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Intermittent relaxation and avalanches
in extremely persistent active matter†

Yann-Edwin Keta, a Rituparno Mandal,b Peter Sollich, bc Robert L. Jack de

and Ludovic Berthier ad

We use numerical simulations to study the dynamics of dense assemblies of self-propelled particles in

the limit of extremely large, but finite, persistence times. In this limit, the system evolves intermittently

between mechanical equilibria where active forces balance interparticle interactions. We develop an

efficient numerical strategy allowing us to resolve the statistical properties of elastic and plastic

relaxation events caused by activity-driven fluctuations. The system relaxes via a succession of scale-

free elastic events and broadly distributed plastic events that both depend on the system size.

Correlations between plastic events lead to emergent dynamic facilitation and heterogeneous relaxation

dynamics. Our results show that dynamical behaviour in extremely persistent active systems is

qualitatively similar to that of sheared amorphous solids, yet with some important differences.

I. Introduction

Active matter systems continue to surprise and challenge us
with their range of diverse behaviour, generating new insights
into systems that are relevant for both biology and fundamental
statistical mechanics.1–4 In dense disordered systems with slow
dynamics, systems of active particles exhibit glassy behaviour
reminiscent of passive equilibrium systems, as well as interesting
new phenomena.5–15

A fascinating idea is that collective motion observed on large
length scales may be triggered by driving forces acting at
the particle scale. This represents a form of dynamic self-
organisation that emerges out of equilibrium from many-
body effects. A wide variety of collective behaviour is observed
in active systems, from bacterial turbulence16 to flocking
motion.17 These effects are revealed by the emergence of non-
trivial correlations,18 either in the instantaneous velocity field
or in displacement fields over larger time lags.

In systems of self-propelled particles without aligning
interactions, sometimes known as scalar active matter, the

difference between active and passive systems appears through
the persistence time tp of the self-propulsion.6,19,20 The passive
behaviour can be recovered in the non-persistent limit tp - 0.
The other extreme of very large values of tp leads to distinct
behaviour, such as jamming and intermittent relaxation,13,15,21

reminiscent of sheared athermal systems.22 In such persistent
systems, collective motion emerges when crowding effects at
large density compete with persistent activity.8,15,23–25 This
happens in both fluid and glassy states, and increasing the
persistence time typically reinforces these effects13,25,26 because
the correlation length of velocity correlations grows with tp.
However, computational studies of this regime are arduous
because of the separation of timescales between tp and emer-
gent correlation times on the one hand, and molecular time-
scales on the other.

For very large but finite tp, it has recently been shown that
this difficulty can be tackled using a strategy known as activity-
driven dynamics (ADD).21,27 For systems without thermal noise,
this provides direct access to the limit of very large tp, and
allows simulations of all dynamical relaxation processes taking
place on timescales comparable with and greater than tp. The
central idea is that for times t { tp, the system evolves as if the
propulsion forces were fixed: if these forces are not too strong,
then the dynamics will converge to a force-balanced configu-
ration in a time t0 { tp. For larger forces, the system yields and
there is no convergence to any mechanical equilibrium;13,28,29

ADD is restricted to forces below that yield point. After reaching
a force-balanced state, the system configuration in ADD remains
almost constant until the propulsion forces change significantly,
which requires a time of order tp. Eventually, these forces will
change sufficiently to destabilise the force-balanced state, at which
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point the system must switch to a new force-balanced configu-
ration, which involves significant particle motion.

The resulting intermittent dynamical motion has several
important consequences. First, it means that standard simula-
tion methods become inefficient because they require a time
step dt t t0 { tp. ADD circumvents this problem by replacing
the explicit dynamical integration over times of order t0 with
an energy minimisation step. This offers a computational
speedup of order tp/t0, which is large in extremely persistent
active matter. Second, the intermittent mechanism of ADD
relaxation – which involves long quiescent periods punctuated
by large sudden motions – means that these systems share
similarities with other physical systems where athermal quasi-
static motion is relevant. These include amorphous solids
under athermal quasistatic shear (AQS),22 and active matter
systems undergoing an athermal quasistatic random displace-
ment (AQRD) protocol.30

In all these contexts, a system evolves in response to
potential gradients and the potential evolves quasistatically:
the resulting motion is mostly quasistatic, but sudden relaxa-
tion events are triggered when the local minimum of the
potential deforms into a saddle point. Such events are known
as avalanches, because large-scale motion can be triggered after
an infinitesimal local change.31–33

In addition to similarities with AQS and AQRD, the ADD
method is also related to the athermal quasistatic random force
(AQRF) protocol of ref. 30. However, ADD is distinct from all
these methods. Specifically, both AQS and AQRD displace
particles along a fixed driving direction and particles move
orthogonally to the drive to minimise their interaction energy.
This leads to sustained stick-slip motion, including avalanches.
By contrast, AQRF applies forces with fixed direction; these are
changed smoothly, which generates avalanches. However,
increasing the force amplitude eventually drives the system
through a yielding threshold,13,28,29 after which mechanical
equilibrium is no longer reached and the system ‘‘flows’’. The
essential features of ADD are that it controls the forces on
particles (contrary to AQS and AQRD); and that the directions of
these forces change randomly with time while their typical
strength remains constant, contrary to AQRF. The result is a
dynamical non-equilibrium steady state that exhibits stick-slip
motion. This corresponds to the large-tp limit of the steady
states previously observed in active matter, which also show
highly intermittent motion.13,15

In this work, we develop an efficient computational
approach to exploit the ADD method in order to characterise
the dynamical relaxation of dense active matter over timescales
t c tp in the extremely persistent limit of tp c t0. We work in
two dimensions, which is the relevant case for many experi-
mental active systems,34–36 and also helps visualisation of the
complex physics of active systems. We address two broad sets of
questions.

First, we show that ADD relaxation is built on two funda-
mental processes as in other athermal quasistatic methods
such as AQS. These are smooth elastic deformations where
the particles deform weakly near an energy minimum, in

response to the slowly-varying self-propulsion forces; and
sudden plastic rearrangements or avalanches in which a local
minimum of the energy landscape becomes unstable, forcing
the system towards a new one. We characterise these two
processes in detail, including quantitative comparisons with AQS.

Our second broad question is how particles move and relax
in the steady states of ADD. As one might expect for a dense
disordered system with slow dynamics, one finds cooperative
heterogeneous relaxation. We analyse this motion using a
range of techniques borrowed from passive glassy systems,37

including distributions of particle displacements, correlation
functions tailored for structural relaxation, and four-point
susceptibilities.

