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Liquids relax extremely slowly on approaching the glass state.
One explanation is that an entropy crisis, because of the rarefac-
tion of available states, makes it increasingly arduous to reach
equilibrium in that regime. Validating this scenario is challeng-
ing, because experiments offer limited resolution, while numeri-
cal studies lag more than eight orders of magnitude behind exper-
imentally relevant timescales. In this work, we not only close the
colossal gap between experiments and simulations but manage
to create in silico configurations that have no experimental ana-
log yet. Deploying a range of computational tools, we obtain four
estimates of their configurational entropy. These measurements
consistently confirm that the steep entropy decrease observed
in experiments is also found in simulations, even beyond the
experimental glass transition. Our numerical results thus extend
the observational window into the physics of glasses and rein-
force the relevance of an entropy crisis for understanding their
formation.
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n his landmark 1948 paper, Kauzmann (1) gathered experi-

mental data for several glass-forming liquids and found that
they all showed a steep decrease of their equilibrium config-
urational entropy on lowering temperature toward their glass
transition. Theoretically, the nature of a thermodynamic glass
transition associated with a vanishing configurational entropy is
well-understood at the mean-field level (2-4), suggesting that
glass formation is accompanied by a rarefaction of available dis-
ordered states (5). Its pertinence beyond the mean-field frame-
work, however, remains controversial (5-8). In particular, it is
still not known whether such entropy reduction is the core expla-
nation for glass formation. Experimental measurements are car-
ried out over too limited a temperature range within boundaries
that have remained essentially unchanged since Kauzmann’s
work and, thus, form a solid glass ceiling. In addition, experimen-
tal determinations of the configurational entropy are marred by
approximations that influence their physical interpretation (9-
11). Computer simulations can potentially provide more precise
estimates (12, 13) but have so far been restricted to a tempera-
ture range that is not experimentally relevant.

Can the debate over the role of configurational entropy ever
be settled? At first sight, closure seems unlikely for two main rea-
sons. (i) Measuring the configurational entropy below the experi-
mental glass transition seems logically impossible, because exper-
iments are constrained by their own duration, which fixes an
upper limit to the accessible thermalization timescale, 7. Specif-
ically, 7/70 ~ 103 for molecules (14) (where the relaxation time
at the onset temperature is 7o~ 107'%), and 7/79 ~ 10° for
colloids (15) (where 7o~ 107's). The situation for computer
simulations is even worse. Current approaches access at most
T /70 ~ 10°, which is eight orders of magnitude behind molecular
liquid experiments, and numerical progress has been slow. The
two to three decades gained over the past 35 years (15-17) are
mostly thanks to hardware improvements. At this pace, another
century would be needed before simulations attain experimen-
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tally relevant conditions. The glass ceiling, therefore, seems
unbreakable. (i) There is a fundamental methodological ambi-
guity as to which configurational entropy should be measured
to match theoretical calculations. Qualitatively, the configura-
tional entropy is defined by subtracting vibrational contribu-
tions from the total entropy (1, 12, 18). What is specifically
meant by “vibrations” in amorphous solids, however, is ill-
defined in general (5) and difficult to measure in practice (1, 13).
Hence, consistently determining the configurational entropy is
in itself a difficult challenge that may be underestimated in the
literature.

