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Abstract
We numerically study the relaxation dynamics and associated criticality of non-Brownian
frictionless soft spheres below jamming in spatial dimensions d = 2, 3, 4, and 8, and in
the mean-field Mari–Kurchan model. We discover non-trivial finite-size and volume fraction
dependences of the relaxation time associated to the relaxation of unjammed packings. In
particular, the relaxation time is shown to diverge logarithmically with system size at any
density below jamming, and no critical exponent can characterise its behaviour approaching
jamming. In mean-field, the relaxation time is instead well-defined: it diverges at jamming
with a critical exponent that we determine numerically and differs from an earlier mean-
field prediction. We rationalise the finite d logarithmic divergence using an extreme-value
statistics argument in which the relaxation time is dominated by the most connected region
of the system. The same argument shows that the earlier proposition that relaxation dynamics
and shear viscosity are directly related breaks down in large systems. The shear viscosity
of non-Brownian packings is well-defined in all d in the thermodynamic limit, but large
finite-size effects plague its measurement close to jamming.

Keywords Jamming transition · Critical dynamics · Extreme-value statistics

1 Introduction

The jamming transition is an athermal critical phase transition between a fluid at low density
and a disordered solid at large density [1–3]. Exactly at jamming, particles form a rigid
network and the number of contacts z between particles is equal to zc = 2d , where d
is the spatial dimension [3,4]. The contact forces and distances between particles follow
power-law distributions with non-trivial exponents [5–8]. Above jamming, the excess contact
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number z−2d ,mechanicalmodulus, and vibrational properties also exhibit non-trivial critical
behavior [3,4,8,9]. The measured critical exponents agree with predictions from mean-field
theories [9–11] down to d = 2, suggested to be the upper critical dimension for jamming.

By contrast to these well-understood results, the criticality of systems approaching jam-
ming from the unjammed phase is still under intense scrutiny [12–22]. When jamming is
approached from below, the shear viscosity exhibits a critical divergence [14,23–30]. Simi-
larly, in both sheared and isotropic systems, the relaxation dynamics slows down approaching
jamming [31–37]. In addition, both quantities have been linked to the frequency ωmin of the
softest vibrational mode characterising the structure of unjammed packings [27]. Recent
numerical simulations and theoretical arguments suggested that the relaxation time τ , the
viscosity η, and the inverse squared frequency 1/ω2

min, all follow the same critical behavior

η ∼ τ ∼ 1/ω2
min ∼ (�z)−β, (1)

with �z ≡ 2d − z > 0 now defining the shortage of contacts from the isostatic limit.
If correct, the physical content of Eq. (1) is remarkable since it connects an important

physical quantity, the shear viscosity of non-Brownian suspensions, to a diverging relaxation
time, thus connecting the viscosity divergence to some form of dynamic slowing down.
Further, the connection with the slowest mode of the vibrational density of states would then
finally relate twomacroscopic quantities (the relaxation time and the viscosity) to the detailed
microstructure of unjammed packings, whose geometry controls the vibrational density of
states [27,35]. Physically, Eq. (1) follows from the numerical observation that the field of
particle displacements under shear or during relaxational dynamics both have a very strong
overlap with the spatial structure of the slowest vibrational mode [27,35].

Despite these recent developments, both the validity and physical content of Eq. (1) remain
open issues. There is no consensus yet on the value of the exponent β and its physical origin.
Theoretical arguments developed in Refs. [27,37–39] result in a quantitative prediction,
β � 3.41, which is directly linked to the values of known critical exponents for the jamming
transition. This suggests that β should also be independent of the spatial dimension for
d ≥ 2. Recently, a mean-field study analysed the exponent β using the perceptron model of
jamming, with a different prediction, β � 2.55 [40], again expected to hold in any d ≥ 2.
However, several simulations showed that the exponent β depends on d in a surprising
manner. The relaxation time in d = 2 and d = 3 models has β � 2.7 and β � 3.3,
respectively. These values were measured from the relaxation dynamics starting from steady
shear trajectories [34]. The value β � 3.2 is reported in both sheared and isotropic cases
for d = 3 [35], from relaxation dynamics as well. More diverse values β ∈ [2.0 − 2.8]
are obtained by direct measurements of the shear viscosity, which is notoriously difficult to
determine [14,23,29,30,41]. Therefore, the determination of a precise value, the dimensional
dependence, themean-field theoretical value of the dynamical exponentβ, and its dependence
on the chosen observable for its measurement, are all unresolved issues.

In this paper, we numerically study the dynamics of unjammed packings with three main
goals. (i) We analyse the relaxation dynamics over a broad range of spatial dimensions,
d = 2, 3, 4 and 8 to assess its dimensionality dependence. (ii) We analyse the mean-field
Mari–Kurchan (MK) model in order to resolve the conflict between current simulations
and the mean-field prediction from the perceptron model, and also in order to complete the
understanding of the dimensional dependence of the relaxation dynamics by including the
mean-field limit. (iii) We perform a careful analysis of finite-size effects for the relaxation
dynamics and the shear viscosity to directly assess the validity of Eq. (1) over a broad range
of conditions.
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We find that the relaxation time τ seems to behave differently in d = 2 (β � 2.8) and in
d = 3, 4 and 8 (β � 3.3), and find that β � 3.3 also holds in the mean-field MK model,
which would indicate that only d = 2 is distinct from all d ≥ 3 up to the mean-field d → ∞
limit. However, we also find that strong finite-size effects affect the relaxation dynamics,
and offer numerical and theoretical evidences that in the thermodynamic limit N → ∞, the
relaxation time diverges logarithmically, τ(N ) ∼ log N . This finite-size effect is at play in
finite dimensional models d < ∞, but not in the mean-field MK model. We conclude that
β cannot be obtained from the relaxation time τ in finite dimensions, and that τ ∼ (�z)−β