Our results generate significant insight into active matter at
large tp. For the elastic and plastic events, several of our results
show spatial correlations that extend across the entire system.
For example, the mean size of a plastic event grows with system
size N,21 and we also observe a significant N-dependence of the
yielding threshold.13 This should be contrasted with thermal
glassy systems where one expects the behaviour of a large
bulk system to be well-approximated by dividing it into several
non-interacting subsystems. This behaviour appears because
we choose to take the limit tp - N at fixed system size, which
implies that the characteristic length scale for velocity correla-
tions grows with the system size.25 We discuss the conse-
quences of this choice when comparing ADD dynamics with
direct simulation of active matter.

For structural relaxation mechanisms in the steady state,
we find behaviour with many similarities to passive glasses,
including dynamical slowing down, stretched exponential
relaxation, and significant dynamical heterogeneity, including
dynamical facilitation effects.38 On the other hand, the stan-
dard two-step relaxation mechanism of thermal glasses39 and
weakly persistent active glasses11 is not observed. There is no
notion of thermal motion within a cage and particles instead
move slowly and smoothly in elastic trajectory segments before
suddenly relaxing by plastic ones. The second major distinction
with thermal systems is the existence of system-spanning
dynamic correlations that control the behaviour of time corre-
lations functions in a way that is again qualitatively reminiscent
of AQS in sheared glasses.

The remainder of the paper is organised as follows. Section 2
defines the model and presents our implementation of the ADD
method. Section 3 characterises the elastic and plastic steps.
Section 4 analyses the structural relaxation and Section 5
collects our conclusions.

II. Model and methods
A. Model

We consider a system of N polydisperse overdamped active
Ornstein–Uhlenbeck particles (AOUPs) in a two-dimensional
periodic box of linear size L. This is the same system as in
ref. 15 where large finite tp’s were considered; here we use ADD
to access the limit tp - N. Particle i has position ri and

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
2 

M
ay

 2
02

3.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
M

on
tp

el
lie

r 
on

 6
/8

/2
02

3 
12

:4
9:

13
 P

M
. 

View Article Online

https://doi.org/10.1039/d3sm00034f


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 3871–3883 |  3873

diameter si; it feels a self-propulsion force pi with persistence
time tp; and it interacts with other particles through a regu-
larised soft-sphere Weeks–Chandler–Andersen potential of
strength e (see SM). The resulting equations of motion are

x :ri(t) = �riU(t) + pi(t), (1)

tp _piðtÞ ¼ �piðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2D0

p
giðtÞ; (2)

where x is a viscous damping coefficient, D0 is the free-particle
diffusion constant, and each component of the vector Zi an
independent zero-mean unit-variance Gaussian white noise.
The propulsions pi follow a non-interacting Ornstein–Uhlen-
beck process, and thus their distribution is Gaussian at each
time. Particle diameters are drawn from a uniform distribution
of mean s = �si and polydispersity 20%.15,40 The motivation for
studying polydisperse systems is to suppress the tendency of
these systems to crystallise,41 and to allow access to the dense
fluid regime where motion is complex and cooperative.15

At fixed propulsion forces, the system converges to a force-
balanced configuration in a time Et0 = xs2/e if these forces are
not too strong.21 We focus here on extremely persistent systems
where tp c t0. In this limit, it is convenient to introduce a
rescaled time variable as

t0 = t/tp. (3)

We also rescale the propulsion by defining p̃ = p/f with

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2D0=tp

p
. It is convenient to work in the centre-of-mass

frame so we write ~p ¼ ð1=NÞ
P
i

~pi and r ¼ ð1=NÞ
P
i

ri, which are

the propulsive force acting on the particles’ centre of mass and
the position of the latter. In the centre-of-mass frame and using
the above reduced units, eqn (1) and (2) become

x
tp

dr
0
i

dt
0 ðt 0Þ ¼ �riUðt 0Þ þ f ½~piðt 0Þ � ~pðt 0Þ�; (4)

d~pi
dt 0
ðt 0Þ ¼ �~piðt 0Þ þ

ffiffiffi
2
p

g
0
i ðt 0Þ; (5)

where r
0
i ¼ ri � r is the position relative to the centre of mass,

and Z
0
i is a zero-mean Gaussian white noise in the rescaled time

variables, that is, g
0
i ¼

ffiffiffiffiffitpp gi, which ensures that the compo-

nents of g
0
i satisfy hZ0i;aðt 01ÞZ0i;bðt 02Þi ¼ dabdðt 01 � t 02Þ.

To arrive at the ADD limit, we take limit tp - N at fixed f.
For large tp, eqn (4) describes very fast relaxation to configura-
tions with perfect force balance, which satisfy

riUeff = 0, (6)

where

Ueff ¼ U � f
X
j

½~pjðt 0Þ � ~pðt 0Þ� � rj (7)

is an effective potential, which corresponds to the original
potential energy of the interacting particle system, tilted by
the active forces. Hence, as tp - N, the system is almost
always in a local minimum of Ueff, as captured mathematically
by eqn (6).

It is natural to fix s as the unit of length and e as the unit of
energy. The rescaled time t0 is already dimensionless. In the
ADD limit tp - N studied here, the only remaining control
parameters are therefore the number density r = N/L2, the self-
propulsion force f, and the total number of particles N. We work
throughout at the representative density r = 1.2. For fixed f,
we expect the behaviour to be robust with respect to r, as long
as r is not too large (complete jamming) or too small (no force
balanced states, i.e. flow).

B. The quasi-static ADD method

The dynamics of our model can be simulated directly in the
ADD limit;21 we summarise here the method for achieving this.
The steady state distribution of the propulsions p̃i factorises
across particles, with

Pð~piÞ ¼
1

2p
exp �1

2
j~pij2

� �
; (8)

and we use this to initialise the p̃i. In each step of the ADD
simulation, the propulsion dynamics in eqn (5) is first
integrated with time step dt0:

~piðt 0 þ dt 0Þ ¼ ð1� dt 0Þ~piðt 0Þ þ
ffiffiffiffiffiffiffiffiffi
2dt 0
p

~g
0
i ; (9)

where ~g
0
i ¼ ð~Z

0
i;x; ~Z

0
i;yÞ are two random numbers drawn from a

Gaussian distribution with zero mean and unit variance.
Next one integrates eqn (4), which requires that Ueff is

minimised by steepest descent, holding the p̃i fixed. To increase
computational efficiency, we replace this steepest descent by a
faster conjugate gradient minimisation, using the GPL-licensed
ALGLIB C++ library.42 This is much more efficient than steepest
descent, but it may generally lead to different local minima.43

We find that the differences between conjugate gradient and
steepest descent algorithms are significant only in steps for
which the system moves far from its initial position. For these
individual steps, we then automatically revert to steepest descent,
as originally proposed in ref. 21. That is, we choose a threshold in
the mean-squared displacement ð1=NÞ

P
i

jDrij2 4 0:1 to identify

minimisation steps with large total displacements. If this occurs
during conjugate gradient minimisation then we restart the mini-
misation step and use steepest descent for that particular step. It is
noteworthy that each of these minimisation step requires on
average 102–103 force evaluations. It is thus numerically challen-
ging to explore both large systems and the large times needed to
reach steady state. We will therefore show data for N r 2000.