Here, we solve both of these major problems at once. First, we
take advantage of the flexibility offered by computer simulations
to dramatically accelerate the equilibrium sampling of configu-
ration space (19-21). Namely, we use a system optimized for the
nonlocal swap Monte Carlo (MC) algorithm, which enables its
extremely fast thermalization. We establish that this approach
surpasses any current alternative and even experimental proto-
cols. Second, we measure four proxies for the configurational
entropy by deploying state of the art computational tools to char-
acterize in silico configurations that are more deeply equilibrated
than their experimental analogs (13, 20, 22, 23) and obtain con-
sistent results that have a clear physical interpretation. By com-
bining these developments for a realistic model glass former, we
shift computer simulations from lagging eight decades behind
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Computer simulations give precious insight into the micro-
scopic behavior of disordered and amorphous materials, but
the timescales they cover are orders of magnitude shorter
than in experiments. For instance, simulations of glass-form-
ing liquids cover at most 4-5 decades of viscous slowing
down, which fall far short of the 12-13 decades commonly
accessible in experimental studies. We here close this enor-
mous gap for some realistic liquid models, and even equili-
brate beyond experimental timescales by means of the swap
Monte Carlo algorithm. We show that the approach to the
glass phase is accompanied by a precipitous decrease of the
configurational entropy as well as by growing spatial correla-
tions, which we visualize in real space under experimentally
relevant conditions.
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experiments to exploring unexpected territory in glass physics. In
particular, our measurements validate Kauzmann’s observations
that the configurational entropy decreases steeply toward the
glass temperature and extend these observations to a regime pre-
viously inaccessible.

Results

We simulate a 3D polydisperse mixture of hard spheres, as in
ref. 20, which is a good model for colloids used in experiments
(15, 24). We show in SI Appendix that our methods and conclu-
sions also apply to particles with soft and more complex inter-
actions. We control the volume fraction ¢ and measure pres-
sure P to report the (unitless) reduced pressure, Z = P/(pkp T'),
where p is the number density and kg 7" is the thermal energy.
This natural control variable for hard spheres plays a role akin to
the inverse temperature in thermal liquids (25). Detailed infor-
mation about the simulations is provided in Model and Meth-
ods. Swap MC complements standard translational MC moves
with nonlocal moves that exchange randomly chosen pairs of
particles, ensuring equilibrium sampling. Detailed tests of ther-
malization of all glassy degrees of freedom are reported in S/
Appendix (21). We show the extreme speedup actually achieved
by swap MC for this model in Fig. 1, in which the structural
relaxation time 7 for both MC sampling methods is reported as
the system approaches its glass transition. Note that the rapid
increase of 7 in standard MC simulations resembles the frag-
ile super-Arrhenius behavior of standard glass formers (5). We
can only indirectly assess fragility beyond the reported numer-
ical regime, which we estimated to be m ~50. We have fitted
several empirical forms to our measurements, which thermal-
ize up to Z ~ 27, to estimate the experimental glass transition
at 7/7o = 10", Use of various fits reflects the well-known uncer-
tainties associated with the empirical description of data mea-
sured over a large dynamical range (26). The fits nonetheless
give consistent locations for the glass ceiling, Z, ~ 32-34, as high-
lighted in Fig. 1. Remarkably, this dramatic slowdown is com-
pletely bypassed by swap MC sampling, which thermalizes the
system up to Z ~ 38 > Z. Even the most conservative extrapo-
lation indicates that we access a dynamical range that is broader
than in experiments. Meanwhile, the two-point structure barely
budges (Fig. 1 B and C), which is a telltale sign of glassiness (5)
and a confirmation that both crystallization and more subtle frac-
tionation effects are absent. Visual inspection of particle config-
urations further confirms these conclusions (Fig. 1 D and E). We
are, therefore, in the unique position of studying at equilibrium
a homogeneous supercooled liquid beyond the experimental
glass ceiling.