in Eq. (1) is in fact incorrect. We finally demonstrate that the shear viscosity η is finite and
decoupled from τ as N → ∞, meaning that η ∼ τ in Eq. (1) is also incorrect, but that
its determination is affected by large finite-size effects. We identify the length scale that
controls this finite-size effect and find that it diverges so rapidly near jamming that viscosity
measurements free from finite-size effects are extremely difficult. Our results establish that
β � 3.3 in the mean-field limit on the one hand, and identify a serious difficulty in the
determination of β in finite dimensions on the other hand. For the moment, we can neither
rule out nor confirm the possibility that the mean-field value β � 3.3 holds in any dimension
d ≥ 2 for the shear viscosity.

The paper is organized as follows. In Sect. 2, we introduce our models of non-Brownian
frictionless particles in finite dimensions and the Mari–Kurchan model, as well as important
physical quantities. We present results for the relaxation time τ for all models in Sect. 3. We
discuss finite-size effects and their physical origin in Sect. 4. In Sect. 5, we present results
for the shear viscosity, implying the breakdown of Eq. (1). In Sect. 6, we discuss our results.

2 Models andMethods

We study harmonic spheres defined by the following pair interactions

E = ε

2

∑

i< j

(
1 − ri j

σi j

)2

	

(
1 − ri j

σi j

)
, (2)

where ri j = ∣∣r i − r j − Ai j
∣∣with r i the position of particle i , σi j = σi +σ j with σi the radius

of particle i , and 	(x) is the Heaviside step function. We choose
(
Ai j

) = unif(0, L) with
L the linear length of the system to analyse the mean-field Mari–Kurchan (MK) model [42–
45], while Ai j = 0 for finite dimensional models in d dimensions. The physical idea behind
the long-range random shifts in the MK model is that particles live in a finite-dimensional
space, but interact with each other as if they were on a random graph with only a very small
number of local loops and thus a tree-like structure, similar to the Bethe lattice [42]. This
geometry decreases the role of long-range, multi-body correlations and this makes the MK
model behave as a particle model in the large dimensional limit with mean-field behaviour.
The mean-fieldMKmodel may thus be closer to physical particle models than the perceptron
analysed in Ref. [40]. We study the MK model in three dimensions throughout this paper.

We use a 50 : 50 binarymixture for the two dimensional case with σlarge/σsmall = 1.4, and
monodisperse models for the other cases including the MK model. The boundary conditions
are periodic in all directions for the isotropic case, and Lees-Edwards conditions [46] are
used when simple shear is applied. We denote N the number of particles, which we vary
systematically in our simulations. The simulations are performed in a hypercubic box of
linear size L ∼ N 1/d . We denote φ the volume fraction of the system, which corresponds to
the volume occupied by the particles divided by V = Ld .
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In the isotropic case, we study the relaxation dynamics of the model by studying over-
damped Langevin dynamics at zero-temperature:

ζ
∂ r i

∂t
= − ∂ E

∂ r i
, (3)

starting from a given completely random configuration in the high-temperature limit at a fixed
volume fraction, where ζ is the damping coefficient (This could be realised experimentally
by imposing a very large shear rate). In this model, the energy dissipation occurs between
particles and the fixed background, rather than the local contacts between particles as in the
model introduced by Durian [31]. Whereas the local contacts of particles should become
more relevant approaching jamming, we use the model for its simplicity and because the
dynamical criticality remains the same in the two dissipationmodels [33]. The typical number
of samples at each volume fraction studied in this paper is 103. The time unit of the dynamics
is τ0 = ζσ 2

small/ε for the binary mixture and τ0 = ζσ 2/ε for the monodisperse model. We
express timescales in units of τ0. Similarly, σsmall or σ are the unit length. The equation
of motions are solved by the simple Euler method. During the overdamped dynamics, the
energy asymptotically decays exponentially, E ∼ exp(−t/τ). We thus define

τ = −
(

d(log E)

dt

)−1

(4)

as the relaxation time when the energy density reaches the value E/N = 10−18. Before
entering the asymptotic exponential regime, the local relaxation time Eq. (4) measured for
each realisation typically grows with time before converging to its final asymptotic value.
The threshold E/N = 10−18 is small enough that the local relaxation time converges for
all the system sizes studied in this paper. Since the relaxation time defined in this manner is
computed in the final stages of the energy relaxation towards an unjammed configuration, it
corresponds to the slowest timescale characterising the relaxation process. We stress that the
relaxation time τ is different froma relaxation timemeasured in an equilibriumcontext,which
usually quantifies the time decay of a microscopic correlation function. Here, τ describes
the timescale needed to reach the final unjammed state starting from a given initial condition
with finite overlaps.

