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The criticality of the jamming transition responsible for amorphous solidification
has been theoretically linked to the marginal stability of a thermodynamic Gardner
phase. While the critical exponents of jamming appear independent of the preparation
history, the pertinence of Gardner physics far from equilibrium is an open question.
To fill this gap, we numerically study the nonequilibrium dynamics of hard disks
compressed toward the jamming transition using a broad variety of protocols. We
show that dynamic signatures of Gardner physics can be disentangled from the aging
relaxation dynamics. We thus define a generic dynamic Gardner cross-over regardless
of the history. Our results show that the jamming transition is always accessed
by exploring increasingly complex landscape, resulting in anomalous microscopic
relaxation dynamics that remains to be understood theoretically.

Gardner cross-over | glass | nonequilibrium dynamics | jamming

The jamming transition describes the formation of amorphous solids in materials
composed of repulsive particles (1, 2). It has been the subject of important research
activity in the last decades, encompassing statistical mechanics analysis, numerical studies,
and experimental investigations of granular and colloidal materials (3, 4). The jamming
transition also attracts interest in contexts such as the geometry of sphere packings, the
statistical mechanics of liquid and glass states, and is related to mechanical properties of
biophysical matter and machine learning in computer science (5–9). Jammed packings
have original physical properties that differ dramatically from crystalline solids. In
particular, the application of small perturbations often leads to large-scale responses,
showing that jammed materials are marginally stable (10).

Understanding the structure of jammed packings is difficult because the absence
of thermal fluctuations prevents the use of a statistical ensemble, as first noted by
Edwards (11, 12). This key problem was circumvented by describing jamming as the
end point of the compression of dense assemblies of thermalized soft or hard repulsive
spheres (13). This approach is meaningful because Brownian particles near jamming
belong to dynamically arrested glass states (14). It becomes possible to follow quasi-
statically the evolution of glassy states compressed toward jamming which only probes a
restricted region of configuration space (15, 16). For this thermodynamic description to
be correct, it is crucial that the compression history occurs over timescales that are much
shorter than the timescales related to the crossing of barriers in configuration space. In
the limit of large dimensions, d →∞, where the analytic calculations were performed,
this timescale separation is guaranteed by the divergence of free energy barriers separating
distinct glass states (13).

An unexpected outcome was the discovery that glass states followed quasi-statically
upon compression undergo a Gardner phase transition separating two types of glass
phases described by distinct sets of solutions (17, 18). The Gardner phase bears many
similarities with the replica symmetry broken spin glass phase found at low temperatures
in models of disordered magnets (19, 20), which implies the existence of specific
aging effects with multiple timescales and lengthscales and a hierarchical free energy
landscape (21). The Gardner phase directly impacts the physical properties of jammed
materials, as shown by mean-field studies (16, 22–24). More broadly, Gardner physics
arises from breaking the replica symmetry and its study is of great interest in fields
encompassing optimization problems (25, 26), deep learning (27), cell tissues (28),
magnetic materials (29), polydisperse crystals (30, 31), etc. The dynamic Gardner cross-
over analyzed in this work in the hard disk model might apply to other complex systems
with rough landscapes, as studied by these different communities.

It is not known whether the Gardner transition can survive in physical dimensions
(32, 33). Yet the measured critical exponents of jamming are independent of the dimen-
sion for d ≥ 2 (2). The robustness of jamming criticality is difficult to reconcile with
the fragility of the Gardner transition. More questionable is the fact that jamming was
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studied using different approaches, which cannot always be
described using quasi-static thermodynamic descriptions (2, 14).
There is therefore a deep theoretical gap between conventional
jamming studies and the available thermodynamic approach.
Even within mean-field spin glasses, the off-equilibrium dy-
namics of glasses entering the Gardner phase has not been
studied beyond some incomplete attempts (34–38). In fact, there
are increasing efforts to tackle off-equilibrium glassy dynamics
(39–43), but the dynamic Gardner cross-over itself remains out
of reach of those attempts, and appears as a very difficult task. Our
results may help shed light on the expected physical behavior.