The ADD construction is valid for forces f below an
N-dependent yielding threshold f*(N). The potential Ueff is not
bounded below so steepest descent may not converge to a local
minimum – instead the particles could continue to move along
their self-propulsion directions. This happens for f 4 f *; the
rheology and phase behaviour of the system above this thresh-
old is explored in ref. 29. We locate the threshold f *(N)28 by
letting the system evolve from a random initial configuration
and checking for the average proportion of systems still flowing
after some time t. We obtain the following rough estimates:
f *(N = 500) E 1.7, f *(N = 1024) E 1.4, f *(N = 2000) E 1.2,
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f *(N = 4096) E 1.1. Given these systematic finite-size effects, it
would be desirable to simulate even larger systems. However,
we emphasise that a single time step for ADD is much more
expensive than a single time step in a standard molecular
dynamics simulation, because it requires many evaluations of
the interparticle forces to converge the energy minimisation.
This stems from the intrinsic difficulty of simulating systems
with well-separated time scales (tp/t0 - N). This limit is
inaccessible using standard methods: it can be simulated using
ADD, but there is still a significant cost.

In the ADD dynamics for f o f*, each step starts with the
system in a local minimum of Ueff with positions and propul-
sions (r0, p0), and evolves to a new minimum with positions and
propulsions (r,p). This can happen in two ways, as sketched in
Fig. 1(a). In the simplest case, a small change in propulsive
forces changes the local minimum of Ueff perturbatively, lead-
ing to small displacements. This will be called an elastic step.
However, the change in propulsive forces can also destabilise
the local minimum at (r0, p0), leading to a non-perturbative
change in the configuration. This is called a plastic step.

To distinguish these two cases, we compute the change in
effective potential in one step:

dep ¼ UðrÞ �Uðr0Þ � f
X
i

ð~p0i � ~p0Þ � ðri � r0i Þ: (10)

This sign convention is opposite to that of ref. 21. Note that the
propulsions in this equation are those of the state before the
ADD step, with the consequence that perturbative changes in
the positions lead to positive dep as the system moves away
from the minimum of the associated Ueff. Hence, we identify
elastic steps as those with dep Z 0 while those with dep o 0 are
plastic, as illustrated in Fig. 1(a). We discuss these two types of
step separately in detail below.

As well as the system parameters, a numerical simulation of
ADD also requires a choice of time step dt0. As usual, this
should be small enough to mimic the limit dt0 - 0, but large
enough to ensure computational efficiency. In practice, we
chose dt0 depending on the state point: we tested several
choices and monitored the mean squared displacement during
plastic events. We chose a value small enough that this quantity
depends at most weakly on dt0.21

III. Analysis of individual events

A typical trajectory from ADD is shown in Fig. 1(b). It consists
of sequences of elastic steps [dep is positive and O(dt0)], inter-
spersed with instantaneous plastic events [dep is negative
and O(1)]. Such behaviour is familiar from AQS simulations
of sheared glasses22 as well as from AQRD simulations30 and
the non-equilibrium dynamics of the random-field Ising model
(RFIM, where the plastic events would be identified as
avalanches).33

This section analyses the properties of the plastic and elastic
steps, including a comparison with AQS. We take f = 0.9
throughout this section. This is a practical choice: on the one
hand it is far enough from the threshold f* to keep the system
from moving too much between minimisations; on the other
hand smaller values of f lead to slower dynamics and the
numerics become more challenging, as discussed in Section 4.

A. Elastic steps

A representative snapshot of the displacement field obtained
during an elementary elastic step of the ADD dynamics is
shown in Fig. 2(a). We observe highly heterogeneous displace-
ments, with wide variations in amplitude and clear large-scale
correlations resembling both non-affine displacement in
sheared athermal glasses and collective swirling motion in
active matter.25

Elastic steps can be analysed under the assumption that the
updated propulsive forces move the minimum of Ueff perturba-
tively, in a way similar to AQS.22,44 The states before and after
the elastic step are both force balanced, so for all i

d �riU þ f ð~pi � ~pÞ
� �

¼ 0; (11)

where d indicates the change in a time increment dt0. For small
dt0 this implies that

�
X
j

ðHÞijdrj þ Ni ¼ 0; (12)

Fig. 1 (a) Sketch of the effective potential energy landscape Ueff in eqn (7)
at times 0 (thick blue line) and dt0 (thin red line). The system initially rests in
a minimum of Ueff(0) (filled blue circle). After dt0, the system rests in a
minimum of the new landscape Ueff(dt 0), and it is displayed in the initial
landscape (open red circle). We distinguish elastic events (dep Z 0) for
which the systems remains close to its original position, and thus the
potential energy in Ueff(0) increases, and plastic events (dep o 0) for which
a rearrangement occurs. (b) Accumulated variations of the effective
potential energy,

P
t 00�t0

depðt 00Þ. We identify elastic branches made of suc-

cessive elastic events (e.g. event A) as ascending lines, and plastic events
(e.g. events B and C) as instantaneous large drops. We define t0 as the time
between two consecutive plastic events. Parameter values: f = 0.9,
N = 1024, dt 0= 10�2, purple square symbols separated by dt0.
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where H is the Hessian matrix of U, that is ðHÞij ¼
@2U

@ri@rj
, and

Ni ¼ f ðd~pi � d~pÞ

¼ f ð�~pidt 0 þ
ffiffiffiffiffiffiffiffi
2dt0
p

g
0
i � d~pÞ

(13)

is the analogue of the affine force in the AQS setting of ref. 22,

where the term d~p only ensures
P
i

Ni ¼ 0 so that we stay in the

centre-of-mass frame.
To evaluate the solution of (12) approximately, we follow ref.