Since we stop the overdamped dynamics when the energy density E/N = 10−18 > 0,
many particles in the final configurations have finite (but very small) overlaps with their
neighbors and are thus subject to finite forces (which are vanishing exponentially with time
and are zero at t = ∞). To characterize each final configuration, we count the contact
number z between particles. Before computing the contact number, we iteratively remove
rattler particles that have less than d contacts until all remaining particles have more than d
contacts [27,33]. The volume fraction after removing rattlers becomes slightly smaller. We
also compute the spatial correlation function of the forces in the final configurations

Cforce(r) =
〈
1
N

∑
i< j f i · f jδ

(
r − ri j

)〉

〈 1
N

∑
i f i · f i

〉 . (5)

Since the totalmomentum is zero in theoverdampeddynamicsEq. (2), the correlation function
Cforce(r) has an anticorrelation, meaning that Cforce(r) becomes negative at some r > 0. We
define the typical correlation length ξforce for force-force correlations as the distance where
Cforce(ξforce) = 0 for the first time. During the relaxation, the correlation length grows and
converges to the final asymptotic value with the same time scale as the local relaxation time
Eq. (4) converges.
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To visualize real-space structures of physical quantities, we define the coarse-grained field
Ô(r) of an observable Oi as follows:

Ô(r) =
∑

i W (r − r i )Oi∑
i W (r − r i )

, (6)

where we introduce a Gaussian window function of typical width σfilter

W (r) =
{

e−r2/(2σ 2
filter) − e−r2c /(2σ 2

filter) , |r| < rc,
0 , |r| > rc,

(7)

with r i the position of particle i . Here, for example, Oi = | f i | for the force, Oi = zi for the
contact number, where f i and zi are the force acting on particle i and the contact number
of particle i , respectively. For illustrative purposes, we choose rc = 30 and σfilter = 4. The
values of σfilter and rc do not change the visualization qualitatively unless they are small
enough compared to the box size.

To analyse shear rheology, we study both the steady state properties and the relaxation
dynamics of the binary mixture model in two dimensions. To achieve the steady sheared
state, we solve the equations of motion

ζ

(
∂ r i

∂t
− γ̇ yi ex

)
= − ∂ E

∂ r i
(8)

with Lees-Edwards boundary conditions [46] in y direction, where γ̇ is the shear rate, yi is
the y-coordinate of particle i , ζ is the damping coefficient, and ex represents the unit vector
parallel to x direction. The time unit of the dynamics is again τ0 = ζσ 2

small/ε. The shear
viscosity η and its pressure analog ηp are defined as the shear stress σ and the pressure p
divided by the shear rate γ̇ , respectively. The shear stress σ and the pressure p are computed
using the following formulae:

σ = 1

N

∑

i< j

xi j yi j

ri j

∂ E

∂ri j
, (9)

p = 1

N

∑

i< j

y2i j

ri j

∂ E

∂ri j
, (10)

where ri j = |r i − r j |, xi j = xi − x j , and yi j = yi − y j . Starting from uniformly random
configurations, we monitor the energy, the shear stress and the pressure to confirm the con-
vergence to the steady state after the shear strain γ = γ̇ t reaches 10. In order to obtain the
shear viscosity η and ηp in the Newtonian regime, we set γ̇ = 10−6 and 10−7 for φ = 0.8
and 0.83, respectively. With these choices, η and ηp are independent of γ̇ when it is lowered,
consistent with Ref. [33]. We also studied the overdamped dynamics starting from sheared
configurations taken during the steady state. To this end, we suddenly stop the shear and solve
the equation of motion Eq. (3). We measure the relaxation time Eq. (4) of the overdamped
dynamics when E/N = 10−18, exactly as in the isotropic case.
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Fig. 1 Relaxation time τ as a function of �z = 2d − z in d = 2, 3, 4, 8 and in the mean-field MK model. For
d ≥ 3 and the MK model, β � 3.3 at small �z, whereas for d = 2 β � 2.8. Two system sizes are shown in
d = 2, suggesting that finite-size effects are large for large �z

3 Relaxation Time in Various Spatial Dimensions

3.1 Dynamical Exponent in theMari–KurchanModel

We study the relaxation dynamics of the MK model. We solve Eq. (3) starting from random
initial configurations. The volume fractions we studied in this model range from φ = 1.42
to φ = 1.46. In the large-size limit N → ∞, the system at the jamming transition shows
an algebraic energy decay E ∼ t−α . An algebraic decay is still observed in finite systems at
short time with α � 1 when the packing fraction is close enough to jamming, but the decay
crosses over to being exponential at large times. In this regime, we compute the relaxation
time τ using Eq. (4).

In Fig. 1, we plot τ against �z = 2d − z, the shortage of the contact number in the
final configuration. The contact number is calculated after removing the rattlers (see Sect. 2).
Note that larger �z values correspond to lower packing fractions. The figure shows that
τ cannot be fitted by a single power-law in the entire density region. If we focus on the
lower density region �z/2d � 4 × 10−2, the power-law fitting Eq. (1) gives the exponent
β � 2.6. This is comparable with an estimated value for the relaxation time of the perceptron
model β = 2.55(15) [40]. However, the relaxation time at smaller �z grows more rapidly. It
eventually crosses over to another power-law behavior with β � 3.3 at�z/2d � 10−2. Even
if we evaluate the exponent for our data up to�z/2d � 3×10−2 by fitting to Eq. (1), it yields
β � 3.0, significantly larger than the estimation in Ref. [40]. Therefore, we conclude that the
dynamical exponent β of theMKmodel is not equal to that of the perceptron model [40]. Our
best estimate is β � 3.3, but larger systems and a more careful finite-size scaling analysis
would perhaps modify this value by a small amount. Such an analysis would be useful to
compare the mean-field value to the prediction β � 3.41 obtained in Ref. [39].