Numerical simulations and experiments were performed to
detect signs of the Gardner transition (44–49), or to explore
the physical consequences of the hierarchical free energy land-
scape for the aging dynamics (50–52) and the mechanical
properties (49, 53) of dense assemblies of repulsive particles.
Although the Gardner transition is inexistent in d = 2, the
physics of hard disks is reminiscent of its d = 3 counterpart
with clear signatures of a strong Gardner cross-over (50).
Many numerical studies mimicked the analytic thermodynamic
construction using highly stable configurations to reproduce the
analytic state-following construction (44, 46, 50–53). Very few
studies (46, 54) attempted to characterize the Gardner phase
and related microscopic dynamics for the less stable systems
studied experimentally with mixed conclusions. On the other
hand, despite recent reports on Gardner-like phenomena in the
systems of long-ranged interactions (43, 55), the relevance of
Gardner physics in soft glasses is debated (48, 51, 56, 57). Our
work is helpful to resolve the controversy and understand the
stability of those glassy materials.

There is a growing interest in Gardner-related phenomena
in a wide range of complex systems but results are not always
conclusive because the studied models and protocols are often
very complex. Using well-controlled methods and well-studied
systems is useful. Hard disks represent a simple and practical
choice with quite a venerable history across statistical physics,
which represents a fruitful playground to study Gardner physics
beyond mean-field theory. Here, we simulate a two-dimensional
system of hard disks (50) and use a wide range of preparation
protocols from poorly annealed systems to stable ones to explore
the nonequilibrium dynamics observed during compression
protocols toward the jamming transition. We find that the signs
of a Gardner cross-over are robust even in the regime where
strong structural relaxations are present and can be disentangled
from the aging relaxation dynamics. We thus generalize the
thermodynamic Gardner cross-over to a dynamic cross-over for
any specific history, as well as propose a complete phase diagram
for the emergence of Gardner physics for hard disks, thus going
much beyond the purely static approach followed in ref. 50. Our
results show that Gardner physics is at play in the approach to
jamming, independently of the preparation history.

Results

Sample Preparation. We simulate dense assemblies of two-
dimensional hard disks (50) with a continuous size polydispersity
to avoid crystallization (Methods). The mean disk diameter sets
the unit length, and the pressure is normalized by kBTρ, with
ρ the number density and kBT the thermal energy defining the
normalized pressure Z . Since the scale set by the potential energy
is infinite for hard disks, we can impose kBT = 1. The simula-
tions are performed using a Monte Carlo (MC) algorithm, and
the MC sweep is used as the time unit. The number of particles

is N = 1024, chosen to allow exploration of the free energy
landscape (50). We remove contributions from the translational
Mermin–Wagner fluctuations to the dynamics using cage-relative
coordinates when computing physical observables (Methods)
(58–60).

To search for Gardner physics for the whole glass phase
diagram, we devise a two-step sample preparation. The prepared
samples will then be employed as starting points of compres-
sion protocols devised to probe the underlying free energy
landscape. Let us first introduce the preparation. We start by
equilibrating the system at fixed volume fractions ϕg using
constant volume MC simulations. To achieve equilibrium for
dense configurations, we use the swap MC algorithm to speed
up the thermalization (61). This enables us to access equilibrium
fluid states at densities much higher than the dynamic mode-
coupling theory (MCT) cross-over, ϕMCT ≈ 0.795. In the
second step, we switch off the swap MC moves and perform
conventional MC simulations in the NPT ensemble at various
reduced pressureZs ≥ Z(ϕg). Constant pressure MC simulations
are convenient to approach the jamming transition, which is
obtained in the limit Z →∞. We let the system relax at pressure
Zs for a time ts and store the final configurations, which are
characterized by three control parameters (ϕg , Zs, ts). At the end
of this preparation, the configurations are off-equilibrium at state
point (Zs,ϕs). We repeat this recipe starting from independent
configurations at φg when performing ensemble averages over
independent trajectories.

Therefore, this two-step protocol enables us to cover multiple
state points and physical regimes, in particular those characterized
by aging relaxation dynamics far from equilibrium, which could
be related to a large class of experimental situations (45, 47–49).
The samples drawn from a compression with a large Zs = Z(φg)
(equivalently, ts = 0) correspond to previous studies (44, 46, 50)
mimicking the theoretical state-following construction. Adding
the parameter ts for lower φg values is an important feature of
our study, which allows us to explore in a controlled manner and
with minimal ingredients a broad range of nonequilibrium states
with different degrees of aging and stability.