22 in assuming that the eigenmodes of the Hessian can be
decomposed as plane wave eigenmodes of the Navier operator45

(see SM)

dri ¼
X
j

ðH�1ÞijNj

¼
X
m;n;a

Xa
mn

laðm2 þ n2Þe
ikmn�ri k̂

a

mn;

(14)

where Xa
mn is the projection of the affine force along the

corresponding eigenmode, kmn = (2pm/L,2pn/L) is the wave
vector and the third sum is over the two polarization directions
of the elastic displacements a = ||, > (longitudinal and trans-
verse, respectively). The corresponding polarization vectors
k̂a

mn are the unit vectors parallel and orthogonal to the wave
vectors, respectively. We have written the associated eigenva-
lues as la(m2 + n2), with the prefactor again depending on the
polarization direction. It is then possible to compute the spatial
correlation function

gADDðrÞ / dri � drjdðr� ðrj � riÞÞ
� �

¼
X
m;n;a

jXa
mnj2

� �
ðlaðm2 þ n2ÞÞ2e

ikmn�r;
(15)

where we have checked numerically that the projections of
the affine force Ni on the eigenmodes of the Hessian behave
as uncorrelated random numbers, with a variance h|Xa

mn|2i

independent of the specific mode. We finally take the orienta-
tional average of (15) to write

gADDðrÞ /
X
m;n

J0 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2
p

r=L
	 

ðm2 þ n2Þ2 ; (16)

where J0 is the zeroth-order Bessel function of the first kind.
Our result is quantitatively different from the corresponding
correlation function for sheared amorphous solids44

gAQSðrÞ /
X
m;n

J0 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2
p

r=L
	 


m2 þ n2
: (17)

The difference between (16) and (17) arises because affine
forces Ni in AQS are derived from pair potentials: the force
exerted by particle i on particle j is equal and opposite to the
one exerted by particle j on particle i. Hence, the affine forces
on different particles are necessarily correlated in AQS. Still,
both functions correspond to scale-free correlations, with the
only relevant length scale being the system size L itself. Quali-
tatively, this behaviour is visible already from the system-
spanning vortices in the displacement field shown in Fig. 2(a).

We compute the displacement correlation quantitatively
in Fig. 2(b). These correlations scale with the system size for
the range of sizes we have investigated, and are close to the
analytical prediction (16). The small difference between the
prediction and the measurement may be attributed to the plane
wave hypothesis, which can in principle be tested.46 We have
also checked that the above correlation functions are consistent
with the correlations computed from purely harmonic steps,
i.e. with displacements determined by solving (12) exactly. This
establishes another parallel to ref. 44.

The scaling with system size of the displacement correla-
tions that we find is consistent with the arguments obtained for
finite persistence time in ref. 25. In that case, the dynamics
along elastic trajectory segments produces displacement
(or equivalently velocity) correlations on a length scale that
diverges as � ffiffiffiffiffitpp for large persistence times. As our analysis

takes tp - N from the start, this limit translates into displace-
ment correlations on the largest length scale available, i.e. the
system size.

B. Plastic steps

Particle displacements for two representative plastic steps are
shown in Fig. 3(a and b). The qualitative picture has again
many similarities with AQS: the displacements in any single
plastic event can be interpreted as sequences of localised
yielding events.21,22 That is, a plastic step happens when a
local minimum of Ueff develops an unstable direction, causing
local motion; but the elastic perturbation due to this event
perturbs the system over large length scales and can create
further unstable directions in other parts of the system. This
leads to a cascade or avalanche of localised yielding events.
We describe these plastic events here and discuss similarities
and differences with AQS.

We find that plastic avalanches display a broad range of
sizes and can involve a few localised particles, as in Fig. 3(a),

Fig. 2 (a) Snapshot of displacements for a single elastic step (A in Fig. 1).
Colours indicate the norm and arrows their direction. Parameter values:
f = 0.9, N = 1024, dt0 = 10�2. (b) Corresponding displacement correlation
function C(r) = hdri�drjd(r � rij)i/h|dri|

2i for various N values. The collapse
with r/L for three different system sizes shows that correlations scale with
system size, becoming negative for large enough r/L. Solid (resp. dotted)
line: evaluation of (16) (resp. (17)) with sums across the range 0 o m2 + n2

o 402 and a suitably chosen overall prefactor.
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or a greater number of particles distributed across the system
as in Fig. 3(b), or even the whole system. To characterise the
participation in each plastic event, we identify the number S of
particles with significant changes in their local environments.
In ref. 21 this identification was carried out by thresholding
particle displacements, but such a criterion neglects the fact
that particles may collectively move large distances without
changing their local environment. Here, we use instead the
residual force fres,i

47,48 (see SM for definition) as an indicator of
rearrangements. This force is zero if and only if displacements
result from a harmonic response of the system to the change in
propulsion forces. If a localised avalanche takes place, particles
that are far from the avalanche tend to respond elastically,
leading to very low residual forces, whereas rearranging parti-
cles in the core of the avalanche have large residual forces. This
is illustrated in Fig. 3(a and b). We then define the avalanche
size S as the number of particles for which | fres,i(dt0)| 4 20,
determined after careful analysis of the distributions of fres,i

(see SM).
Fig. 3(c) shows the resulting broad distribution of log10 S for

three system sizes. The small events can be attributed to local
yielding, in which the remainder of the system reacts elastically

with particles moving collectively to accommodate the local
rearrangement.21,48 At low values of S, the distributions overlap
for different system sizes, with a behaviour compatible with
P(S) B S�t with t E 0.7. (We use the notation t here, which is
standard in the literature;49 t does not indicate a time scale.)
Given the small range of system sizes studied here, it is difficult
to provide a very precise estimate of t, but it is clearly distinct
from the values found in AQS simulations of sheared glasses
where values in the range t E 1.2–1.5 have been reported.32,49

Turning to the behaviour at large S we observe that larger
avalanches with S B N are more frequent for larger systems,
suggesting that these are also important in ADD. Correspondingly,
the inset in Fig. 3(c) shows that the average event size hSi scales as
Ng with g E 0.7, showing that the mean avalanche size is indeed
controlled by large avalanches that are limited by the system size
only. In other words, the avalanches observed during plastic events
also lead to scale-free dynamic relaxation events.

Fig. 3(d) shows the distribution of waiting times t0 between
consecutive events. The average time decreases with system size
as ht0iB N�1.5. If localised yielding events happened indepen-
dently in different parts of a large system, one would have a
more trivial dependence on the system size, ht0i B N�1:
together with the N-dependence of hSi, this is another indica-
tion of long-ranged correlations, on the scale of the system size.

