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The formation of amorphous solids results from the rapid 
growth of structural relaxation time τα of a supercooled liq-
uid1. Molecular motion occurs on a timescale of about 10−10 s 

at the onset temperature of glassy behaviour, but it takes about 100 s 
at the experimental glass transition temperature Tg (ref. 2). Over 
the last decades, dielectric, mechanical and light-scattering experi-
ments kept developing to probe molecular motion over a broader 
frequency range with increased accuracy3–8. This progress reveals 
that the temperature evolution of τα is just the tip of the iceberg, as 
relaxation spectra χ″(ω) measured near Tg exhibit relaxation pro-
cesses taking place over an extremely large frequency window9–12. 
The overall shift in the relaxation spectra is accompanied by an 
equivalent broadening of about 12 decades, which is the other side 
of the same coin. A microscopic explanation of these slow dynamics 
is at the heart of glass transition research1.

High-temperature spectra reflect near-exponential relaxation in 
the picosecond range, but low-temperature spectra broaden into 
a two-step process with a stretched exponential relaxation at low 
frequency ω ≈ 1/τα and a microscopic peak remaining at the pico-
second timescale. In 1990, more precise experiments11–14 showed 
that for a number of molecular liquids, the structural relaxation 
peak extends much further at higher frequencies ωτα ≫ 1 and trans-
forms into a power law, namely, χ″(ω) ≈ ω−σ, with a small exponent 
σ(T) ∈ [0.2, 0.4] decreasing with temperature14. Using logarithmic 
scales, this resembles a ‘wing’ in ‘excess’ of the α peak. At Tg, the 
wing extends over the millihertz–megahertz range with an ampli-
tude about 100 times smaller than the α peak. A universal scaling 
comprising the excess wing was proposed14, which can be altered 
by further microscopic processes15,16. Although this universality is 
debated9,10, the presence of an excess contribution often taking the 
form of a wing is not6,17.

Elucidating the nature of molecular motion responsible for the 
small signal in these excess wings appears daunting. Yet, experiments 
managed to characterize its heterogeneous nature18,19 and aging 
properties20. So far, computer simulations were unable to access the 
required range of equilibration temperatures and timescales to even 

address the question. Physical interpretations and empirical models 
have been proposed to explain the shape of the relaxation spectra. 
Some of them couple slow translational motion with an ‘additional’ 
degree of freedom (for example, rotational)21,22. Others invoke spa-
tially heterogeneous dynamics to construct a broad distribution of 
timescales of static23–27 or kinetic28 origin. The winged asymmetric 
shape then requires specific physics, such as geometric frustration25, 
length-scale-dependent dynamics26 or dynamic facilitation28. With 
specific choices, these approaches yield relaxation spectra compris-
ing excess wings, but direct microscopic investigations testing the 
underlying hypotheses are still lacking.

Here we show that computer simulations can now directly 
observe excess wings and assess their microscopic origin. We take 
advantage of the recent swap Monte Carlo algorithm29 to efficiently 
produce equilibrated configurations of a supercooled liquid with 
τα ≈ 100 s. We observe their physical relaxation dynamics over 10 
decades in time, up to 20 ms. We are, thus, able to probe the tem-
perature and time regimes where excess wings are observed in 
experiments. We report the emergence of a power law (a wing) in 
the numerical spectra with the same characteristics as in experi-
ments. We demonstrate that it is caused by a sparse population of 
localized regions, whose relaxation times follow a power-law distri-
bution. These relaxed regions then coarsen by dynamic facilitation. 
We construct an empirical model to illustrate how heterogeneous 
dynamics and dynamic facilitation generically lead to asymmetric, 
winged relaxation spectra.