We display several examples of the NPT second stage of the
preparation in Fig. 1A, where each line represents the evolution of
the volume fractionϕ(ts) for pairs of (ϕg , Zs) values. The different
symbols indicate representative preparation states characterized
by (φg , Zs, ts) that will be used to investigate the Gardner
cross-over. The pressure Zs for states initialized from ergodic
liquids with ϕg = 0.600 ranges from Zs = 30 to Zs = 104.
When starting from denser glass states with ϕg = 0.810 and
ϕg = 0.860, we only show results for Zs = 102. When
compressing from ϕg = 0.600� ϕMCT ≈ 0.795, it can be seen
that ϕ grows with the time ts over the entire window, showing
that ts is a relevant control parameter for such nonequilibrium
preparation histories. Glasses obtained after longer ts are more
stable and, accordingly, display smaller particle diffusion during
the densification, see Fig. 1B. The mean-squared displacements
reveal the presence of aging dynamics for these systems. We shall
call these glassy states “ordinary glasses”.

The situation is qualitatively different for the case of (ϕg =
0.860, Zs = 102), where the system rapidly achieves restricted
equilibrium inside the metastable glass basin in a time shorter
than ts ≈ 105. The mean-squared displacement for that system
in Fig. 1B displays a stable plateau. We refer to these glasses as
“ultrastable glasses,” and they are roughly similar to systems used
in earlier numerical studies (44, 46, 50). Finally, glasses prepared
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A B C

Fig. 1. Broad range of sample preparation. (A) Evolution of the packing fraction in the second step of the sample preparation, starting from different 'g
at ts = 0 and compressing at constant pressure Zs . For 'g = 0.600 we show Zs = 30, 50, 102, 103, and 104 (from Bottom to Top), while for 'g = 0.810 and
'g = 0.860 we only show Zs = 102. Representative glass samples characterized by (�g , Zs , ts) are marked by symbols. (B) The caged-relative mean-squared
displacements 1(tw = 0, t) for glass samples at pressure Zs = 102 marked in (A) with (�g , ts) as indicated. Strong aging relaxation effects are obvious for
ordinary glasses prepared from �g = 0.600. (C) Sketch of the position of the different types of glasses shown in (A) in the free energy landscape, where the
height encodes the degree of stability and the black horizontal lines represent the Gardner cross-over.

by compressing from ϕg = 0.810 to Zs = 102 are close to
the thermodynamic Gardner cross-over that is estimated below
to occur near ZG ≈ 102. They show a mild time dependence
of ϕ(ts) and a larger mean-squared displacement. We call these
glasses “marginal glasses”. For such large packing fractions, the
physical MC dynamics is nearly arrested.

In Fig. 1C , we offer a sketch of the position in the energy
landscape of the three categories of glasses prepared in Fig. 1A,
namely, ordinary, marginal, and ultrastable glasses. We are
particularly interested in studying the pertinence of the Gardner
physics for ordinary glasses, which are not well understood
theoretically and are closer to systems studied experimentally.
To this end, we will compare their study with results obtained
on ultrastable and marginal glasses.

Exploring Complex Landscapes upon Compression. After the
two-step sample preparation described above, we perform various
compression histories using NPT MC simulations. The end of
the sample preparation at ts corresponds to the waiting time
tw = 0, after which the pressure is instantaneously changed to a
new value Z > Zs, or kept at Z = Zs as in Fig. 1B. Although
this may superficially resemble the state-following construction
proposed by thermodynamic theories, our numerical approach
can be applied to all types of glass states, and we do not assume
that infinitely long-lived states exist.

We instantaneously change the pressure from the preparation
pressure Zs to a range of applied pressure Z at time tw = 0 and
track the evolution of the system as a function of the time tw
spent at the final pressure Z . Following earlier work, we simulate
Nc independent trajectories, or clones, for each prepared sample
at tw = 0 by using different sequences of random numbers in
the MC simulations. We further average over Ns independent
samples for each state characterized by (ϕg , Zs, ts) to average
over the disorder, which results in Ns × Nc simulations in
total to fully characterize a given preparation history. We use
(Ns = 100, Nc = 10) to get statistical properties and increase
the number of clones to Nc = 100 when analyzing more finely
the landscape structure of individual samples.