3.2 Relaxation Dynamics in Finite Dimensions

In sufficiently high dimensions, we may expect the system to approach some mean-field
behaviour. Since two distinct mean-field models (the perceptron and the MKmodels) exhibit
different dynamical exponents, it is important to directly study the dimensional dependence
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of the behaviour of τ . We study the relaxation dynamics of harmonic spheres from random
configurations in d = 2, 3, 4 and 8. As for the MK model, we measure the relaxation time
τ using Eq. (4), and plot τ against �z in Fig. 1. The jamming densities are known to be
φJ � 0.842 for the two-dimensional model [47], and φJ � 0.65, 0.46, 0.078 for the three-,
four-, and eight-dimensional models [48], respectively. We thus study the volume fractions
in the range of [0.8, 0.842], [0.627, 0.634], [0.445, 0.451], and [0.074, 0.075] for two, three,
four, and eight dimensional models for Fig. 1.

We find that the exponent β � 3.3 works well in a wide range of dimensions, from
d = 8 down to d = 3, where the relaxation time seems to follow a power-law with the same
exponent β � 3.3 at small enough �z. The results in d = 3 are consistent with previous
reports [34,35]. We conclude that, over the range of system sizes used in Fig. 1, harmonic
spheres in d ≥ 3 and the MK model follow a very similar behaviour as they approach
jamming where τ → ∞ and �z → 0. This behaviour seems different from the perceptron
model prediction.

A hint that this may not be the final story is the behaviour revealed by the two-dimensional
model, which does not share the same apparent value of the exponent β. The growth of the
relaxation time is noticeably milder in two dimensions, and the fitting gives an exponent
β � 2.8. These results confirm the surprising dimensional dependence of the exponent
reported recently [34].

The dimensional dependence of the apparent exponent could suggest the existence of a
characteristic dimension between d = 2 and d = 3 where the dynamic criticality changes
qualitatively. This interpretation would also suggest that the critical dynamics is not fully
determined by static exponents for jamming since the static exponents are independent of
dimensionality down to d = 2 [3,4,8,9] as we mentioned in Sect. 1.

We will in fact suggest a very different interpretation, namely that the exponent β char-
acterising the growth of τ when jamming is approached is actually not well-defined in
finite-dimensional models. As a result, the dimensionality dependence of its apparent value
is immaterial, and the findings in Fig. 1 should not be taken as the sign of an emerging
non-trivial upper critical dimension for the dynamics of non-Brownian suspensions.

We can see hints of this interpretation in Fig. 1 where the relaxation time data for the two-
dimensional system with N = 4096 and N = 262144 seem to show a similar power-law
behavior at small �z, but appear to behave very differently away from the transition above
�z � 2 × 10−2. This suggests that finite-size effects should be analysed more precisely, as
we discuss in the following.

4 Logarithmic Divergence of the Relaxation Time

Whereas the relaxation time τ in finite-dimensional models seems to follow a power-law
divergence towards �z → 0, it also seems to suffer from finite-size effects, which are seen
already at modest volume fractions and relatively large �z away from jamming.

4.1 Logarithmic Growth of the Relaxation Time

Figure Fig. 2a shows the relaxation time τ as a function of the number of particles N
averaged over samples with contact number z ∈ [3.83, 3.84], which corresponds to�z/2d ∈
[4 × 10−2, 4.25 × 10−2], and with fixed volume fractions φ = 0.82 and φ = 0.83 in two
dimensions.
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Fig. 2 a Relaxation time τ as a function of the particle number N in d = 2 averaged either at fixed z or fixed
volume fraction φ. b Same plot in d = 3 and for the Mari–Kurchan model at fixed φ. A logarithmic growth
τ ∼ log N in both d = 2 and d = 3, but is not observed in the MK model: τ(N → ∞) is not defined in finite
d

In small systems, the contact number at fixed density has large sample-to-sample fluctua-
tions. The relaxation time of small systems averaged at fixed density receives contributions
from samples with a wide range of contact numbers, and this is expected to have larger
finite-size effects compared to the case of an average at a fixed contact number. Indeed,
the relaxation time averaged at fixed volume fraction φ = 0.83 has a more pronounced
dependence on N below N = 642 than at fixed contact number.

At much larger N , on the other hand, the relaxation time τ grows similarly regardless
of the averaging procedure. Crucially, its asymptotic dependence is a logarithmic growth,
τ(N ) ∼ log N . This unbounded logarithmic growth with the system size suggests that the
relaxation time τ is not well-defined in the thermodynamic limit, as it diverges when N → ∞
at a finite distance below the jamming transition. We find the slope becomes smaller as φ

decreases and it would go to zero in the limit φ → 0, but the logarithmic growth should
appear at any finite φ below jamming.