We study size-polydisperse mixtures of N soft repulsive spheres 
in two and three dimensions (Methods). These models are repre-
sentative computational glass formers30,31. We use the swap Monte 
Carlo algorithm (designed in ref. 32) to generate ns ∈ [200, 450] 
independent equilibrium configurations at temperature T down 
to the extrapolated experimental glass transition temperature Tg. 
Each equilibrium configuration is then taken as the initial con-
dition of a multiple central processing unit (CPU) molecular 
dynamics (MD) simulation (without swap). The ns independent 
simulations run for up to a simulation time tmax of 1.5 × 107 in 
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three dimensions (one week on two CPUs for N = 1,200). We push 
a few two-dimensional (2D) simulations to unprecedentedly long 
times, up to tmax,2D = 6 × 108, representing a computational time of 
several months. By using the relaxation time at the onset of glassy 
dynamics to relate the numerical and experimental timescales, our 
longest simulations translate into a physical time of about 20 ms 
for systems having an equilibrium relaxation time τα ≈ 102 s. This 
strategy is the key to observe excess wings, which would other-
wise be buried underneath structural relaxation in conventional 
approaches33. The 2D and three-dimensional (3D) models behave 
similarly; therefore, we present quantitative results for the 3D 
model (N = 1,200) in Figs. 1 and 3 and illustrate the relaxation pro-
cess in Fig. 2 with 2D snapshots (N = 10,000), which are easier to 
visualize. Quantitative results for the 2D model are provided in the  
Supplementary Information.

We investigate the spatiotemporal evolution of the relaxation 
dynamics using averaged and particle-resolved dynamic observ-
ables. In three dimensions, we measure the self-intermediate scat-
tering function Fs(t), averaged over the ns independent runs. We 
define the relaxation time τα by Fs(τα) = e−1. In two dimensions, 
collective long-ranged fluctuations affect the measurement of Fs(t). 
We instead focus on observables that are independent of these 
fluctuations34 and define τα via the bond-orientational correlation 
function35. In both two and three dimensions, we investigate the 
relaxation process at the particle scale via the bond-breaking cor-
relation Ci

BðtÞ
I

 that quantifies the fraction of nearest neighbours lost 
by particle i after time t. Starting from Ci

Bðt ¼ 0Þ
I

 = 1, it decreases as 
rearrangements take place close to particle i, and reaches zero when 
its local environment is completely renewed. Precise definitions of 
the correlation functions are provided in Methods.

To connect with experimental results obtained in the frequency 
domain, we compute the dynamic susceptibility χ″(ω) from a distri-
bution of relaxation times G(log τ) (refs.17,28):

χ00ðωÞ ¼
Z 1

�1
Gðlog τÞ ωτ

1þ ωτð Þ2
d log τ ; ð1Þ

where distribution G is related to the derivative of a time correla-
tion function, G(log t) ≈ –dFs(t)/d log t in three dimensions. We 
use the bond-breaking correlation function instead of Fs in two 
dimensions. We discuss the numerical evaluation of χ″ in Methods, 
and discussion on the statistical noise and comparison with direct 
Fourier transforms are provided in Supplementary Section I and 
Supplementary Figs. 1 and 2.

We start by presenting the equilibrium measurements of Fs(t) in 
three dimensions (Fig. 1a), concentrating on the unexplored low-T 
regime below the mode-coupling crossover Tmct ≈ 0.095. The latter is 
determined by a power-law fit of τα(T) in the range τα/τo < 103, where 
τo ≈ 3 is the value of τα at the onset temperature To ≈ 0.20 (ref. 29). At 
all the temperatures, the correlations display a fast initial decay near 
t ≈ τo, due to fast dynamical processes. At larger times, we observe 
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Fig. 1 | Emergence of excess wings in a 3D glass former near the glass 
transition temperature. a, Self-intermediate scattering function Fs(t) at 
various temperatures. b, Relaxation time τα rescaled by its value τo at the 
onset temperature. The symbols are directly measured data (squares) 
or obtained using TTS (circles). A conservative Arrhenius extrapolation 
(Arr.) locates Tg = 0.056, where τα(Tg)/τo = 1012 (dashed line). c, Relaxation 
spectra for the same temperatures as in a. The dashed lines represent the 
estimated α peaks. Close to Tg, the spectra lie above the α peak and display 
a power-law signal with an exponent σ ≈ 0.38 (full line), in quantitative 
agreement with the experimentally observed excess wings.