It is useful to compare the results obtained for ordinary glasses
with more stable glasses. To this end, we select three examples
prepared at the same values (Zs = 200, ts = 218

× 100) but
for different initial equilibrium states of φg = 0.600, 0.820, and
0.860, which respectively represent typical ordinary, marginal,

and ultrastable glasses. The pressure Z varies from Z = 200 to
Z = 104.

We study the dynamics using the cage-relative mean-squared
displacement (MSD) 1(tw, t) between times tw and tw + t
at a series of waiting times tw. For ultrastable glasses with
(ϕg = 0.860, Zs = 200), the dynamics exhibits a cross-over from
simple vibrations to anomalous aging at a threshold pressure that
coincides with the Gardner cross-over ZG ≈ 103 (SI Appendix)
By contrast, we observe an aging behavior for marginal and
ordinary glasses in the entire pressure range. For the marginal
glass, we have confirmed that there is no diffusion to another
glass state within the simulated time by decompressing these
systems to a lower pressure Z = 102 where the dynamics was
purely vibrational. The aging dynamics for the marginal samples
is thus entirely due to the marginal stability of the Gardner phase.
Instead, ordinary glasses first age at modest Z because they relax
from one state to another, whereas for larger Z aging is instead
dominated by Gardner physics, as we establish more precisely in
the rest of the paper.

Fig. 2. Exploring complex landscapes upon compression. Long-time limit
(tw = t = 217

× 100) of cage-relative MSD 1(tw , t) (full lines) and cage-
relative mean-squared distance between clones 〈1ab(tw)〉 (dashed lines) for
three states prepared from �g = 0.600 (red), 0.820 (light blue) and 0.860 (dark
blue) and the same (Zs = 200, ts = 218

× 100). The quantities 1 and 〈1ab〉
differ at all Z for ordinary and marginal glasses, whereas they are equal up to
the Gardner cross-over ZG for ultrastable glasses. However, in all cases, 〈1ab〉
exhibits a nonmonotonic dependence with Z as a rough landscape emerges,
and the positions of the resulting minima are indicated by the vertical lines.
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Because of the interplay between structural relaxation and
Gardner physics, it is not easy to interpret the physical origin of
aging of ordinary glasses. To gain further insight, we resort to the
cage-relative mean-squared distances between pairs of clones at
time tw, 〈1ab〉. In Fig. 2, we show the long-time values of1(tw, t)
and 〈1ab〉measured at tw = t = 217

×100 as a function of Z for
the three glass states. When the landscape is simple, ergodicity
is achieved within metastable basins so that the time average 1
and the ensemble average 〈1ab〉 coincide. Otherwise, they will
differ from each other. The separation between 1 and 1ab is
thus considered the primary criterion for the emergence of a
hierarchical landscape (44). This is less obvious for marginal and
ordinary glasses, which may undergo structural rearrangements
and therefore have 〈1ab〉 larger than 1 throughout the entire
range of pressure as observed in Fig. 2.

Nevertheless, the evolution of 〈1ab〉with pressure itself carries
interesting information about the free energy landscape. Upon
compressing glasses within a hierarchical landscape, 〈1ab〉 grows
with increasing pressure due to the rapid proliferation of states,
as observed for ultrastable and marginal glasses. As shown in
Fig. 2, 〈1ab〉 is nonmonotonic for all three glasses, suggesting
that Gardner physics is relevant to the dynamics of ordinary
glasses, despite the presence of aging relaxations.

Dynamic Gardner Cross-Over. In the state-following analysis
of ultrastable glasses, the emerging aging dynamics observed
beyond the Gardner cross-over is related to the emergence of
free energy barriers preventing the unrestricted exploration of the
available phase space. As a result, when a population of clones
is simulated one finds that different clones may explore different
parts of this phase space, which gives rise to a broad distribution
of distances between pairs of clones. Importantly, when the
pressure is returned to a value smaller than the Gardner cross-
over, this clustering in phase space disappears, and the clones
evolve freely again. This represents a memory effect (50, 62).
This property is important as it enables us to distinguish aging
signatures due to the Gardner cross-over showing memory,
from the aging relaxation toward different states, which is fully
irreversible.