Such scaling behaviour hints at critical phenomena. The
force threshold f *(N) for yielding decreases with N in our
simulations, which is presumably also due to long-range
correlations.13,28 Since we increase N at fixed f while staying
always below f *(N), some of the dependence on N may arise
because the larger systems are closer to yielding. Indeed, larger
systems support larger events, which tend to relax the system
more quickly; compare Fig. 7(b) below.

While the ADD plastic events share similarities with those of
AQS, there are also some important differences to emphasise.
In particular, in ADD there is no preferred direction and the
system is isotropic (apart from a possible influence of the
periodic boundary conditions, which we expect to be very
weak). In AQS, on the other hand, rotational symmetry is
broken because the system is always sheared in the same
direction. As a result, localised plastic events eventually orga-
nise into a line of slip, which leads to a subextensive scaling of

event sizes Sh i � L �
ffiffiffiffi
N
p

in the steady state.22,50 These corre-
lations also cause a reduction in the frequency of plastic events:
the typical time (accumulated strain) between consecutive

events scales as t0h i � 1=L � 1=
ffiffiffiffi
N
p

(we recall it would be
B1/N for independent events22).

In short, ADD in its elastic steps produces displacements
that are correlated on the scale of the system size L, in
agreement with predictions for finite tp.25 However, the master
curve for displacement correlations against r/L is different from
the AQS case44 because the local ‘‘affine’’ forces Ni lack the
correlations that are present for AQS.51 For plastic events, the
isotropy of ADD also leads to larger event sizes S and shorter
inter-event times. The next question to be addressed is how the
individual particles move in the active fluid, when observed
over multiple time steps.

Fig. 3 (a and b) Snapshots showing the movement of particles in the two
plastic events marked B and C in Fig. 1, with participation S = 19 and
S = 102, respectively. Displacements are magnified 5 times and super-
imposed onto a colormap of the residual force |fres,i| that highlights
rearranging particles. Parameter values: f = 0.9, N = 1024, dt0 = 10�2.
(c) Log-distribution of the participation S in plastic events, for three system
sizes N and time steps dt 0(N = 500) = 2 � 10�3, dt 0(N = 1024) = 10�3,
dt0(N = 2000) = 5 � 10�4. The solid black line corresponds to a scaling
P(S) B P(log10 S)/S B S0.3�1 = S�0.7. Inset shows the evolution of the mean
hSi with N. (d) Log-distribution of times t0 between consecutive plastic
events. Inset shows the evolution of the mean ht0i with N. Scaling
exponents are subject to significant uncertainties and the numbers pro-
vided are indicative.
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IV. Microscopic dynamics

Since ADD is a computational tool to explore particle motion in
dense active fluids, it is natural to study dynamical relaxation in
ADD trajectories. To this end, we use observables developed
for the analysis of relaxation in dense glassy systems.37 Such
measurements have also been used to describe particle motion
in sheared and active glasses, which all display heterogeneous
and cooperative dynamics.

A. Mean squared displacement

Fig. 4(a) shows the mean squared displacement (MSD)

MSD(t0) = h|ri(t0) � ri(0)|2i (18)

for different values of the self-propulsion force f. In the steady
state, the MSD is nearly diffusive at all times. The self-diffusion
constant at large times roughly decreases by an order of
magnitude between f = 0.9 and f = 0.8. However, there is no
feature in the average displacements that would allow identifi-
cation of a characteristic relaxation time scale or length scale.
This is in contrast to the classic two-step relaxation scenario
found in many glassy systems,15,39,52 but resembles the diffu-
sive behaviour found in AQS simulations of sheared systems.53

Although the MSD displays seemingly trivial behaviour, the
displacement distributions have significant structure. Fig. 4(b)
shows the corresponding distribution Gs(r) of the x and
y-components of the particle displacements, scaled by the root
mean-squared displacement, at f = 0.9. These distributions
differ strongly from Gaussian behaviour, which is only recov-
ered in the large time limit, t0-N. At small times t0{ 1 (with
of course t0 Z dt0), the displacement distribution has a narrow
central peak with heavy tails. The width of these tails decreases
with increasing time, and the distribution approaches a Gaus-
sian form. For supercooled liquids, we would expect the small
time distribution to be nearly Gaussian due to short-time
thermal dynamics, with fat tails developing only as the system
starts to relax. The tails appear when a significant number of
particle rearrangements has taken place.54,55 The difference
between ADD and thermal dynamics at short times is easily
explained by the athermal quasistatic nature of ADD dynamics.
Moreover, the participation in plastic events has a broad

distribution [Fig. 3(c)]. As a result, the fat tails arising from
structural relaxation are visible already after a single time step
dt0 and arise from avalanches. In AQS simulations, similar
heavy-tailed distributions also appear at early times due to
plastic avalanches.53 In both ADD and AQS we expect that
nearly-exponential tails appear at intermediate times, as a
generic result of the stochastic nature of avalanches.55

To gain more insight into the dynamics, we decompose the
displacements into separate contributions from elastic and
plastic events. We define the elastic (resp. plastic) displacement
of a particle between 0 and t0 as the sum of its displacements
over all elastic (resp. plastic) steps between these two times.
We plot in Fig. 5(a) the MSDs from these contributions at
f = 0.9. Both of them show a crossover between two diffusive
scaling regimes, i.e. both have MSD(t0) B t0 at short and at long
times but with different prefactors. Despite the complex time
dependences of the separate contributions, their sum in the
total MSD appears nearly linear (recall Fig. 4).

To connect the elastic and plastic displacements to the
distribution Gs(r) in Fig. 4(b), we fit the central peak of Gs(r)
to a Gaussian distribution with standard deviation std(t0) such
that the associated mean-squared displacement is MSD(t0) =
2 std2(t0). Fig. 5(a) compares this effective MSD to the elastic
and plastic contributions. At small times, the central peak of Gs

is compatible with the variance of elastic displacements, while
at large times it is compatible with plastic displacements. Our
interpretation is that for small times, displacements in elastic
branches populate the narrow central part of the displacement
distribution, while the displacements of rearranging particles
populate the tails. At large times, plastic displacements
dominate elastic displacements, and the whole displacement
distribution is close to Gaussian, therefore its variance is
dictated by plastic displacements.

B. Single-particle correlation functions

The MSD and the distribution Gs yield useful information
about the dynamics. However, MSD measurements can some-
times be dominated by a subset of fast moving particles.