This finite-size effect is surprising since the system is not expected to have a diverging
lengthscale in the entire unjammed phase, but to be critical at the jamming transition only.
We may wonder whether two dimensions is a special dimension, as it is for instance for other
types of equilibrium phase transitions [49]. In Fig. 2b, we show that the same logarithmic
behaviour at large N is in fact present for d = 3 (here, at fixed volume fraction φ = 0.57).
We expect the logarithmic behaviour to be a generic feature in any d < ∞ below jamming.

In the previous section, we discussed the value of an apparent critical exponent β for the
relaxation time. However, because the relaxation time is divergent in the entire unjammed
phase, we have to carefully consider the physical meaning of these measurements. We
emphasize that when the volume fraction is very close to the jamming transition, the log-
arithmic growth only appears when very large systems sizes are considered. For instance,
Fig. 1 shows that the relaxation time at N = 262144 and N = 4096 nearly coincide for
�z/(2d) � 2 × 10−2, where we determined an effective critical exponent. We observe that
it becomes harder to detect the logarithmic growth closer to jamming, which presumably
explains why this effect has not been detected before. This suggests the existence of a length-
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Fig. 3 Coarse-grained fields (see Eq. (6)) for a the amplitude of the normalized force, and b the slowest
eigenmode in a relaxed unjammed configuration at φ = 0.7 with N = 1024. Both fields are almost equivalent
and seem correlated over the entire system

scale ξ(φ) controlling the emergence of a logarithmic divergence, and ξ(φ)may be controlled
by the distance to jamming, as we directly confirm below.

Finally, Fig. 2b also shows the system size dependence of the relaxation time in the mean-
field MK model. Clearly, the MK model is free from the logarithmic divergence at large N .
Therefore, the measured dynamical exponent β is well-defined even in the thermodynamic
limit for the mean-field model. This suggests that the physical origin of the logarithmic
growth is a finite dimensional effect affecting the definition and determination of β when
d < ∞. Numerical observations in dimensions d = 4 and 8 suggest that over a broad range
of system sizes and volume fractions, these systems behave very similarly to the MK model,
which may then serves as a useful guide for finite d systems but only over a finite regime.

4.2 Relaxation with Multiple Islands

Because of the overdamped equation of motion, particle motion is directly controlled by the
net forces acting on the particles. In particular, the displacement of each particle during the
terminal relaxation should be proportional to the force acting on each particle in the final
configuration [35]. This suggests that an analysis of the force field should shed light on the
relaxation dynamics and provide insight on the physical origin of the logarithmic divergence
of τ . We focus on d = 2, as larger system sizes can be simulated and visualisation is much
easier.

We first focus on the case of a modest system size, N = 1024 (L ∼ 40), and volume
fraction, φ = 0.7. In Fig. 3a, we show the coarse-grained force field in a relaxed unjammed
configuration (see Sect. 2 for the definition). This shows that the field is correlated over the
entire system, with a single region of weaker forces and a single domain where forces are
larger. Both domains have a linear size comparable to L .

We also show the coarse-grained field of the eigenmode associated with the lowest non-
zero eigenfrequency ωmin of the Hessian matrix for the same final configuration in Fig. 3b.
These two fields are almost equivalent, confirming the deep connection between the softest
vibrational mode in unjammed configurations and the final force field controlling the relax-
ation time τ . This large correlation rationalises previous observations that τ ∼ 1/ω2

min [35].
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Fig. 4 Coarse-grained force field in d = 2 for N = 262144 and volume fractions a 0.6, b 0.8, c 0.82, and d
0.83. The size of the correlated large force ‘islands’ (yellow) grows rapidly with increasing φ

The visual impression is confirmed by a direct analysis of the projection of the eigenmode
onto the force field. At this volume fraction, the projection yields 0.992(3). The equality
τ = (2ω2

min)
−1 also holds numerically, confirming the harmonic nature of the final stage of

the relaxation dynamics [35].
The situation becomes very different with increasing the system size. Figure Fig. 4 shows

coarse-grained force fields for N = 262144 (L ∼ 600) at various volume fractions. For
φ = 0.6 and φ = 0.8, the force field does not form a single correlated region, but is instead
composed of multiple ‘islands’ where the force has a larger amplitude than in the rest of the
system where forces are much smaller (the colour codes for forces in a logarithmic scale).
The emergence of the multiple islands is unrelated to the connectivity percolation transition
in the system, which occurs at φ � 0.55 [50]. In our study, the system is always percolated
and the multiple islands we identify with the force field all belong to the percolated cluster.

In such systems, we find that the softest eigenmode is mainly localized on a single one
of these islands, while the other islands correspond to other eigenmodes with slightly larger
frequencies. These observations were obtained by directly measuring the Hessian matrix in
the final configuration for a system size N = 16384, large enough to detect multiple islands
and small enough that a diagonalisation of the Hessian remains numerically feasible. As a
result, the projection of the softest eigenmode onto the residual force field decreases with
increasing the system size.
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Fig. 5 a Absolute value of the force correlation function |Cforce(r)| for d = 2 and φ = 0.82 and various N .
The correlation length ξforce is defined as the distance where Cforce changes sign. b The evolution of ξforce
with N for various φ changes from ξforce ∼ L ∼ N1/d to a slower logarithmic growth at large N

The physical picture is that each of the large-force islands observed in the final configura-
tion relaxes on its own timescale, but the relaxation time for the entire system is dominated
by the slowest of these independently-relaxing islands.