We first plot the distributions of the cage-relative distances
between clones P(1ab) in Fig. 3 for the same three samples as in
Fig. 2. As shown in the first column forZ = 200, the distribution
P(1ab) for ultrastable glasses remains Gaussian at all times
tw, indicating unhindered vibrational motion. By contrast, the
distributions P(1ab) for marginal and ordinary glasses broaden
toward larger 1ab values, which corresponds to some form of
aging relaxation. The influence of the initial stability is also clear,

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

Fig. 3. Coexistence of aging relaxation and hierarchical landscape. Evolution of the distributions of cage-relative distances between clones P(1ab) at Z = 200
(A1–C1), 400 (A2–C2), 103 (A3–C3), 104 (A4–C4) (from Left to Right). From top to bottom, we show results for the three samples compressed from �g = 0.600
(A1–A4), 0.820 (B1–B4), and 0.860 (C1–C4) to the same (Zs = 200, ts = 218

× 100) as in Fig. 2. The distributions broaden at small 1ab when an increasingly
complex landscape controls the physics at large pressure for all types of glasses. The broadening at large 1ab is pronounced at low Z for less stable glasses
and reflects structural relaxation.
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as the broadening is much stronger for the ordinary glass than it
is for the marginal one and is absent for the ultrastable glass.

When the pressure is increased further, all glasses fail to achieve
a complete sampling of the glass basin, and P(1ab) now develops
a tail toward small values of 1ab as tw increases. It indicates
that different clones explore different parts of the available phase
space, some pairs being close to one another, whereas other pairs
are far from each other. When the pressure is high enough,
ordinary glasses behave similarly to marginal glasses, showing that
Gardner physics always becomes important upon approaching
jamming.

To better understand the interplay between aging dynamics
due to structural relaxation or to the dynamic Gardner cross-over,
we decompress the clones produced from the ordinary glasses
from the pressure Z where they have aged for a long time back
to the initial pressure Zs = 200 and compare the distributions to
the reference case Z = Zs to investigate the presence of memory.
When the non-Gaussian distributions at Z > Zs are solely due
to the hierarchical Gardner landscape, the two distributions are
expected to be the same. We use a short time after decompression
t = 28

× 100 to perform this comparison as it does not allow
for significant aging for the reference case, see Fig. 3A1. In Fig. 4
we show the effect of decompressing the systems shown in Fig. 3
A2–A4 back to Zs = 200 after tw = 218

× 100, and wait
28
×100 steps before measuring P(1ab). The difference between

the decompressed systems and the reference one at large1ab can
be attributed to aging relaxation processes that have taken place
in the stages presented in Fig. 3 A2–A4. They can be observed in
Fig. 4, with an amplitude that decreases with increasing Z .

These results suggest that a dynamic Gardner cross-over can
be defined from the distributions P(1ab) by focusing on the
emergence of small values of 1ab upon compression, which is
unrelated to aging relaxation dynamics. For such a criterion to
coincide with the previously used separation between the averages
values 〈1ab〉 and 〈1〉 which can be used for ultrastable glasses,
we introduce the quantity

F (tw) =
∫
〈1〉

0
P(1ab)1ab, [1]

Fig. 4. Partial memory effect in ordinary glasses. Distributions of cage-
relative distances between clones P(1ab) for ordinary glasses first com-
pressed for tw = 218

× 100 at pressure Z and then decompressed back
to Zs = 200 for a short time t = 28

× 100. The results are compared to the
reference curve (cyan line) which only aged for a short time t = 28

× 100 at
Zs = 200. Deviations with the reference distribution at large 1ab are due to
aging relaxation dynamics which is irreversible.

which represents the enhanced probability that the distance
between clones is smaller than the average size of the cage.
For ultrastable glasses, F (tw) rapidly converges to a constant
close to 0.5 for low pressures but fails to converge to 0.5
above the Gardner cross-over (SI Appendix) For marginal and
ordinary glasses, F (tw) decreases at low pressure due to aging
relaxation but behaves similarly to ultrastable glasses at larger
pressure. For all glasses, upon compressing the systems, F (tw) (SI
Appendix) changes from a decreasing function to an increasing
one, indicating a generic dynamic cross-over. We thus define
a threshold pressure ZG at which F (tw) is nearly constant over
long times. For the samples shown in Fig. 3, we can thus estimate
the Gardner cross-over to be ZG ≈ 500 for the ordinary glass,
ZG ≈ 400 for the marginal glass, and ZG ≈ 103 for the
ultrastable glass. The presence of subdiffusive motion(57) is not
a unique signature of Gardner physics because it is also observed
in glasses with simple aging dynamics.