We then turn to measuring the configurational entropy, Scont,
in these extremely supercooled configurations. The numerical
procedures leading to the four estimates of sconf are shown in
Fig. 2. Additional details are provided in SI Appendix. In method
1, we determine the configurational entropy from its most con-
ventional definition, Scont = Stot — Svib, as used in many experi-
mental and simulation studies (1, 12, 18, 22). The total entropy
of the equilibrium fluid, s¢ot, is measured by thermodynamic
integration from the dilute ideal gas limit to the target volume
fraction, while the vibrational contribution, s,;,, is measured
by Frenkel-Ladd thermodynamic integration (22, 27). The lat-
ter integration is over the amplitude of the Hookean constant,
a, of a spring that constrains each particle to reside close to
the position of a quenched reference equilibrium configuration.
This requires estimating the mean-squared distance 572 between
the reference and constrained systems over a broad range of
« values, as illustrated in Fig. 24. In continuously polydisperse
systems, special care is also needed to account for the mixing
contribution to the total entropy, because this contribution for-
mally diverges (28, 29). The mixing entropy is thus determined
from an independent, additional set of simulations (29) (S/
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Fig. 1. Breaking the glass ceiling: thermalization beyond the experimen-
tal glass transition. (A) Structural relaxation time, 7, for both standard and
accelerated swap MC dynamics as a function of the reduced pressure of a
polydisperse hard sphere model, where 7 is obtained from the decay of the
self-intermediate scattering function at a wavenumber k =5.25. The onset
of slow dynamics occurs at Zy ~ 18, and the mode-coupling cross-over is at
Z. ~ 23.5. Times are rescaled by o = 7(Zp) for standard MC. The current lim-
its of colloidal (r/7 = 10°) and molecular (r/7o = 10') experiments are
indicated by vertical bands (the uncertainty stems from the extrapolation
scheme), showing that swap MC breaks the glass ceiling. Static structure
factor for Z=18.8 ~ Z; (¢ =0.568) and Z = 33.2 (¢ = 0.640) for (B) all par-
ticles and (C) the 40% of particles with the smallest diameters. D and E show
typical snapshots for these two state points, where the smallest particles are
highlighted in blue.

Appendix). Note that method 1 is equivalent to partitioning con-
figuration space into basins of attraction of inherent structures
(7). The resulting estimate of the configurational entropy thus
counts the number of energy minima (12, 30), which presumably
overestimates the number of relevant basins in the free energy
landscape (31).

Methods 2 and 3 are both based on the Franz—Parisi theo-
retical construction (32), which expresses the equilibrium free
energy of the liquid, V(Q), in terms of a global order param-
eter, the overlap ). The overlap between two configurations
is defined as Q=N"137, 0(a — |rii — r2;]), where 6(z) is
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Fig. 2. Numerical procedures leading to the four estimates of the configurational entropy. (A) Method 1. The Frenkel-Ladd method to obtain the vibra-

tional entropy s,i, performs a thermodynamic integration of the mean-squared distance 6r? between a reference equilibrium configuration and a copy of
the system constrained by a harmonic potential of strength a. The integration is carried out from amax, for which the system behaves as an Einstein solid
(indicated by the dashed line 5rt = 3/(2a)), to amin, for which particles are trapped by their own cages on the vibrational timescale. (B) Method 2. The
numerically determined Franz-Parisi potential V(Q) is used to measure the configurational entropy as scont = V(Qnigh = 0.8) — V(Qjow ~ 0.05). (C) Method
3. The evolution of the overlap Q with the biasing field ¢ reveals a first-order jump at a value £*, for which Q = 1/2 (dashed line). Then, scont = &* (Qnigh —

Qiow)- (D) I\éllethod 4. The decay of the cavity overlap correlation function Qprs(R) with cavity radius, R, defines the point-to-set correlation length
1

1 /(d—0
Eprs X Sconf/( ).