1

Ci
B

0

Fig. 2 | Visualization of spatially heterogeneous and facilitated dynamics. 
Relaxation in the 2D system at T2D = 0.09 with τα/τo = 108. Frames are 
logarithmically spaced between t = 2 × 10−3τα (top left) and t = 0.6τα 
(bottom right) from left to right and top to bottom. The particles are 
coloured according to Ci

BðtÞ
I

 from blue (immobile; Ci
BðtÞ
I

 = 1) to red (relaxed; 
Ci
BðtÞ
I

 = 0). The linear size of the simulation box is 100.
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a much slower decay to zero. As T decreases, the relaxation time 
grows and eventually exits the numerically accessible time win-
dow. At the lowest investigated temperatures near Tg, correlations 
appear almost constant over more than seven decades in time, sug-
gesting a near-complete dynamic arrest. We recall that owing to the 
swap algorithm, all the measurements reflect genuine equilibrium 
dynamics, even when τα is larger than the simulated time by many 
orders of magnitude.

Our strategy allows us to directly observe the α relaxation when 
τα < tmax; equivalently, τα/τo ≲ 5 × 106 down to T = 0.0755 (Figs. 1a,b). 
In this regime, the relaxation is well described by a stretched expo-
nential F0e�ðt=ταÞβ

I
 with an almost constant stretching exponent 

β ≈ 0.56, and amplitude F0 that changes modestly with tempera-
ture. We use this time–temperature superposition (TTS) property 
to estimate τα for 0.0700 ≤ T ≤ 0.0755, where the decorrelation of 
Fs(t) is sufficient36, and obtain τα over roughly two more decades 
(Fig. 1b). We finally use an Arrhenius law to extrapolate τα over four 
more decades to get a safe lower bound for the experimental glass 
transition temperature Tg ≈ 0.056, defined by τα(Tg)/τo = 1012 (ref. 29; 
Methods).

The corresponding relaxation spectra are shown in Fig. 1c for the 
3D model. All of them display a peak at high frequency ω ≈ 1/τo, cor-
responding to the short-time decay of Fs(t). A low-frequency peak 
near ω ≈ 1/τα is also visible. As T decreases, this α peak shifts to lower 
frequencies and eventually exits the accessible frequency window. 
When the α peak is not directly measured, we extrapolate its shape 
by inserting the above stretched exponential form for Fs(t) into equa-
tion (1). We use β = 0.56; τα is given by the Arrhenius extrapolation 
and constant F0. The tiny temperature dependence of F0 is immaterial 
on a logarithmic scale (Fig. 1c). The resulting α peaks are shown in  
Fig. 1c with dashed lines that smoothly merge into the measured data 
at the highest temperatures, validating our procedure.

As T decreases, the measured susceptibility and α peak devi-
ate increasingly from one another, the data being systematically in 
excess of the α peak. Since the Arrhenius extrapolation underesti-
mates τα, this excess is (at worst) slightly underestimated and cannot 
be accounted for by a vertical shift that would require unphysical val-
ues of F0 and β. At the lowest T, where the α peak no longer interferes 
with the measurements, the spectra are well described by a power 
law χ″(ω) ≈ ω−σ at low frequencies, with exponent σ ≈ 0.38 slightly 
decreasing with T, and an amplitude about 100 times smaller than 
the α peak. The relaxation spectra of the 2D model (Supplementary 
Fig. 3) exhibit similar features with exponent σ2D ≈ 0.45, which is 
fairly close to the one found in three dimensions. In our simulations, 
the measured spectra do not exhibit a secondary peak separated 
from the α relaxation, and cannot be interpreted using an additive 

β process33. Therefore, close to Tg, the numerical spectra follow a 
power law over a similar frequency range, with a similar exponent 
and similar amplitude as the excess wings obtained experimentally, 
suggesting that simulated glass formers display excess wings resem-
bling observations in molecular liquids.