The overall conclusion is that Gardner physics at large pressure
is surprisingly robust against the aging relaxation dynamics taking
place when the quasi-static conditions used in the theoretical
analysis do not hold (SI Appendix) We confirm this conclusion
by additional analysis of individual samples (SI Appendix) Never-
theless, the complicated interplay between the various timescales
involved in aging and Gardner dynamics certainly challenges
analytic approaches to these nonequilibrium dynamics.

Increasing Susceptibility upon Approaching the Jamming Tran-
sition. Having revealed that Gardner physics is pertinent in all
preparation regimes, we quantify whether increasing collective
fluctuations can also be detected. Following earlier work, we
compute the global susceptibility χAB quantifying the fluctu-
ations of the distance field between clones, 1ab(Er) (Methods).
In the context of thermodynamic theory, the Gardner phase is
critical and characterized by full replica symmetry breaking with
an infinite correlation length and infinite susceptibility χAB. In
the physical dimensions, simulations have shown that there exists
a long but finite correlation length in the vicinity of the Gardner
cross-over, where χAB increases with pressure (44, 50, 51),
compatible with a possible divergence at finite pressure in
d = 3 (44, 51).

However, most previous studies focused on ultrastable glass
and the situation is unclear in the presence of relaxation dynamics
at low pressure, which can affect the behavior of the susceptibility.
To this end, we adopt a simpler measurement protocol where we
do not change the pressure at the end of the preparation at Zs and
directly create Nc clones at tw ≥ 0 and Z = Zs which are then
followed for tw > 0. We then monitor the time dependence
of χAB(tw), which quantifies collective effects. This procedure
applies equally well to stable glasses (SI Appendix)

We compare the probability distributions of clone distances
at long times, P(1ab) for tw = 218

× 100, with their short-
time counterparts which contain only vibrations (measured using
tw = 104

− 106 depending on Zs) in Fig. 5A, using the initial
states generated at various Zs for (ϕg = 0.600, ts = 218

× 100).
At short times, the distributionsP(1ab) are Gaussian, centered

at the averaged cage size for Zs = 30 − 103, corresponding to
the vibrations within the cages selected by the initial states. With
increasing pressure, the time to reach a plateau in the MSD
increases rapidly. At Zs = 104, the maximal time tw ∼ 108 is
not long enough to see the MSD plateau. Therefore, we do not
display P(1ab) for this pressure in Fig. 5A.

At long times, the evolution of the distributions P(1ab)
demonstrates that clones gradually move away from each other
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A B C

Fig. 5. Hierarchical landscape and increasing susceptibilities at larger pressures. (A) Probability distributions of mean-squared cage-relative distances between
clones P(1ab) for (�g = 0.600, ts = 218

× 100), (Ns = 100, Nc = 10) and various Z = Zs . The solid curves are measured at long time, tw = 218
× 100, the dotted

lines at short times tw = 104
− 106. (B) Representative heat map of 1ab for a sample with ('g = 0.600, Zs = 103 , ts = 218

× 100) using Nc = 100 clones at
Z = Zs , tw = 218

× 100. The axes represent the clone index, and the value of 1ab is color coded. A clear hierarchical structure of phase space appears. (C) Time
evolution of the susceptibility �AB(tw) corresponding to the distributions shown in (A). Fast relaxation at small Z does not result in the large susceptibility that
Gardner physics yields at large pressure.

and explore different parts of the landscape. At the lowest pressure
Zs = 30, tw = 218

× 100 is long enough for particles to escape
from their cages, and1ab is about one order of magnitude larger
than the typical cage size. With increasing the pressure, P(1ab)
remains much broader than the distribution of cage sizes, despite
the slow dynamics. This suggests an increasing complexity of the
landscape at higher pressures. Moreover, as shown by the heat
map in Fig. 5C for a randomly chosen sample at Zs = 103 and
tw = 218

× 100, the organization of 1ab is reminiscent of the
ultrametric structure characterizing a Gardner phase, confirming
the existence of a hierarchical landscape even in ordinary glasses
which age.