the Heaviside function, r;; and ry; are the positions of par-
ticles ¢ and j within configurations 1 and 2, respectively, and
a is a fraction of the average particle diameter. By definition,
@ quantifies the similarity between the coarse-grained density
profiles of two configurations. To compute V(Q), we introduce
a coupling between a quenched reference equilibrium configu-
ration and a copy of the system through a field € conjugate to
@ (13, 32); € constrains the collective density profile, whereas o
in method 1 constrains single-particle displacements. We define
V(Q)=—lim.—0 [T/N1In P(Q)], where P(Q) is the equilib-
rium probability distribution of the overlap for a given reference
configuration, and brackets denote averaging over these config-
urations. In method 2, we follow ref. 13 and use the free energy
difference scont = V (Ghigh) — V(Qiow) between the global mini-
mum at Qow ~ 0.05 and its value at Qpigh = 0.8 to obtain an esti-
mate of sconf that is closest to its theoretical definition (Fig. 2B).
Importantly, this estimate only exists for sufficiently supercooled
states, for which Qhien can be defined (13). For our system, this
happens close to the mode-coupling cross-over, Z.. In method
3, we determine the value of the biasing € needed to “tilt” the
potential V' (@), so that a first-order phase transition, at which @
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jumps from Qiow t0 Ghign, takes place as illustrated in Fig. 2C. We
use the maximum variance of the overlap fluctuations to measure
¢* for each volume fraction studied. In practice, this is equiva-
lent to determining the biasing field at which the overlap reaches
Q=1/2 (Fig. 2C).

Method 4 builds on the physical idea that the decrease of
the configurational entropy is directly responsible for the growth
of spatial correlations quantified by the point-to-set correlation
length, &prs (33-35). Following what is becoming common prac-
tice (23, 35), we measure £prs by pinning the position of par-
ticles outside a spherical cavity of radius R, equilibrating the
liquid within it, and measuring the evolution of the overlap
between interior configurations, Qprs(R), with the cavity radius
R, as shown in Fig. 2D. The decay of Qprs(R) is controlled by
&prs, and the variance of the overlap fluctuations also presents
a maximum (23) very close to &prs. Physically, &prs thus repre-
sents the cavity size above which the system starts to explore a
significant number of distinct states. With minimal hypothesis
(34), it can be connected to the configurational entropy through
Sconf OC g;{*e , with an unknown exponent 6 < (d — 1). Various
values of 6 have been proposed, including 6 = 2 from saturating
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the inequality (37) and 6 = 3/2 from a wetting argument (6, 36).
Because our measurements are consistent with both of these
values, we cannot unambiguously distinguish one proposal from
the other.

We gather the four estimates of the configurational entropy
in Fig. 3 to produce a plot akin to the original 1948 Kauzmann
representation of scont(7) (1). Although in the high-temperature
liquid, the configurational entropy is not sensibly defined (13),
three of the four measures can still be estimated. Note that
only this regime was accessible in earlier simulations (12, 13,
22). In the more relevant low-temperature regime, our main
finding is that the important conceptual and technical differ-
ences between the four methods nevertheless result in qual-
itatively consistent results. In particular, the three estimates
(methods 2-4) that closely follow the theoretical definition
of the configurational entropy provide numerically indistinguish-
able results at low temperatures. The conventional estimate
of the entropy (method 1) is larger, as expected (31), but its
temperature evolution remains qualitatively consistent with the
other methods. All of our estimates of scont thus exhibit a steep
decrease as Z increases toward the glass phase, which is con-
sistent with the seemingly fragile behavior of the model in
Fig. 1. Although a quantitative extrapolation is hard to con-
trol, our measurements robustly suggest that sconr may vanish
near Z ~1/0.022 ~ 45. We thus conclude that, even for a simple
glass-forming system equilibrated deeper in the landscape than
any previously studied material, the trend discovered 70 years
ago by Kauzmann is confirmed when more precise estimates
of scont are adopted and persists below the experimental glass
temperature.

We further show in SI Appendix that similar observations can
be made for a model with a continuous pair potential, suggest-
ing that our methodological progress and physical conclusions

are not restricted to hard spheres and likely apply more gener-
ally. Note that, while continuous polydisperse distributions are
commonplace in colloidal suspensions, a molecular liquid with a
sufficiently large number of components to approximate a con-
tinuous size distribution has yet to be considered.