We take advantage of the atomistic resolution offered by simula-
tions to explore the microscopic origin of excess wings and provide 
a physical interpretation of the spectral shapes. We illustrate the 
relaxation dynamics with 2D snapshots, which are easier to render 
and interpret. We confirm that the same mechanisms are observed 
in three dimensions. In Fig. 2, we show the 2D snapshots illustrat-
ing how structural relaxation proceeds at temperature T2D = 0.09 
(we estimate Tg,2D ≈ 0.07) for which τα/τo ≈ 108, which corresponds 
to around 10 ms in physical time. This temperature is the lowest for 
which the α relaxation can be observed in the numerical window, 
and is considerably lower than the mode-coupling crossover near 
Tmct,2D ≈ 0.12. The images are shown at logarithmically spaced times 
t in the range t/τα ∈ [10–3, 1]. The particles are coloured accord-
ing to Ci

BðtÞ
I

: red particles have relaxed and blue ones have not. 
Supplementary Fig. 3 shows the relaxation spectrum measured at 
this temperature.

For t ≪ τα, relaxation starts at a sparse population of localized 
regions that independently emerge throughout the sample over 
broadly distributed times. This conclusion holds over a large range of 
temperatures down to Tg for both d = 2 and d = 3. As time increases, 
newly relaxed regions continue to appear, but a second mechanism 
becomes apparent (Fig. 2) as regions that have relaxed in one frame 
typically appear larger in the next. This growth of relaxed regions 
(Fig. 2) is the signature of dynamic facilitation37. More precisely, 
we observe that from one frame to the next, relaxation events keep 
accumulating at similar locations, which results in mobile particles 
undergoing multiple relaxations and mobility propagating to nearby 
particles. Also, the slowest regions are typically ‘invaded’ at t ≫ τα 
from their faster boundaries. Dynamic facilitation has been identi-
fied before at high temperatures above the mode-coupling cross-
over37–39. Our investigations show that it becomes a central physical 
mechanism for structural relaxation near Tg.

We concentrate on the early times where the power-law spec-
tra are observed. The visualization suggests that clusters of relaxed 
particles appear at sparse locations. We now establish that these 
early relaxation events are responsible for the excess wing. To this 
end, we define mobile (Ci

BðtÞ
I

 < 0.55) and immobile (Ci
BðtÞ
I

 ≥ 0.55) 
particles; the threshold value near 0.50 is determined requiring 
self-consistency with alternative mobility definitions based on dis-
placements. We identify connected clusters of mobile particles by 
performing a nearest-neighbour analysis (Methods), and investigate 
the statistical properties of relaxed clusters. In particular, we find 
that the excess wing regime at t/τα ≪ 1 is dominated by the appear-
ance of new clusters, whereas the growth of existing clusters domi-
nates at later times. Figure 3 shows the distribution Π(τ) of waiting 
times τ for the appearance of new clusters in three dimensions. For 
T ≤ 0.07, we cannot measure the entire distribution, which is, thus, 
determined up to an uninteresting prefactor. The corresponding 2D 
results are shown in Supplementary Fig. 4.

At the highest investigated temperature, near Tmct, the distribu-
tion Π(log10 τ) in Fig. 3 is already very broad, with clusters appearing 
as early as 10−4τα. The distribution peaks near 0.1τα, when dynamic 
facilitation starts to dominate, and has a cutoff at around 10τα. As 
T decreases below the mode-coupling crossover, a power-law tail 
emerges at τ ≪ τα. For T ≤ 0.07, the power law extends over at least 
six decades, with a nearly constant exponent Π(log10τ) ≈ τ0.38 for 
the 3D model. The relaxation of localized clusters at early times 
is extremely broadly distributed, presumably stemming from an 
equally broad distribution of activation energies.

Remarkably, if we plug the measured distribution of wait-
ing times in equation (1), the power law Π(log10τ) ≈ τ0.38 directly  
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Fig. 3 | Microscopic origin of excess wings. Waiting-time distribution of 
newly relaxing clusters in three dimensions from Tmct (right) to Tg (left), with 
the same colour code as Fig. 1a. Approaching Tg, the distributions develop a 
power-law tail at τ ≪ τα, with an exponent of 0.38 that directly accounts for 
the excess wings in the spectra of Fig. 1c.
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translates into a power law χ″(ω) ≈ ω−0.38 in the spectra, which is, 
thus, valid for ωτα ≫ 1. The agreement with the data in Fig. 1c is, 
therefore, quantitative. A similar agreement is found in two dimen-
sions with the exponent σ2D = 0.45 (Supplementary Fig. 4). This 
analysis demonstrates that the high-frequency power law in χ″(ω) 
stems from the relaxation of a sparse population of clusters charac-
terized by a broad distribution of relaxation times.