Fig. 4 (a) Mean-squared displacement for different values of the self-
propulsion force f. (b) Distribution of displacements scaled by the MSD at
different t0. Parameter values: N = 1024, dt0 = 10�2, f = 0.9.

Fig. 5 (a) Elastic and plastic contributions to the MSD, together with the
MSD predicted from a Gaussian fit of the central part of Gs. (b) Wave-
vector-dependent relaxation time t

0
s ðkÞ extracted from elastic and plastic

displacements (colours and symbols as in (a)). Parameter values: f = 0.9,
N = 1024, dt 0 = 10�2.
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To investigate this, we computed the self-intermediate scatter-
ing function52

Fs(k,t0) = hcos[k�(ri(t0) � ri(0))]i (19)

where k is a suitable wavevector and k = |k|. We analyse the
k-dependent relaxation time scale t

0
sðkÞ,

56,57 which is defined as

the time at which Fsðk; t
0
sðkÞÞ = 1/e.

We plot t
0
sðkÞ for both elastic and plastic displacements in

Fig. 5(b). Fickian diffusion would correspond to the scaling

t
0
sðkÞ B k�2. Elastic displacements show two distinct diffusive

scalings, at small and at large length scales (resp. small and
large time scales). At small times, elastic displacements are
computed over a single elastic trajectory segment, thus the
corresponding diffusive behaviour derives from the balance
between the Ornstein–Uhlenbeck driving on the one hand
and the restoring forces on the other hand.58,59 At large times,
elastic displacements are computed over many elastic trajectory
segments separated by multiple plastic events. We expect the
displacements over these different elastic trajectory segments
to be independent, therefore the sum of all these displacements
produces a diffusive behaviour distinct from that of single
branch displacements.

The small and large length scale behaviour are also different
for plastic displacements. These displacements are indeed
diffusive at large length scales but they show a relaxation time

scale t
0
sðkÞ that plateaus at small length scales. This plateau

corresponds to the typical time for a plastic event to occur, and
can be computed from the statistics of the inter-event times t0

as the residual time t
0
res ¼ ht02i=ð2ht0iÞ.

60 Therefore, at times

t 0 �o t
0
res the plastic MSD is likely dominated by a small subset of

particles.
It is noteworthy that this result is robust to changes in f (data

not shown). The residual time t
0
res changes by a factor of

B2.5 between f = 0.9 and f = 0.8, distinct from the factor
of 10 observed for the self-diffusion constant (not shown).
Moreover, since the diffusion constant drops more rapidly than
the residual time increases, the typical length scale above
which the plastic movement appears Fickian56 decreases with
decreasing f – which is opposite to what we would expect for a
supercooled liquid approaching the glass transition.

The displacement fields in the plastic events of Fig. 3(a and b)
show that particles that are not involved in rearrangements can
move away from their initial position without relaxing their local
structure. But neither the MSD nor Fs(k,t0) can detect whether single
particle translations actually correspond to changes in the local
structure or not. To focus on this aspect of structural relaxation, we
use the bond breaking correlation function Cb(t).61 Denoting r̂ij(t0) =
|rj(t0)� ri(t0)|/sij as the rescaled distance between particles i and j at
time t0, with sij = (si + sj)/2, we define

Cbðt
0 Þ ¼

P
i;j

YðA1 � r̂ijð0ÞÞYðA2 � r̂ijðt 0ÞÞ
P
i;j

YðA1 � r̂ijð0ÞÞ
; (20)

where the parameter A1 = 1.25 is a cutoff defining initial neigh-
bours, A2 = 1.5 quantifies the distance they are required to separate
before the correlation function decays, and Y designates the
Heaviside function. This function obeys Cb(t0 = 0) = 1, by definition,
and it quantifies at time t0 the average fraction of neighbours lost
since t0 = 0. This way, it efficiently disentangles rearrangements
from displacements that do not relax the local structure.

Fig. 6 shows Cb(t0) for several values of f. The relaxation time

scale t
0
b of Cb roughly increases by an order of magnitude

between f = 0.9 and f = 0.8, mirroring the decrease of the self-

diffusion constant. Moreover, t
0
b � 1, so structural relaxation

happens long after self-propulsion forces have fully decorre-
lated from their initial values which occurs for t0 B 1. The
correlation function is stretched, which suggests that structural
relaxation is temporally heterogeneous.52 In addition, it is

remarkable that the MSD at the time t
0
b where local structure

becomes fully decorrelated is greater than unity. This is again
very different from thermal glasses where the escape from the
cage also coincides with structural relaxation. Here instead
particles travel comparatively larger distance without necessa-
rily relaxing the structure, which can be seen as a consequence
of the swirling motion observed in snapshots such as Fig. 2(a)
(for elastic events) or Fig. 3(a and b) (for plastic ones).

We finally show the dependence of the dynamics on system
size N. Fig. 7 shows the MSD and the bond breaking correlation
function for a fixed f but different values of N. For all values of

Fig. 6 Bond breaking correlation function Cb(t 0) for different values of the
self-propulsion force f. Parameter values: N = 1024, dt0= 10�2.

Fig. 7 (a) Mean-squared displacement and (b) bond-breaking correlation
function for different N. Parameter values: f = 0.9, dt0(N = 500) = 2 � 10�3,
dt0(N = 1024) = 1 � 10�3, dt0(N = 2000) = 5 � 10�4.
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N studied, the MSD is diffusive at large times and the relaxation
of Cb(t0) is stretched. Strikingly, however, both functions
strongly depend on the system size with no sign of a saturation
at some large N value. As N increases, the particles move faster,
resulting in an MSD that is larger and a time correlation
function that decreases faster. Since we have simulated three
system sizes, it is not easy to determine a precise scaling of the
self-diffusion constant and the relaxation time t0b with N. There
are two sources for the system size dependence of the dynamics
as discussed above: the frequency and size of the plastic events
both increase with N, recall Fig. 3. Thus, in the ADD regime, the
dynamics is always sensitive to the system size, as a result of the
large persistence time limit. This is again in good analogy with
the AQS dynamics where the self-diffusion constant also
changes with system size.62

C. Dynamical heterogeneity

In glassy fluids, one generally expects complex heterogeneous
dynamics, where spatial fluctuations around the average dyna-
mical behaviour are important for understanding the relaxation
dynamics.37 The system considered here also has this feature. It
is illustrated in the snapshots of Fig. 8(c–f) which show maps of
a single-particle analogue of the bond-breaking correlation
function (20). This is defined as

Cb;iðt 0Þ ¼

P
j

YðA1 � r̂ijð0ÞÞYðA2 � r̂ijðt 0ÞÞ
P
j

YðA1 � r̂ijð0ÞÞ
; (21)

and represents the fraction of bonds of particle i that have been
broken up to time t0. Just like its global analogue, this function
decays from unity to zero as the environment of particle i
decorrelates from its initial state.