In addition, Fig. 4 shows that the typical size of these islands increases rapidly as the
volume fraction increases towards jamming. As a result, a single correlated island seems to
cover thewhole system forφ = 0.83, despite the fact that the system size is large N = 262144
(the linear size is larger than L ∼ 600).

To quantitatively analyze the emergence of the islands corresponding to domains where
the force field is spatially correlated, we measure the spatial correlation function of the forces
Cforce(r), defined in Eq. (5). Figure Fig. 5a shows the absolute value |Cforce(r)| for φ = 0.82
and various system sizes. The absolute value is needed when using a logarithmic vertical
axis, as the correlation changes sign at large r . We expect that Cforce(r) first vanishes at a
distance corresponding to the typical size of the islands seen in Fig. 4. Therefore,we define the
correlation length ξforce as Cforce(ξforce) = 0 to measure the linear extension of the correlated
force islands.

The results are shown in Fig. 5b which presents the evolution of ξforce(φ, N ) for various
values ofφ and several system sizes N in d = 2.At lowφ, the correlation length ξforce exhibits
a mild increase with N at large N and its absolute value is modest. When φ increases (see
for instance φ = 0.82), the growth of ξforce is initially much stronger, compatible with
ξforce ∼ L ∼ N 1/d . This suggests that in this regime, the force correlation length is actually
bounded by the linear size of the system, compatible with the snapshots where the force field
appears correlated over the entire system. For larger N , eventually, this very fast increase of
ξforce slows down and resembles the findings for low φ, compatible with a slow, presumably
logarithmic, growth.

The data for the force correlation length suggest the existence of two regimes of system
sizes, separated by a crossover length ξ(φ). There is a first regime at small N , i.e. L < ξ(φ),
where the force correlation is limited by the system size, so that ξforce(φ, N )/L = O(1)
and the system is composed of a unique correlated island. At larger N , i.e. L > ξ(φ), the
force correlation enters a second regime where ξforce(φ, N )/L 	 1, and the system breaks
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into multiple independent islands. This behaviour echoes the evolution of the relaxation time
which is nearly constant (or decreases slightly with N ) in the first regime, and increases
logarithmically in the second. Indeed, we observe that the typical system size where the
crossover occurs, i.e. L � ξ(φ), in both quantities is indeed similar.

Importantly, the breaking of the system into independent sub-systems emerges when N is
large enough, but the crossover size ξ(φ) where this happens seems to depend very strongly
on the volume fraction, and appears to become very large when the jamming transition is
approached. The most natural interpretation is that the behaviour of all the quantities studied
here is governed by a growing correlation lengthscale ξ(φ) which diverges as the jamming
transition is approached. We discuss the physical content of ξ(φ)more extensively in Sect. 6.

4.3 Logarithmic Growth Explained by Extreme-Value Statistics

We have established that the logarithmic growth of the relaxation time takes place in the
regime where L > ξ(φ), when the system is large enough to exhibit multiple correlated
islands where the relaxation dynamics can take place independently.We now use an extreme-
value statistics argument to explain the logarithmic growth of τ with N .

Let us suppose that the timescale τisl controlling the relaxation locally in each island
follows the probability distribution P(τisl). The global relaxation time of the system τ corre-
sponds to the slowest timescale in a given configuration. We suppose that one configuration
with N particles can be decomposed into M independent islands, which provide M inde-
pendent timescales {τ (i)

isl }i=1,··· ,M . The probability that the maximum value in the set {τ (i)
isl }

is smaller than t is Prob(t > max{τ (i)
isl }) = F(t)M , where F(t) = ∫ t

0 P(τ ′)dτ ′ is the cumu-
lative distribution function of P(τ ). The probability distribution for the largest time among
the M islands is thus ∂(F(t)M )/∂t . Assuming a simple form for the probability distribution
P(τ ) = θ−1 exp(−τ/θ), the average value 〈τ 〉 and the cumulative distribution G(τ ) of the
largest timescale, i.e. of the relaxation time τ , are given by

〈τ 〉 = M
∫ ∞

0
t F(t)M−1P(t)dt = θ

M∑

k=1

1

k
∼ θ log M, (11)

G(τ ) = M
∫ τ

0
F(t)M−1P(t)dt = (1 − exp (−τ/θ))M . (12)

These expressions explain our numerical results quite well. To show this, we plot the proba-
bility distribution function of the relaxation time G ′(τ ) obtained from numerical simulations
in d = 2 for φ = 0.6 in Fig. 6. Each of the measured distribution is fitted to the expression
G ′(τ ) = M exp(−τ/θ) (1 − exp (−τ/θ))M−1 /θ , using M and θ as fitting parameters. The
fit is clearly excellent, using a nearly constant value θ ≈ 2.9, and a parameter M growing
rapidly with N (a numerical fit gives M ∼ N 0.77, close to the naive linear growth expected
for the number of independent islands). This agreement supports the above argument using
extreme-value statistics.