This microscopic view of the power-law wing alone does not 
explain why it appears in excess of the α peak observed at larger 
times where dynamic facilitation is observed. To explain this point, 
we construct an empirical model based on our numerical obser-
vations. We first imagine that the liquid can be decomposed into 
independent domains characterized by a local relaxation time  
(Fig. 4a). This heterogeneous viewpoint is mathematically captured 
by trap models40,41. To introduce dynamic facilitation as the second 
key ingredient, we construct a facilitated trap model, assuming that 
a given local relaxation event may now affect the state of the other 
traps (Fig. 4b). To provide a qualitative, generic description of the 
relaxation spectra, we analyse the simplest version of such a model 
and assume, in a mean-field spirit, that dynamic facilitation equally 
affects all the traps. A more local version was designed elsewhere42,43 
for different purposes.

We consider N traps with energy levels E > 0 drawn from  
distribution ρ(E), and assume an activated dynamics. The energy 
E of a trap is renewed after a Poisson-distributed timescale of  
mean 〈τ(E)〉 = eE/T. Since deep traps take much longer to relax than 

shallow ones, the system is dynamically heterogeneous. Following 
ref. 44, we use ρðEÞ / e�Eα

I
, where α ∈ [1, 2], to smoothly interpolate 

between the much-studied Gaussian40,42 and exponential41 distri-
butions. The dynamics at temperature T leads to the equilibrium 
energy distribution Peq(T, E) ∝ ρ(E)eE/T. Whenever a trap relaxes, the 
energy of all the other traps is shifted by a random amount uni-
formly distributed in the interval � Δffiffiffi

N
p ; Δffiffiffi

N
p

h i

I

, using a Metropolis 

filter to leave the equilibrium distribution Peq unchanged. This cou-
pling between traps mimics dynamic facilitation42. The relaxation 
spectra χ″(ω) is computed either analytically (Δ = 0) or by simulat-
ing the facilitated model (Δ > 0).

The model is specified by two parameters, namely, α and Δ, for 
which equilibrium dynamics can be studied at any temperature T. 
We have systematically investigated this parameter space, and find 
spectra with quantitative differences but generic features45. In Fig. 
4c, we select α = 1.1 and Δ = 0.05 at T = 0.629 for aesthetic reasons, 
as this produces a spectrum qualitatively resembling the experi-
mental and numerical ones close to Tg. Fitting the α peak to the fre-
quency representation of a stretched exponential reveals an excess 
wing at high frequencies. However, in the absence of dynamic 
facilitation (Δ = 0), one obtains the blue spectrum (Fig. 4c), with the 
same high-frequency behaviour, but which extends much further 
at low frequencies. Indeed, without facilitation, each trap relaxes 
independently, and the equilibrium distribution Peq determines 
the dynamic spectrum, which is broad and relatively symmetric. 
In the presence of facilitation (Δ > 0), shallow traps still relax inde-
pendently and are essentially unaffected. Crucially, deep traps now 
receive small kicks whenever a shallow trap relaxes, and their ener-
gies slowly diffuse towards the most probable value. This accelerates 
their relaxation, which eventually affects the tail of the relaxation 
time distribution. As a result, dynamic facilitation ‘compresses’ the 
low-frequency part of the underlying spectrum (blue), as hinted in 
ref. 46, and highlighted by the arrow in Fig. 4c. We, thus, interpret the 
winged, asymmetric spectrum as a broad underlying distribution of 
relaxation timescales (well described by a power law at early times) 
compressed by dynamic facilitation at long times. Ironically, in our 
picture, the α peak itself is in ‘excess’ of a much broader underly-
ing time distribution with a high-frequency power-law shape. In 
this view, the excess wing forms an integral part of the structural 
relaxation.