The definition of a local relaxation function in eqn (21)
allows us to visualise in real space how the initial structure of
the system relaxes as dynamics proceeds. The main observation
in the snapshots of Fig. 8 is that the spatial distribution
of relaxed particles, at any given time, reveals strong spatial
correlations in the local dynamics.

While similar observations of spatially correlated dynamics
are quite generic in dense amorphous materials, the time series
shown in Fig. 8(c–f) reveals additional features beyond the mere
existence of correlations. We observe that at short times
[Fig. 8(c)], only a few particles have relaxed, and the spatial
structure of the Cb,i reveals the very few underlying plastic
events that have taken place in this particular trajectory.
At larger times [Fig. 8(d and e)], one sees that additional
structural relaxation events tend to happen in the close vicinity
of previous ones. These observations have also been made in
slowly relaxing supercooled liquids at equilibrium and this
effect is known as dynamical facilitation.38,63 At the micro-
scopic level, these effects must correspond to spatio-temporal
correlations between successive plastic events. Close to the
relaxation time [Fig. 8(e and f)], we can clearly identify fast
regions where particles have been involved in numerous rear-
rangements and have relaxed their local initial structure.
We also see slow regions where particles’ local environments
remain the same. Finally, at long times all particles have Cb,i E 0
and one recovers a homogeneous picture. It is noteworthy that

Fig. 8 (a) Bond breaking dynamical susceptibility wb(t 0) for different self-propulsion forces f with N = 1024 and dt 0 = 10�2. (b) Bond breaking dynamical
susceptibility wb(t0) for different N with dt 0(N = 500) = 2 � 10�3, dt0(N = 1024) = 1 � 10�3, dt0(N = 2000) = 5 � 10�4. (c–f) Snapshots of the system
highlighting the local bond breaking correlation Cb,i between time t0 = 0 and a lag time of (c) t0 = 3.86 (124 plastic events, Cb = 0.89) (d) t0 = 5.02
(196 plastic events, Cb = 0.65) (e) t0 = 6.53 (252 plastic events, Cb = 0.52) (f) t0 = 8.49 (355 plastic events, Cb = 0.41). Parameter values: N = 2000, f = 0.9,
dt0 = 5 � 10�4.
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despite the absence of shear to organise plastic activity into
anisotropic structures (namely, shear bands22), correlations
spontaneously emerge between the plastic centres.

The extent of these dynamical spatial correlations can be
quantified via the dynamical susceptibility37,61,64

wb(t0) = N[hCb(t0)2i � hCb(t0)i2]. (22)

This function is plotted for different values of the self-
propulsion force f in Fig. 8(a), and for different numbers of
particles N in Fig. 8(b). As usual, wb shows a peak at the time
close (but not exactly equal) to t

0
b where Cb starts to decrease,61

indicating that the dynamics is most heterogeneous around
these times. The slowdown of the dynamics with decreasing f or
N (Fig. 6 and 7) is reflected in the corresponding increase of this
peak time. Moreover, the height of the peak tells us about the
typical number of particles involved in correlated clusters in
Fig. 8.37 At fixed N, the dynamical slowdown is accompanied by
an increased cooperativity of the relaxation, as is observed for
liquids approaching the glass transition.64 This situation is
different when the self-propulsion force f is kept fixed: the
dynamics speeds up with increasing N but it also becomes
more cooperative with a larger dynamical susceptibility. Recall
that ADD is defined by taking the limit tp - N at fixed N: as a
consequence, the length scale that characterises velocity fluctua-
tions is slaved to the system size, and diverges for large N. The
global correlation function Cb and its fluctuations wb both change
systematically with N, revealing that the long-time relaxation
dynamics is also sensitive to the system size, presumably because
of a cooperativity length scale that diverges with N.

These observations provide further evidence that spatially
heterogeneous dynamics is very generic in dense and disor-
dered fluids. A major difference with equilibrium supercooled
liquids is the system size dependence observed for the dyna-
mical heterogeneity, indicating a diverging correlation length.
This is attributed to the quasi-static nature of the dynamics, as
also found in AQS simulations.53 In addition, the slow growth
of dynamic correlations with time (Fig. 8) reveals the role of
dynamic facilitation. Whereas facilitation has been described
before in equilibrium dynamics,63,65,66 much less is understood
about its consequences for sheared and active systems. Our
findings suggest that facilitation could also be a very generic
feature characterising the relaxation dynamics of dense and
disordered fluids, and this clearly deserves further study in the
context of driven amorphous materials.

V. Conclusion

Although models of spherical self-propelled particles are
among the simplest models of active matter they exhibit rich
physics with emerging structures, phases and dynamical beha-
viours. A remarkable feature is the emergence of non-trivial
velocity correlations in fluid,26 glassy,8,25 and crystalline67

states which may, for non-arrested states, give rise also to
interesting correlations of the displacements and structural
relaxation events.

In this context, the efficient implementation of activity-
driven dynamics (ADD)21,27 enables us to study the relaxation
of dense systems of self-propelled particles in which the
persistence time tp is large compared to the microscopic time
t0 that the system needs to reach an arrested state for a given
set of self-propulsion forces. On time scales t = t0tp of the order
of the persistence time, the dynamics then becomes inter-
mittent (Fig. 1). In the absence of rearrangements, the system
reacts elastically to changes in the self-propulsion forces. The
resulting movements are correlated on the length scale of the
system (Fig. 2). Consecutive elastic events may be interrupted
by plastic events that trigger instantaneous rearrangements.
The participation in these events has a broad distribution;
outside of the plastic core forming these avalanches, the
remainder of the system moves collectively to accommodate
the rearranging regions (Fig. 3).

Relaxation of the whole structure happens through the
accumulation of many of these plastic events. This relaxation
dynamics is nearly diffusive at all times (Fig. 4) and spatially
heterogeneous (Fig. 8), implying that plastic events are not
independent and tend to concentrate where they have already
happened, in a fashion reminiscent of dynamic facilitation.

