraction and
observed structural order, the dynamic criticality is com-
patible with all studies performed previously in the absence
of structural order. In this respect our conclusions disagree
with the recent experimental study [44].
What distinguishes our study from previous ones, how-

ever, is that structural order develops with increasing ϕ, as
shown in Fig. 1(c). To quantify this we analyze the standard
functions used to follow orientational and translational
order. For orientational order, we first determine the
Voronoi tessellation in each configuration, and use the
set of neighbors to evaluate the local degree of orientational
order using

ψ6ðri; tÞ ¼
1

j∂ij
X
j∈∂i

e6iθij ; ð4Þ

where ∂i is the set of neighbors of particle i and θij is the
angle formed by ri − rj and a reference axis. The global
bond-orientational order parameter is then

Ψ6ðtÞ ¼
1

N

���X
i

ψ6ðri; tÞ
���; ð5Þ

while the corresponding spatial correlations are measured
using

g6ðrÞ ¼
1

ρN

�X
i≠j

ψ6ðriÞψ�
6ðrjÞδðjr − rj þ rijÞ

�
: ð6Þ

For positional order we analyze both the pair correlation
function

gðrÞ ¼ 1

ρN

�X
i≠j

δðjr − rj þ rijÞ
�
; ð7Þ

and the static structure factor SðqÞ in Fourier space.
In Fig. 3(a) we show the evolution of hΨ6i for several

system sizes across ϕc. In the absorbing phase, hΨ6i is
small because contributions to the phase of Ψ6 from
different domains of the polycrystal cancel each other,
and we expect hΨ6i ¼ 0 in the thermodynamic limit. For
ϕ > ϕc the system has time to anneal all topological
defects, hΨ6i is close to unity and only weakly decreases
with ϕ as the activity f∞ increases and more particles
perform a displacement at each time step.
The color code in Fig. 1(c) describes orientational order

which appears homogeneous on the scale of the polycrys-
talline grains. In Fig. 3(b) we show that translational order
is also correlated over the same length, as both gðrÞ and
g6ðrÞ are shown to decay as ∼ expð−r=ξÞ for large r with a
similar lengthscale ξ. We show in Fig. 3(c) that ξðϕÞ grows
rapidly as ϕc is approached from below, and the evolution
of ξ is consistent with ξ ∼ ðϕ − ϕcÞ−ν⊥ with ν⊥ ¼ 0.8 the
CDP value. This agreement suggests that structural order-
ing is governed by the physics of the absorbing phase
transition.
Crystals do not exist at equilibrium in two dimensions

because long-ranged translational order is destroyed by
phonons [5], and only quasi-long-range order can survive
[7–9]. It is typically difficult to numerically distinguish
these two scenarios, as finite size effects can be strong [46].
In the active phase above ϕc we find that the system
spontaneously orders from a random initial conditions and
a similar steady state is reached when particles are first
initialized on the sites of a perfectly ordered lattice. At
steady state, a finite fraction f∞ of the particles performs a
small jump at each step. Although reminiscent of Brownian
motion, we now demonstrate that, differently from thermal
fluctuations, this finite activity does not destroy long-
ranged translational order.
A strong quantitative indication stems from the mean-

squared displacement (MSD)

Δ2ðtÞ ¼ 1

N

X
i

hjuiðtÞj2i; ð8Þ

(c) (d)

(a) (b)

FIG. 2. Conserved directed percolation universality class.
(a) The time dependence of the activity starting from a fully
ordered structure reveals a critical packing fraction ϕc where
hfðtÞi ∼ t−α shown with dashed line for α ¼ 0.42, N ¼ 105.
(b) Critical scaling of the average activity for three system sizes.
The dashed line is Eq. (1) with β ¼ 0.64, shown in log scale in the
inset. (c) Diverging fluctuations of the activity at steady state.
The dashed line is Eq. (2) with γ ¼ 0.49. (d) Critical scaling of
the relaxation time starting from an ordered configuration in the
absorbing (blue) and active (red) phases. The dashed line is
Eq. (3) with νk ¼ 1.3 shown in log scale in the inset. In all panels,
ϕc ¼ 0.8226.
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where uiðtÞ ¼ riðtÞ − rið0Þ. In Fig. 4(a) we report the
MSD measured in the active phase for different system
sizes and densities. For any ϕ > ϕc the MSD reaches a
well-defined plateau at long times, which is independent
of N. This implies that particles remain close to their
initial positions and that the crystalline order is stable. In
equilibrium, time-averaged particles positions Ri are not
defined and the long-time plateau of the MSD exists but
its value grows logarithmically with system size, as a
result of equipartition of energy. To see this, let us
introduce the Fourier transform uqðtÞ ¼