Our study frontally attacks a central question regarding the 
relaxation dynamics of supercooled liquids near the experimental 
glass transition and paves the way for many more studies of a totally 
unexplored territory now made accessible to modern computer 
studies. Further enlarging the family of available computer glass 
formers would also help filling the gap with more complex molecu-
lar systems studied experimentally.
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Methods
Glass-forming computer models. We study a non-additive, continuously 
polydisperse mixture of spherical particles of equal mass m in two and three 
dimensions (d = 2 and d = 3, respectively)29. Two particles i and j, at a distance rij 
from one another, interact via the repulsive potential

vðrijÞ ¼ ϵ
σij
rij

� �12

þ vcðrij=σijÞ ¼ ϵ
σij
rij

� �12

þ c0 þ c2
rij
σij

� �2

þ c4
rij
σij

� �4

; ð2Þ

if rij/σij < xc = 1.25. The constants c0 ¼ �28ϵ=x12c ; c2 ¼ 48ϵ=x14c and c4 ¼ �21ϵ=x16c
I

 
ensure continuity of the potential and its first two derivatives at cutoff xc. 
The particles’ diameters σi are distributed from PðσÞ ¼ A=σ3

I
, where A is a 

normalization constant and σmax/σmin = 2.219. We use the average diameter σ 
as the unit length, ϵ as the unit energy (Boltzmann constant is set to unity) 
and 

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ϵ

p

I
 as the unit time. In these units, σmin = 0.73 and σmax = 1.62. We 

employ a non-additive cross-diameter rule σij = 0.5(σi + σj)(1 − 0.2∣σi − σj∣) to 
avoid fractionation and crystallization at low temperatures29. We simulate the 
glass-forming model at a number density of particles ρ = N/Ld = 1 in a cubic/square 
box of linear size L using periodic boundary conditions. We consider various 
system sizes: N = 1,200 and 10,000 in three dimensions and N = 2,000 and 10,000 in 
two dimensions.

Preparation of equilibrated configurations. The model glass-forming liquid 
is efficiently simulated at equilibrium with the swap Monte Carlo algorithm. 
We employ the hybrid swap Monte Carlo/MD algorithm implemented in the 
LAMMPS package (2D/3D) or a home-made code (3D), with optimal parameters, 
as described in ref. 32. We prepare ns ∈ [200, 450] independent equilibrated 
configurations at temperatures down to the experimental glass transition 
temperature.

MD simulations. The equilibrium configurations generated by the swap algorithm 
are used as the initial conditions for standard MD simulations with integration 
time step equal to 0.01. In three dimensions, we run conventional constant energy 
MD (NVE) simulations and constant temperature (NVT) simulations in two 
dimensions using a Nosé–Hoover thermostat. The simulations are either run 
using a home-made MD code or with the LAMMPS package, which allows us to 
run multi-CPU simulations and perform extremely long runs for relatively large 
systems (for example, two months on 24 CPUs; Fig. 2).

Relating experimental and numerical timescales. We measure the relaxation 
time at the onset of glassy dynamics as the reference time, and use this value to 
translate the numerical timescales into experimental ones. In experiments, many 
supercooled liquids have τo ≈ 10−10 s. We measure τo ≈ 3 in 2D and 3D simulations. 
In three dimensions, the longest simulation time is tmax = 1.5 × 107 = 5.0 × 106τo. We, 
therefore, simulate the equilibrium relaxation at Tg over 0.5 ms. In two dimensions, 
we ran months-long simulations to reach t2Dmax

I
 = 6 × 108 = 2 × 108τo. Our numerical 

approach, therefore, allows us to observe the equilibrium dynamics over 20 ms at 
Tg, which is a giant leap forward in the equilibrium simulations of supercooled 
liquids.

Average dynamic observables. In three dimensions, we monitor the relaxation 
dynamics via the self-intermediate scattering function

FsðtÞ ¼
1
N

XN

i¼1

cos q  δriðtÞ½ 
* +

q;ns

; ð3Þ

where δri(t) is the displacement of particle i over time t. The brackets indicate the 
ensemble average over ns independent runs along with an angular average over 
wavevectors with ∣q∣ = 6.9 (first peak in the total structure factor).