The logarithmic growth of the relaxation time then follows from Eq. (11), which shows
that the largest relaxation time among M islands scales as the logarithm of the number of
islands M . A similarly slow growth would hold for any functional form of the distribution
P(τ ) provided its first moment is not divergent [51,52]. This shows that the emergence of
multiple finite-sized islands in unjammed configurations is responsible for the logarithmic
divergence of the relaxation time in the thermodynamic limit which eventually prevents the
definition of the critical exponent β from the relaxation time τ .
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in d = 2. Fits to Eq. (12) are shown with dashed lines

5 Decoupling of Shear Viscosity and Relaxation Time

Previous sections have shown that τ ∼ (�z)−β in Eq. (1) cannot be correct as both τ and
ωmin are not defined in the unjammed phase in the thermodynamic limit. These two quantities
are controlled by the slowest region of the entire system, whose timescale and lengthscale
increases logarithmically with N .

Regarding the shear viscosity, we can think of two possibilities: It either diverges like
the relaxation time and it is not defined in the thermodynamic limit, or it remains finite
and diverges as jamming is approached with a critical exponent β. The shear rheology is
characterized by the steady state shear viscosity η = σ/γ̇ and its pressure analogue ηp =
p/γ̇ , where σ is the shear stress, γ̇ the shear rate, and p the pressure. Previous studies
suggested that the relaxation time τ measured after suddenly stopping the shear is proportional
to the shear viscosity [33]. This coupling was physically rationalised by the observation that
the softest eigenmode of the Hessian controls both the relaxation dynamics [35] and the
response to shear [27].

On the other hand, the above results for the relaxation dynamics from random configu-
rations suggest that the situation may be different in large enough systems. Therefore, we
need to revisit the relaxation dynamics from sheared configurations and its relation to the
rheology. The corresponding simulation methods were described in Sect. 2.

Starting from sheared configurations in the steady state, we analyse the relaxation dynam-
ics to measure the relaxation time τ as shown in Fig. 7a for φ = 0.8 in d = 2. Again, the
relaxation time increases logarithmically with N , showing that it is divergent in the thermo-
dynamic limit, just as for random configurations. Figure Fig. 7b shows results for φ = 0.83,
whichmimic again the results for random configurations. Closer to jamming it becomesmore
difficult to observe the logarithmic behaviour at large N , as the crossover length ξ(φ) to enter
the large N regime is larger.

We also find that the force field in the sheared case has the same properties as for the
isotropic case.When the system size is small or the volume fraction is very close to jamming,
the force field and the softest eigenmode are correlated over the whole system. These two
fields are almost equivalent as they have a very large overlap. However, when the system size
becomes large enough, multiple islands appear and the overlap between the two becomes
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small, even in the sheared case. As the particle configuration evolves with time during the
steady shear, the relaxed configuration also changes depending on the starting configurations.
The above findings about the islands hold very typically for the configurations in the steady
states although we have not studied the detailed dynamics of the islands.

Next, we focus on the steady state shear viscosity. Figure Fig. 7a compares the viscosity
ηp with the relaxation time τ for φ = 0.80. It is clear that the viscosity does not show the
same logarithmic increase at large N as τ . We conclude that the shear viscosity is finite in the
thermodynamic limit, and that it decouples from the relaxation time at large N . This implies
that η ∼ τ in Eq. (1) breaks down.

We compare ηp and τ much closer to jamming for φ = 0.83 in Fig. 7b. In the regime of
system sizes where the shear rheology can be analysed, the two quantities appear strongly
coupled. For the largest N value, we see a hint that τ enters the logarithmic regime whereas
ηp saturates to its large-N limiting value, but this is difficult to see (despite the large system
sizes studied).

The physical interpretation of these results is that in the regime where ξforce ∼ L , the
coupling between viscosity and relaxation dynamics is strong and both quantities behave
similarly. On the other hand, when ξforce 	 L , they become decoupled with τ(N ) ∼ log N
whereas ηp saturates to a constant value. For a given volume fraction φ, the decoupling thus
occurs when L > ξ(φ), where ξ(φ) is the correlation length mentioned in Sect. 4.2 above,
and discussed further in Sect. 6.

The decoupling at large N can be understood intuitively on the basis of the snapshots
shown in Fig. 4, which show the emergence of independent islands where the forces are
large in unjammed configurations. Whereas the relaxation time is always dominated by the
slowest of these multiple islands in each configuration, the viscosity presumably results from
an ensemble average over all correlated domains. If the probability distribution of the local
viscosity is well-behaved, its first moment has no reason to diverge in the thermodynamic
limit.
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Note, however, that even though the viscosity saturates to a constant value at large N , it is
subject to very strong finite-size effects which persist up to very large system sizes, L ∼ ξ(φ).
As noticed before, we expect these finite-size effects to become weaker if the relaxation time
and the viscosity are averaged at fixed contact number and not at fixed volume fraction, but
the proper measurement of the viscosity requires L � ξ(φ).

Several works have used scaling analysis to estimate the critical exponent of the shear
viscosity [28–30] and already pointed out that this is difficult due to a complicated scaling
behavior near criticality and large corrections to scaling. Our results demonstrate that the
large-N limit of the viscosity is only accessible when the linear size of the system is much
larger than a typical lengthscale ξ(φ)which seems to growvery fast as jamming is approached.
For instance, a recent work estimated the β = 2.68(8) in d = 2 using a scaling analysis
of the shear viscosity [30]. However, the estimated exponent is very close to the apparent
value for τ in Fig. 1, and the range of system sizes used in Ref. [30] belong to the regime
L < ξ(φ). The large-N limit for the shear viscosity appears even harder to achieve in larger
dimensions.