P
i ui expðiq ·

RiÞ and the corresponding structure factor for displace-
ments, SuðqÞ ¼ ð1=NÞhuq · u−qi. Using a harmonic
expansion of energy fluctuations in an equilibrium crystal
[47], each Fourier mode becomes excited by an amount

hjuqj2i ∼ kBT=q2 at low q and temperature T. Together
with the expression of the MSD plateau

Δ2ðt → ∞Þ ∼
Z

Λ

2π=L
SuðqÞqd−1dq; ð9Þ

where Λ ∼ 1=a with a the lattice spacing, one concludes
that the integral in Eq. (9) diverges logarithmically with L
when d ¼ 2 and remains finite for d > 2. A sufficient
condition for the MSD to remain finite is to have SuðqÞ
diverging slower than q−2 so that the integral in Eq. (9)
converges. This is equivalent to demanding that energy is
not distributed in Fourier modes as imposed by equiparti-
tion of energy. We confirm in Fig. 4(b) that the measured
SuðqÞ converges to a finite value as q → 0, deviating
strongly from a 1=q2 divergence. This finding rationalizes

(a) (b) (c)

FIG. 4. Long-range translational order and hyperuniformity. (a) Mean-squared displacement at several packing fractions for three
system sizes above ϕc. The plateau values do not depend on L, and crystal are thus stable. The plateau values increase slightly with ϕ,
since multiple overlaps become more common at larger ϕ. (b) Structure factor of the displacement field for several packing fractions at
L ¼ 300. The red dashed line represents the thermal limit where equipartition holds with SuðqÞ ∼ 1=q2. (c) Static structure factor SðqÞ
for several packing fractions at L ¼ 200. It vanishes as SðqÞ ∼ q2 at low q (shown as dashed line) in the active phase: 2D active crystals
are hyperuniform.

(b) (c)(a)

FIG. 3. Transition to long-range order. (a) Discontinuous jump of the global bond-orientational order parameter for different system
sizes. The vertical dashed line indicates ϕc. (b) Coupled decay of the pair correlation function (blue) and bond-orientational correlation
function (pink, shifted vertically for clarity) for ϕ ¼ 0.805 and L ¼ 200. Dashed line is a fit to exponential decay, ∼e−r=ξ. (c) Diverging
correlation length ξ quantifying the typical size of crystalline domains. The blue dashed line is ξ ∼ ðϕ − ϕcÞ−ν⊥ with ν⊥ ¼ 0.8 known
from CDP.
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the finite MSD reported in Fig. 4(a). The strong deviation
from q−2 in Fig. 4(b) implies a lack of equipartion of
energy with low-q displacement modes being strongly
suppressed by the local dynamic rules. As a result,
phonons are so strongly suppressed that they do not
destroy long-range translational order: the breakdown of
Mermin-Wagner theorem is thereby established.
A final confirmation that the active phase corresponds to

two-dimensional nonequilibrium crystals is given by the
static structure factor SðqÞ shown in Fig. 4(c). We observe
sharp Bragg peaks at discrete q values with an amplitude
that scales with N, resulting from the periodicity of the
ordered lattice. We also observe a diffusive background at a
much lower, N-independent, amplitude. For equilibrium
crystals (in d > 2), thermal fluctuations are responsible for
this background, and in particular lead to a finite limit
Sðq → 0Þ ∝ kBT with a prefactor set by the elastic con-
stants of the crystal [4]. In our active phase, in contrast, the
diffuse background has a peculiar behavior at low q,
SðqÞ ∼ q2, so that in particular Sðq → 0Þ ¼ 0. A similar
behavior was reported for disordered diffusing states at
lower density [39]. This suppression of fluctuations at low
q is required for long-range translational order to be
sustainable in two dimensions. Put differently, crystals in
d ¼ 2 (but not d > 2) are necessarily hyperuniform [38],
whereas equilibrium thermal fluctuations in systems of finite
compressibility destroy hyperuniformity (for any d) [48,49].
Life out of equilibrium is typically richer than in

equilibrium, as virtually any general theorem can be
violated, paving the way to physical behaviors that have
no equilibrium counterpart. Random organization models
are simple microscopic models where local breaking of
detailed balance leads to rich physics at large scale. We
showed that they provide a set of microscopic rules
whereby two-dimensional crystals with genuine long-range
order become stable. Given the recent explosion of exper-
imental realizations of two-dimensional nonequilibrium
particle systems [10,14–19,21,22,25,44], we encourage
experimental studies of their properties in a parameter
space where they can order.