In two dimensions, collective long-ranged fluctuations give rise to a spurious 
contribution to the displacements of particles34, which affects the measurement of 
Fs(t) and makes it ill suited to capture the glassy slowdown. We study the dynamics 
through the evolution of the local environment of particles, instead of their 
displacements. We define a bond-orientational correlation function CΨ(t) (ref. 35). 
We introduce the sixfold bond-orientational order parameter of particle i as

Ψ iðtÞ ¼
1
ni

Xni

j¼1

ei6θijðtÞ; ð4Þ

where ni is the number of neighbours of i at time t. Neighbours are particles j with 
rij < 1.45 (first minimum in the radial distribution function). Alternative definitions 
of neighbours, for example, via Voronoi tessellation or solid-angle-based method47, 
lead to the same quantitative results. Here θij(t) is the angle between the x axis and 
the axis connecting i and j at time t, without loss of generality owing to rotational 
invariance. The bond-orientational correlation function is defined as

CΨ ðtÞ ¼
P

iΨ iðtÞ Ψ ið0Þ½ P
ijΨ ið0Þj2

* +

ns

; ð5Þ

where the brackets denote the ensemble average over ns independent runs and the 
asterisk is the conjugate complex. In two dimensions, we define the relaxation time 
as CΨ(τα) = e−1.

Mobility at the single-particle level. When analysing the mobility at the 
single-particle level, we first need a criterion to distinguish between mobile and 
immobile particles. In three dimensions, we have considered several mobility 
definitions that give quantitatively similar results. The first mobility definition is 
based on displacements. To remove fast dynamical processes, we use the conjugate 
gradient method and find the inherent structure (IS) of a configuration at time t, 
namely, frISi ðtÞg

I
. Particle i is defined as mobile at time t if jrISi ðtÞ � rISi ð0Þj

I
 > 0.8  

(ref. 48). This cutoff is between the first minimum and second maximum of the 
self-part of the Van Hove function Gsðr; tÞ ¼ hδðr � jrISi ðtÞjÞii;ns

I
 in the time regime 

where Fs(t) is almost constant. This first mobility definition is, however, not 
convenient in two dimensions because of the collective long-ranged fluctuations 
that affect the translational dynamics.

A second mobility definition is based on changes in the particle’s local 
environment. At time t = 0, we find number ni and the identity of particle i’s 
neighbours, defined as particles j with rij/σij < 1.485 in three dimensions (1.300 
in two dimensions), corresponding to the first minimum in the rescaled pair 
correlation function g(rij/σij). We define the bond-breaking correlation as the 
fraction of the remaining neighbours at time t:

Ci
BðtÞ ¼

niðtj0Þ
ni

; ð6Þ

where ni(t∣0) is the number of particle neighbours of i at t = 0 and still neighbours 
at t. To avoid short-time oscillations in Ci

B
I

 caused by particles frequently exiting/
entering the neighbour-defining shell, we use a slightly larger cutoff to define the 
neighbours at t > 0, namely, rij/σij < 1.7 (for d = 2, 3). We compute the bond-breaking 
correlation function as

CBðtÞ ¼
1
N

XN

i¼1

Ci
BðtÞ

* +

ns

; ð7Þ

which is averaged over ns independent runs.
A particle is defined as mobile at t if Ci

BðtÞ
I

 < 0.55, that is, if it has lost half of its 
initial neighbours. The cutoff value ensures that the set of particles identified as 
mobile in this way substantially overlap with that identified via the displacement 
criterion. We then introduce clusters of mobile particles. Two particles i and j that 
are mobile at time t belong to the same cluster if rij < 1.5 in three dimensions and 
rij < 1.4 in two dimensions, close to the first minimum of g(r).