Dense assemblies of self-propelled particles in two dimen-
sions may serve as a proxy for confluent cell tissues34 in the
study of their collective motion.25 We also expect our results to
be transferable from two dimensions to three dimensions, as
are the salient features of the physics of glasses68 and coopera-
tive motion in dense active matter.69

The limit of large persistence tp - N is taken at fixed
number of particles N and there is thus a dynamical length
scale that scales with the system size. As a consequence, the
average dynamics of the system and its fluctuations all depend
on the system size (Fig. 7 and 8).

Our computational abilities do not yet enable us to explore
the f - 0 limit where the relaxation time would become large
even in rescaled units t/tp. At fixed N, we expect that the typical
time between plastic events tres would become c tp in the limit
of small f. We would then presumably recover a two-step
relaxation scenario, with b-relaxation corresponding to the
diffusive elastic exploration of a potential energy minimum,
where the localisation length scale may itself depend on the
system size. Further explorations are needed to validate this
scenario and the nature of the very slow dynamics emerging in
this limit. At fixed f we would also expect quantitative changes
as r is increased: avalanches should become rarer but the
evolution of their distribution remains uncertain. Also inter-
esting to study in future will be the connection between
plasticity in ADD and approaches to yielding in passive materi-
als that argue in favour of a mechanism based on fluctuating
energy barriers70 rather than effective thermal activation over
fixed barriers.71–76
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G. Volpe and G. Volpe, Active particles in complex and
crowded environments, Rev. Mod. Phys., 2016, 88, 045006,
DOI: 10.1103/RevModPhys.88.045006.

4 A. P. Solon, Y. Fily, A. Baskaran, M. E. Cates, Y. Kafri and
M. Kardar, et al., Pressure is not a state function for generic
active fluids, Nat. Phys., 2015, 11(8), 673–678.

5 L. Berthier and J. Kurchan, Non-equilibrium glass transi-
tions in driven and active matter, Nat. Phys., 2013, 9(5),
310–314.

6 L. Berthier, Nonequilibrium Glassy Dynamics of Self-
Propelled Hard Disks, Phys. Rev. Lett., 2014, 112, 220602,
DOI: 10.1103/PhysRevLett.112.220602.

7 R. Ni, M. A. C. Stuart and M. Dijkstra, Pushing the glass
transition towards random close packing using self-
propelled hard spheres, Nat. Commun., 2013, 4(1), 1–7.

8 G. Szamel, E. Flenner and L. Berthier, Glassy dynamics of
athermal self-propelled particles: Computer simulations
and a nonequilibrium microscopic theory, Phys. Rev. E,
2015, 91, 062304, DOI: 10.1103/PhysRevE.91.062304.

9 R. Mandal, P. J. Bhuyan, M. Rao and C. Dasgupta, Active
fluidization in dense glassy systems, Soft Matter, 2016, 12,
6268–6276, DOI: 10.1039/C5SM02950C.

10 N. Klongvessa, F. Ginot, C. Ybert, C. Cottin-Bizonne and
M. Leocmach, Active Glass: Ergodicity Breaking Dramati-
cally Affects Response to Self-Propulsion, Phys. Rev. Lett.,
2019, 123, 248004, DOI: 10.1103/PhysRevLett.123.248004.

11 L. Berthier, E. Flenner and G. Szamel, Glassy Dynamics in
Dense Systems of Active Particles, J. Chem. Phys., 2019,
150(20), 200901.

12 L. M. C. Janssen, Active Glasses, J. Phys.: Condens. Matter,
2019, 31(50), 503002.

13 R. Mandal, P. J. Bhuyan, P. Chaudhuri, C. Dasgupta and
M. Rao, Extreme Active Matter at High Densities, Nat.
Commun., 2020, 11(1), 2581.

14 R. Mandal and P. Sollich, Shear-Induced Orientational
Ordering in an Active Glass Former, Proc. Natl. Acad. Sci.
U. S. A., 2021, 118(39), e2101964118, DOI: 10.1073/pnas.
2101964118.

15 Y. E. Keta, R. L. Jack and L. Berthier, Disordered Collective
Motion in Dense Assemblies of Persistent Particles, Phys.
Rev. Lett., 2022, 129(4), 048002.

16 J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink,
M. Bär and R. E. Goldstein, Fluid Dynamics of Bacterial-
Turbulence, Phys. Rev. Lett., 2013, 110(22), 228102.

17 T. Vicsek and A. Zafeiris, Collective Motion, Phys. Rep., 2012,
517(3–4), 71–140.

18 A. Cavagna, I. Giardina and T. S. Grigera, The Physics of
Flocking: Correlation as a Compass from Experiments to
Theory, Phys. Rep., 2018, 728, 1–62.

19 G. Szamel, Self-propelled particle in an external potential:
Existence of an effective temperature, Phys. Rev. E, 2014,
90, 012111, DOI: 10.1103/PhysRevE.90.012111.

20 E. Fodor, C. Nardini, M. E. Cates, J. Tailleur, P. Visco and
F. van Wijland, How Far from Equilibrium Is Active Matter?,
Phys. Rev. Lett., 2016, 117(3), 038103.

21 R. Mandal and P. Sollich, How to Study a Persistent Active
Glassy System, J. Phys.: Condens. Matter, 2021, 33(18), 184001.

22 C. E. Maloney and A. Lemaı̂tre, Amorphous systems in
athermal, quasistatic shear, Phys. Rev. E, 2006, 74, 016118,
DOI: 10.1103/PhysRevE.74.016118.

23 E. Flenner, G. Szamel and L. Berthier, The nonequilibrium
glassy dynamics of self-propelled particles, Soft Matter,
2016, 12(34), 7136–7149.

24 L. Berthier, E. Flenner and G. Szamel, How active forces
influence nonequilibrium glass transitions, New J. Phys.,
2017, 19(12), 125006.

25 S. Henkes, K. Kostanjevec, J. M. Collinson, R. Sknepnek and
E. Bertin, Dense Active Matter Model of Motion Patterns in
Confluent Cell Monolayers, Nat. Commun., 2020, 11(1), 1405.

26 G. Szamel and E. Flenner, Long-ranged velocity correlations
in dense systems of self-propelled particles, Europhys. Lett.,
2021, 133(6), 60002.

27 R. Mandal and P. Sollich, Multiple Types of Aging in Active
Glasses, Phys. Rev. Lett., 2020, 125(21), 218001.

28 Q. Liao and N. Xu, Criticality of the Zero-Temperature
Jamming Transition Probed by Self-Propelled Particles, Soft
Matter, 2018, 14(5), 853–860.
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