Finally, we present in Fig. 5C the time evolution of the suscep-
tibilityχAB(tw) for the same ordinary glass states as in Fig. 5A. For
Zs = 30, 50,χAB(tw) reaches a peak valueχ∗AB at tw = 107

−108,
which corresponds to the timescale for escaping the initial cage.
For higher pressures, χAB(tw) remains small at short times but
eventually increases at longer times, revealing increasingly long-
ranged spatial correlations and stronger dynamics heterogeneities.
In particular, χAB(tw) at Zs = 103 increases by about two orders
of magnitude within the simulation time and continues to grow
at large times. Interestingly, it can reach significantly larger values
than the susceptibilities observed in marginal glasses (46, 50, 51)
because the dynamics is faster in ordinary glasses. We have also
studied the dependence of χAB(tw) on the packing fraction ϕs by
varying the preparation time ts at fixed Zs and find that χ∗AB is
larger for larger φs (SI Appendix) Therefore, we conclude that a
large susceptibility χ∗AB emerges upon approaching jamming.

Discussion

By using a broad variety of preparation histories leading to glasses
with various degrees of stability, we have established that specific
signatures due to the Gardner cross-over are generically present in
glasses compressed toward jamming. A careful choice of protocols
and observables allowed us to reveal that the characteristics
of a Gardner phase are systematically found in all types of
glasses, and ultrastability is unnecessary to analyze the Gardner
transition even though it makes the dynamics simpler to analyze.
We summarize these observations and determine the complete
region of the hard disk phase diagram where Gardner physics is
pronounced in Fig. 6, which identifies the regions of state points

where the glassy landscape becomes complex for a very broad
range of initial conditions.

Hard spheres in large dimensions undergo a dynamic mode-
coupling transition corresponding to the emergence of long-
lived metastable states, but no such transition occurs in finite
dimensions (13, 63, 64). However, the dynamic cross-over
determined from an approximate power law fit inspired by mode-
coupling theory to the equilibrium relaxation time remains a
useful reference point. It is represented by a green symbol at
(ϕMCT ≈ 0.795, ZMCT ≈ 24) in Fig. 6.

For initial packing fractions ϕg ≥ ϕMCT , we use the
swap Monte Carlo algorithm to equilibrate the system. The
measured equilibrium equation of state can be described by the
Carnahan–Starling equation of state (65). For these dense states,
further compressions using ordinary MC simulations represent
a relatively faithful implementation of the theoretical state-

Fig. 6. Phase diagram of dense hard disks from the fluid to jamming. We
summarize our results in the inverse pressure 1/Z versus packing fraction
' representation. Equilibrium fluid states (hexagons) follow the Carnahan–
Starling equation of state (blue line). The mode-coupling cross-over is
indicated by a green symbol. Black dotted lines represent glass equations of
state obtained by compressions of stable equilibrium configurations starting
from above �MCT . A Gardner cross-over separates simple and hierarchical
glasses during these compressions (light blue symbols) before hitting the
J-line at Z → ∞ (red line). For ordinary glasses, there is no well-defined
metastable state to follow but an isoline of susceptibility �∗AB ≈ 60 (orange
symbols) locates the emergence of a complex landscape. Gardner physics is
relatively pronounced in the triangular region “protecting” the J-line.
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following construction, allowing us to measure the glass equations
of states shown with black dotted lines in Fig. 6. Finally, using
the observable F (tw) introduced in Eq. 1, we locate the Gardner
cross-over for these stable glassy states, as depicted by the light
blue line in Fig. 6, which shows that ZG increases with ϕg .
We find that ZG ≈ 80 for φg ≈ ϕMCT , which is significantly
higher than the equilibrium value ZG � ZMCT ≈ 24. In
previous simulations of three-dimensional hard spheres (17, 44),
the authors did not consider the structural relaxation when
determining the Gardner cross-over in the vicinity of the mode-
coupling cross-over despite the lack of well-defined metastable
states, similarly to our hard disk system. This might explain why
we conclude that the pressuresZG(φMCT ) andZMCT are distinct.
This issue would be worth revisiting in three dimensions.

When ϕg < ϕMCT , there are no well-defined metastable basins
in the equilibrium liquid phase. To evaluate the complexity
of the free energy landscape, we measure the peak value of
susceptibility over time χ∗AB as in Fig. 5C , which grows upon
approaching jamming (occurring on the red line). To determine
the relevance of Gardner physics, we empirically define the
criterion χ∗AB ≈ 60, which is large enough to signal the presence
of Gardner physics, and low enough to be accessed within the
simulation time window. The result is displayed with orange
symbols in Fig. 6. This line does not exist below Z ≈ 60 where
the susceptibility remains small. The data for larger densities
shown in (SI Appendix) suggest that this line moves to larger
pressures when Z increases, see Fig. 6.