Discussion

Our point-to-set measurements go beyond Kauzmann’s obser-
vation by establishing that the decrease in sconf is accompanied
by an increase of static spatial correlations as the glass ceiling
is crossed. This result reinforces a recent experimental report
based on nonlinear dielectric measurements (38). In absolute
value, the measured static length scale at the experimental glass
transition appears somewhat smaller than previous estimates
based on dynamical correlations (39, 40) but remains compat-
ible with the modest growth expected from general arguments
based on thermally activated scaling (6, 34, 36) and decorrelation
between static and dynamical length scales (41). Our particle-
based resolution of such correlations further provides a direct
visualization of the spatial profile of the overlap within a spheri-
cal cavity (Fig. 3, Inset). In particular, within a cavity comprising
about 200 particles, the positions of particles freely fluctuate near
the onset pressure but become strongly correlated over the entire
cavity for the largest pressure shown. The spatial extent of static
correlations is thus directly revealed.

The important methodological advances achieved here
regarding the thermalization of supercooled liquids and the mea-
surement of configurational entropy, therefore, support a ther-
modynamic view of the glass formation based on the rarefaction
of metastable state accompanied by growing static correla-
tions that is devoid of the experimental ambiguities and that
extends to a temperature regime which has never been ex-
plored before.
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Fig. 3. Convergent measurements of the four estimates of the configurational entropy beyond the glass ceiling; s.onf is plotted as a function of 1/Z o T /P,
which is equivalent to the classic Kauzmann plot. All measurements indicate a steep decrease of s.,,¢ that continues as the experimental glass ceiling is
crossed. The point-to-set estimates are normalized with &, =2.0 for § =2 and £ =2.1 for 6 =3/2 to match the Franz-Parisi estimates at the start of the
low-temperature regime, 1/Z=0.04~ 1/Z.. The dashed line is an extrapolation based on st — syip, (S/ Appendix). (Inset) Typical overlap profiles measured
in a finite cavity of radius R = 3.46, with colors coding for the overlap value from low (white) to large (black). Overlap fluctuations are uncorrelated around
the onset but become strongly correlated over the entire cavity at the largest pressure shown.
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Materials and Methods

Model. We study a 3D hard sphere model, for which the pair interaction
is zero for nonoverlapping particles and infinite otherwise. Systems have a
continuous size polydispersity, with particle diameters o randomly drawn
from the distribution f(c) = Ao —3 with o € [Omin: omax] With normalization
constant A. Our model is the same as that studied in ref. 20, with a mea-

sure of size polydispersity A=1/02 —52/5, where === [dof(o)(---),
A =23%, and omin/0omax = 0.4492. The average diameter, 5, defines the
unit of length. We simulate systems composed of N particles in a cubic cell
of volume V under periodic boundary conditions (42). Depending on the
method chosen to estimate the configurational entropy (S/ Appendix), we
simulate systems with N = 1,000, N = 8,000 (method 1), or N = 300 (methods
2 and 3). Cavities for method 4 are carved from bulk configurations with
N = 8,000. The relaxation times shown in Fig. 1A are obtained from samples
with N = 1,000. Given these parameters, the system is then uniquely charac-
terized by its volume fraction ¢ = wNo3 /(6V), and we frequently report the
data using the reduced pressure Z=P/(pkgT), where p, kg, and T are the
number density, Boltzmann constant, and temperature, respectively. With-
out loss of generality, we set kg and T=1/8 to unity. The pressure P is
calculated from the contact value of the pair correlation function properly
scaled for a polydisperse system (43).

Methods. To obtain equilibrium fluid configurations deep in the glassy
regime, we perform MC simulations with both translational displacements
and nonlocal particle swaps (19, 20, 44-50). The two types of moves are
selected randomly: with probability 0.8 we attempt a translational displace-
ment, and with probability 0.2 we attempt a swap. Translational displace-
ments are uniformly drawn over a cube of side 0.115. For swaps, two ran-
domly selected particles exchange diameter. In both cases, proposed moves
are accepted if no overlap is created. Following ref. 21, we also immedi-
ately reject swaps between particles with diameters that differ by more
than 0.2.