6 Discussion

In summary, we studied the relaxation dynamics of athermal frictionless soft spheres below
jamming using extensive numerical simulations to directly test Eq. (1) and investigate the
existence and numerical value of β across different dimensions from d = 2 to d = ∞.

We discovered that the relaxation dynamics of unjammed packings close but below jam-
ming is controlled by a large correlation lengthscale, ξ(φ), which diverges very fast as the
jamming transition is approached. This finding, associated with the observation that two very
different types of initial conditions yield similar results suggest that the dynamical slowing
down approaching the jamming transition from below is largely universal. We expect that
qualitatively similar results would be obtained using different types of local dynamics. Our
results suggest that only collective algorithms relying on a detailed analysis of themicrostruc-
ture of the force network could change the value of the dynamic critical exponents.

For system sizes L < ξ(φ), the relaxation time, softest mode and shear viscosity are
strongly coupled because the force field is correlated over the entire system and all these
probes are physically equivalent. However, in this regime, all quantities are strongly affected
by finite-size effects.

In the other regime L > ξ(φ), the relaxation time and softest mode do not converge in the
thermodynamic limit, because the system breaks into independently relaxing domains, and
the relaxation time is dominated by the slowest region of the entire system. An extreme-value
argument then explains its logarithmic divergence with system size, τ(N ) ∼ log N . In this
regime, the exponent β only applies to the shear viscosity which is then devoid of finite-
size effects but this requires prohibitively large systems near jamming, making a precise
determination of β very difficult, even in d = 2.

The analysis of the mean-field Mari–Kurchan model suggests that the value β � 3.3
should describe the large-d limit. One may conjecture that this exponent describes the shear
viscosity in any physical dimensions d ≥ 2 in analogy with other jamming exponents. Due
to the large finite-size effects mentioned above, we can neither rule out nor support this
conjecture for the moment by direct numerical measurements.

Because of the mean-field nature of theMKmodel, we expect that the mean-field dynamic
exponentβ � 3.3 can be determined by analytic developments. Indeed, theoretical arguments
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Fig. 8 Coarse-grained fields of a the amplitude of forces and b contact number fluctuations for φ = 0.7 and
N = 262144. In b, regions with negative z(x, y) − 〈z〉 are shown in black

developed for the sheared case give a quantitatively similar value β � 3.41 [39]. In order
to directly compare these two exponents, we need to study either the MK model under
steady shear, or extend the theoretical argument to the isotropic case. The former is difficult
because the random shifts couple particles that are spatially separated from each other by
large distances, and a uniform shear flow is difficult to realize in the MK model. The latter
seems more promising. We remark that Ref. [40] recently proposed a variational argument
for the dynamic exponent in the isotropic case which gives the same result as Ref. [38],
which is an earlier version of Ref. [39]. We hope that our work will guide and inform further
analytic developments. Indeed, since the initial submission of our manuscript, Ikeda [37] has
obtained the same prediction β = 3.41 for the isotropic case.

What is the nature of the correlation length ξ(φ) controlling the two different regimes
for the relaxation dynamics and shear rheology? The snapshots of the force field in Fig. 4
suggest that the microstructure of the system is very uniform when L < ξ(φ), and strongly
heterogeneous when L > ξ(φ). The contact number z also fluctuates spatially in unjammed
packings, between regions that are highly connected and regions that are less connected. In
Fig. 8, we compare the coarse-grained fields of the forces and of the contact number fluc-
tuations, δz(r) = z(r) − 〈z〉, where 〈z〉 represents an average over the final configuration.
This comparison confirms the intuition that the regions that are more connected are also the
regions where the forces between particles are larger, and that the islands controlling the
relaxation dynamics correspond to the well-connected regions. Recently, the spatial fluctua-
tions of the contact number have been analysed numerically [20,21]. Combining our results
with this recent analysis suggests to identify ξ(φ) with the correlation length of the contact
number field. Numerically, a power law ξ ∼ (�z)−ν was measured, with ν � 0.7 (d = 2)
and ν � 0.85 (d = 3). This could also be consistent with a very recent study [30] discussing
the existence of a diverging length scale controlling the shear rheology of unjammed spheres,
with a critical exponent close to ν = 1. As reviewed in Ref. [30], the zoo of critical length-
scales near jamming is populated by many beasts, and it would be useful to provide a firmer
theoretical basis for the correlation length ξ(φ) that controls the dynamics of unjammed
packings.

A final puzzle is the logarithmic increase of the force-force correlation length ξforce in the
regime L > ξ(φ), which appears incompatible, at first sight, with the multiple island picture
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given by the snapshots of the force field. Since the force-force correlation function Eq. (5) is
computed as an average over all particles, the correlation length ξforce should indeed quantify
the typical size of the islands. However, the amplitude of the forces in final configurations
vary over orders of magnitude from one region to another, and we believe that here again the
island with the largest forces in fact dominates the correlation function. The weak growth of
the correlation length ξforce in Fig. 5b thus presumably results from a similar extreme-value
mechanism as for the logarithmic growth of the relaxation time.
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