Combining all measurements, we obtain a triangular zone
in the phase diagram of Fig. 6 where Gardner physics is
highly relevant. Interestingly, this zone appears to ‘protect’
the approach to the line of jamming points at Z = ∞. We
conclude that when approaching the jamming transition using
all kinds of protocol by compressing ordinary, marginal, or
ultrastable glasses, Gardner physics is inevitably involved. It is
characterized by a hierarchically complex free energy landscape,
leading to anomalous aging dynamics in the motion of dense
assemblies of particles near the jamming transition, as well as
specific physical properties related to marginal stability. Our
simulations show that these signatures are robustly observed in
two-dimensional systems, in the presence of thermal fluctuations,
and for preparation protocols and compression histories similar
to the ones studied in several experiments. Our study therefore
naturally reconciles recent experimental and numerical studies
of the Gardner cross-over in dense particle systems and provides
a guide for future theoretical studies of their off-equilibrium
dynamics in the vicinity of the jamming transition.

Materials and Methods

Model. We simulate an assembly of N = 1024 two-dimensional hard disks in
a squared box of length L with periodic boundary conditions. The interaction
between two disks is infinite when they overlap and zero otherwise. The disk
diameter σ is drawn randomly from a continuous distribution P(σ ) ∝ σ−3

forσ ∈ [0.45σmax , σmax], and the polydispersity is
√

(σ 2 − σ 2)/σ ≈ 0.23
with · · · the average over P(σ ). The units for length, energy, and time are the
mean diameter σ , temperature T , and a MC sweep, respectively. The physical
controlparametersarethevolumefractionϕ = πσ 2/4L2, thereducedpressure
Z = p/(ρkBT), and Monte Carlo (MC) sweep t, whereρ = N/L2 is the particle
number density. The equilibrium equation of state for this model can be fitted
by the following empirical relation,

Z(ϕ) =
1

1− ϕ
+
σ 2

σ 2

(1 + ϕ/8)ϕ

(1− ϕ)2
. [2]

Observables. The reduced pressure can be computed by the contact
number,

Z = 1 +
1

2N

N∑
i=1

N∑
j>i

δ

(
Rij

σij
− 1+

)
, [3]

whereσij = (σi +σj)/2 is the average diameter of particle i and particle j, and

Rij = |ERi − ERj| is the separation between two particles with ERi the coordinate
of i. To get rid of the influence of the Mermin–Wagner fluctuations, we adopt
cage-relative coordinates in our observations,

Eri = ERi −
1
Ni

Ni∑
j∈∂ i

ERj, [4]

where ∂ i is the set of neighbors of particle i and Ni = |∂ i|. Here, we define
j ∈ ∂ i if Rij < 2σ . In the state-following scheme, each of the Ns samples is
cloned Nc times. We use the statistics of (Ns = 100, Nc = 10) for general
properties and (Ns = 1, Nc = 100) when studying individual samples. The
cage-relative distance between clones a and b is

1ab =
1
N

N∑
i=1

1ab,i, 1ab,i = |Er a
i −Er

b
i |

2. [5]

Averaging over the clone pairs and over samples, one can get the mean-
squared clone distance,

〈1ab〉 =
1

Ns

Ns∑
α=1

 2
Nc(Nc − 1)

Nc∑
a,b∈∂α,b>a

1ab

 . [6]

Here, ∂α is the set of clones of a sample α, 〈· · ·〉 represent averaging over
samples and clone pairs. The susceptibility for the spatial displacement field is,

χAB = N
〈12

ab〉 − 〈1ab〉
2

〈12
ab,i〉 − 〈1ab,i〉

2
. [7]

We probe the dynamics with two-time mean-squared displacement (MSD),

1(tw , t) =
1

Ns

Ns∑
α=1

 1
Nc

Nc∑
a∈∂α

1a(tw , t)

 ,

1a(tw , t) =
1
N

N∑
i=1

|Er a
i (tw + t)−Er a

i (tw)|2,

with tw the initial time for the observation and t the time window.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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