We measure the equilibrium relaxation time = both with and without
the swap moves from the time decay of the self-intermediate scattering
function, Fs(k, 7) = 1/e, where k =5.25 is the wavenumber chosen slightly
below the first maximum of the static structure factor. Note that the parti-
cles’ diameters can change during a swap MC simulation, but their trajecto-
ries are continuous. Relaxation times are measured in units of MC sweeps,
comprising N MC moves, irrespective of their type.

Thermalized systems at each state point are obtained in the same way
for both standard and swap MC dynamics. We measure the relaxation time
7 and ensure that, for each state point, simulations of a total duration of at
least 1007 can be performed. We also check for the presence of aging effects
in time correlation functions, and we measure the static structure factor, the
pair correlation function, and the equation of state over long simulations,
paying attention to any temporal drift that could signal improper thermal-
ization, incipient crystallization, or demixing of particles with distinct sizes.
Selected results for the evolution of the structure factor with volume frac-
tion are presented in Fig. 1 B and C. Over the extreme range of densities
shown here, the static structure evolves very little. Similarly, a very mod-
est evolution is seen when the partial structure factor of the smallest parti-
cles is measured. A large increase of the low-k value of these quantities or
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the emergence of discrete peaks would signal that demixing or crystalliza-
tion is taking place. In fact, we have found that measuring the relaxation
time for the swap simulation is the most sensitive test of thermalization,
because purely static observables may appear thermalized over long simu-
lation times, whereas the system is, in fact, nearly arrested in a glass state,
within which sampling is inefficient.

We introduce two dynamical reference states: (/) the onset of slow
dynamics at ¢o ~ 0.56 (Zy ~ 18), above which the time decay of correla-
tion functions is nonexponential (51), and (ii) the mode-coupling cross-over
$c = 0.598 (Z. =~ 23.5), at which a power law fit extrapolates a divergence
of the relaxation times (20). Note that these particular definitions are not
unique (52) but are sufficiently accurate for their purpose as qualitative
references.

Localization of the Glass Ceiling. In the context of this work, the glass ceiling,
Z4, is defined through the relaxation time measured at the laboratory glass
transition, at which conventionally, 7(Z4) /10 = 10'3 (14). Because standard
MC dynamics can only access relaxation times at most of order /7 = 10°,
where 7o = 10* MC sweeps is the value of T at the onset of slow dynamics,
our dynamical data must be extrapolated to locate this ceiling. We here fit
measured relaxation times to various functional forms up to /7 < 10° and
then extrapolate to the vicinity of the glass ceiling. In an effort to obtain an
estimate as unbiased as possible, various functional forms (5, 25) are consid-
ered. The general strategy is described here, and the details are provided as
SI Appendix.

The first functional form is the Vogel-Fulcher-Tammann (VFT) expression:

2w —2° ] (
where 7., A, the exponent §, and the critical pressure Z are free param-
eters. Whereas § =1 is traditionally used, more recent experimental and
numerical studies favor § =2 (15, 25). Although the location of a putative
divergence of 7 is sensitive to the extrapolation methods (with Z ~ 38
for § =1 and Z, = 45 for § = 2), the location of the glass ceiling is rather
robust, with both § =1 and § =2 yielding Z, ~ 32.

The second functional form is the parabolic law proposed by Elmatad
et al. (53) in the context of facilitated models (54):

T:Tocexp[

T = Too EXP {A(Z — 20)2], [2]

where Z, =17 is around the onset of slow dynamics. The fit is made over
the range Z > 7, with the glass ceiling located at Zy = 34.

The two functional forms account well for the non-Arrhenius depen-
dence of the relaxation time data for the range 7/ < 10° (while a simple
Arrhenius expression does not). The resulting values, Z; ~ 32 for VFT and
Z4 = 34 for parabolic, are thus used to delineate the location of the glass
ceiling in Fig. 1.
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