We thank J.-L. Barrat, D. Frenkel, and S. Ramaswamy
for useful interactions. This project received funding from
the Simons Foundation (No. 454933, L. B.), a Visiting
Professorship from the Leverhulme Trust (VP1-2019-029,
L. B.), and by the European Research Council under the
Horizon 2020 Programme, ERC Grant Agreement
No. 740269 (MEC).

[1] David Tabor and D Tabor, Gases, Liquids and Solids: And
Other States of Matter (Cambridge University Press,
Cambridge, England, 1991).

[2] Herbert B. Callen, Thermodynamics and an Introduction to
Thermostatistics (Wiley, New York, 1995).

[3] Lev Davidovich Landau and Evgenii Mikhailovich Lifshitz,
Statistical Physics: Volume 5 (Elsevier, New York, 2013),
Vol. 5.

[4] Paul M. Chaikin, Tom C. Lubensky, and Thomas A. Witten,
Principles of Condensed Matter Physics (Cambridge
University Press, Cambridge, England, 1995), Vol. 10.

[5] N. D. Mermin, Crystalline order in two dimensions, Phys.
Rev. 176, 250 (1968).

[6] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional
Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133
(1966).

[7] John Michael Kosterlitz and David James Thouless, Order-
ing, metastability and phase transitions in two-dimensional
systems, J. Phys. C 6, 1181 (1973).

[8] B. I. Halperin and David R. Nelson, Theory of Two-
Dimensional Melting, Phys. Rev. Lett. 41, 121 (1978).

[9] A. P. Young, Melting and the vector Coulomb gas in two
dimensions, Phys. Rev. B 19, 1855 (1979).

[10] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B.
Liverpool, J. Prost, Madan Rao, and R. Aditi Simha,
Hydrodynamics of soft active matter, Rev. Mod. Phys.
85, 1143 (2013).

[11] Ronald G Larson, The Structure and Rheology of
Complex Fluids (Oxford University Press, New York,
1999), Vol. 150.

[12] Philip Nelson, Biological Physics (W.H. Freeman,
New York, 2004).

[13] Heinrich M. Jaeger, Sidney R. Nagel, and Robert P.
Behringer, Granular solids, liquids, and gases, Rev. Mod.
Phys. 68, 1259 (1996).

[14] K. Zahn, R. Lenke, and G. Maret, Two-Stage Melting of
Paramagnetic Colloidal Crystals in Two Dimensions, Phys.
Rev. Lett. 82, 2721 (1999).

[15] Alice L. Thorneywork, Joshua L. Abbott, Dirk G. A. L.
Aarts, and Roel P. A. Dullens, Two-Dimensional Melting of
Colloidal Hard Spheres, Phys. Rev. Lett. 118, 158001
(2017).

[16] P. M. Reis, R. A. Ingale, and M. D. Shattuck, Crystallization
of a Quasi-Two-Dimensional Granular Fluid, Phys. Rev.
Lett. 96, 258001 (2006).

[17] J. S. Olafsen and J. S. Urbach, Two-Dimensional Melting
Far from Equilibrium in a Granular Monolayer, Phys. Rev.
Lett. 95, 098002 (2005).

[18] Yuta Komatsu and Hajime Tanaka, Roles of Energy Dissi-
pation in a Liquid-Solid Transition of Out-of-Equilibrium
Systems, Phys. Rev. X 5, 031025 (2015).

[19] Pasquale Digregorio, Demian Levis, Antonio Suma,
Leticia F. Cugliandolo, Giuseppe Gonnella, and Ignacio
Pagonabarraga, Full Phase Diagram of Active Brownian
Disks: From Melting to Motility-Induced Phase Separation,
Phys. Rev. Lett. 121, 098003 (2018).

[20] Juliane U. Klamser, Sebastian C. Kapfer, and Werner
Krauth, Thermodynamic phases in two-dimensional active
matter, Nat. Commun. 9, 5045 (2018).

[21] Lorenzo Caprini, Umberto Marini Bettolo Marconi, Claudio
Maggi, Matteo Paoluzzi, and Andrea Puglisi, Hidden
velocity ordering in dense suspensions of self-propelled
disks, Phys. Rev. Res. 2, 023321 (2020).

PHYSICAL REVIEW LETTERS 131, 047101 (2023)

047101-5

https://doi.org/10.1103/PhysRev.176.250
https://doi.org/10.1103/PhysRev.176.250
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1103/PhysRevLett.41.121
https://doi.org/10.1103/PhysRevB.19.1855
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.82.2721
https://doi.org/10.1103/PhysRevLett.118.158001
https://doi.org/10.1103/PhysRevLett.118.158001
https://doi.org/10.1103/PhysRevLett.96.258001
https://doi.org/10.1103/PhysRevLett.96.258001
https://doi.org/10.1103/PhysRevLett.95.098002
https://doi.org/10.1103/PhysRevLett.95.098002
https://doi.org/10.1103/PhysRevX.5.031025
https://doi.org/10.1103/PhysRevLett.121.098003
https://doi.org/10.1038/s41467-018-07491-5
https://doi.org/10.1103/PhysRevResearch.2.023321


[22] G. Briand and O. Dauchot, Crystallization of Self-Propelled
Hard Discs, Phys. Rev. Lett. 117, 098004 (2016).

[23] C Hernández López, Selective and collective actuation in
active solids, Nat. Phys. 18, 1234 (2022).

[24] A numerical study [25] reports an ordered phase of vortices
in an active polar fluid, but the maximum linear size of the
lattice is five lattice units, making a discussion of the
thermodynamic limit difficult.

[25] Kripa Gowrishankar and Madan Rao, Nonequilibrium
phase transitions, fluctuations and correlations in an active
contractile polar fluid, Soft Matter 12, 2040 (2016).

[26] John Toner and Yuhai Tu, Long-Range Order in a Two-
Dimensional Dynamical XY Model: How Birds Fly
Together, Phys. Rev. Lett. 75, 4326 (1995).

[27] Hiroyoshi Nakano, Yuki Minami, and Shin-ichi Sasa, Long-
Range Phase Order in Two Dimensions Under Shear Flow,
Phys. Rev. Lett. 126, 160604 (2021).

[28] Malte Henkel, Haye Hinrichsen, Sven Lübeck, and Michel
Pleimling, Non-Equilibrium Phase Transitions (Springer,
New York, 2008), Vol. 1.

[29] David J. Pine, Jerry P. Gollub, John F. Brady, and Alexander
M. Leshansky, Chaos and threshold for irreversibility in
sheared suspensions, Nature (London) 438, 997 (2005).

[30] Laurent Corte, Paul M. Chaikin, Jerry P. Gollub, and David
J. Pine, Random organization in periodically driven sys-
tems, Nat. Phys. 4, 420 (2008).

[31] Gautam I. Menon and Sriram Ramaswamy, Universality
class of the reversible-irreversible transition in sheared
suspensions, Phys. Rev. E 79, 061108 (2009).

[32] Elsen Tjhung and Ludovic Berthier, Criticality and corre-
lated dynamics at the irreversibility transition in periodically
driven colloidal suspensions, J. Stat. Mech. (2016) 033501.

[33] K. Julian Schrenk and Daan Frenkel, Communication:
Evidence for non-ergodicity in quiescent states of periodi-
cally sheared suspensions, J. Chem. Phys. 143, 241103
(2015).

[34] Daniel Hexner and Dov Levine, Hyperuniformity of Critical
Absorbing States, Phys. Rev. Lett. 114, 110602 (2015).

[35] Elsen Tjhung and Ludovic Berthier, Hyperuniform Density
Fluctuations and Diverging Dynamic Correlations in
Periodically Driven Colloidal Suspensions, Phys. Rev. Lett.
114, 148301 (2015).

[36] Joost H. Weijs, Raphaël Jeanneret, Rémi Dreyfus, and
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