Relevant temperature scales. We determine three temperature scales relevant  
to the glassy slowdown: the onset temperature of glassy dynamics To, the 
mode-coupling crossover temperature Tmct below which conventional MD 
simulations cannot reach equilibrium and the extrapolated experimental glass 
transition temperature Tg. In three dimensions, To = 0.200, Tmct = 0.095 and 
Tg = 0.056. In two dimensions, To,2D = 0.20, Tmct,2D = 0.12 and Tg,2D = 0.07.  
We fit the high-temperature τα data to an Arrhenius law, and identify the onset 
temperature To as the temperature below which τα is super-Arrhenius. We note 
τo = τα(To). The mode-coupling crossover temperature Tmct is obtained by fitting  
the data with a power law τα(T) ∝ (T – Tmct)–γ in the regime 0 ≤ log10(τα/τo) ≤ 3  
(ref. 49), where γ = 2.7 and 2.5 for d = 2 and 3, respectively. Given that log10(τα/τo) ≈ 4 
at Tmct, this temperature delimits the regime T > Tmct (where MD alone can reach 
equilibrium) from the regime T < Tmct (where the swap algorithm is needed to 
perform equilibrium simulations). The experimental glass transition temperature 
Tg is defined by log10[τα(Tg)/τo] = 12. In three dimensions, the longest simulation 
time is tmax = 1.5 × 107 = 5.0 × 106τo; therefore, we can directly access log10(τα/τo) ≤ 7. 
We, thus, need to extrapolate our data over five decades to locate Tg. We increase 
the accuracy of extrapolation by using TTS, which is well obeyed in our model36. 
In the temperature regime where correlation functions reach e−1, the second step 
of relaxation is well fitted by a stretched exponential F0e�ðt=ταÞβ

I
. The stretching 

exponent β ≃ 0.56 in three dimensions (in two dimensions, β ≃ 0.60 for CΨ and 
β ≃ 0.67 for CB) is almost independent of temperature, and amplitude F0 slightly 
increases with decreasing temperature. Fixing β, we estimate τα at temperatures 
where decorrelation is sufficient to perform accurate TTS, extending our 
measurements over approximately two decades. We extrapolate τα over the four 
remaining decades using an Arrhenius fit ταðTÞ / eEA=T

I
, where EA = 2.67 in three 

dimensions (2.97 in two dimensions), and locate Tg. Importantly, the Arrhenius 
extrapolation is a safe choice as it, at worst, underestimates the relaxation times.

Computation of relaxation spectra. The computation of relaxation spectra χ″(ω) 
first requires to differentiate the correlation function with respect to the logarithm 
of time. We use a first-order finite-difference approximation. Namely, if the 
configurations are stored at logarithmically spaced times ftkgk¼1¼ n

I
, for k > 1,  

we have
dFsðtkÞ
d log t

¼ FsðtkÞ � Fsðtk�1Þ
log ðtkÞ � log ðtk�1Þ

: ð8Þ
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The integral in equation (1) is then evaluated as

χ00ðωÞ ¼ �
Xn

k¼2

dFsðtkÞ
d log t

ωtk
1þ ðωtkÞ2

log
tk
tk�1

 
: ð9Þ

We use the bond-breaking correlation function CB instead of Fs in two dimensions. 
In the Supplementary Information, we discuss errors that arise from computing the 
spectrum when Fs does not decay to zero. We also discuss issues related to statistical 
noise and a comparison with direct Fourier transforms.

Trap model. We consider traps with energy levels E > 0 drawn from the 
exponential power distribution

ρðEÞ ¼ α

E0Γð1=αÞ
e�ðE=E0Þα ; ð10Þ

where Γ is the gamma function, and take E0 = 1 in the following. We assume that 
the dynamics at temperature T is thermally activated. The energy E of a trap 
is renewed after a Poisson-distributed timescale of mean〈τ(E)〉 = eE/T. The 
equilibrium energy distribution at temperature T is

PeqðT;EÞ ¼
ρðEÞeE=T
ZðTÞ ;whereZðTÞ ¼

Z 1

0
dEρðEÞeE=T : ð11Þ

We monitor the relaxation dynamics by computing the average persistence 
function p(t). In the absence of dynamic facilitation, the persistence can be directly 
computed as

pðtÞ ¼
Z 1

0
dEPeqðT; EÞe�t=hτðEÞi: ð12Þ

In the absence of dynamic facilitation, the average persistence is evaluated 
using Mathematica (NIntegrate and WorkingPrecision of 30). We then calculate 
the relaxation spectrum χ″(ω) by following the procedure described previously, 
replacing Fs(t) with persistence p(t). We compute persistence p(t) over a time 
interval large enough to observe full decorrelation, namely, [10−10, 1070], for α = 1.1 
and T = 0.629, and minimize errors in the relaxation spectrum.

Simulations of the facilitated trap model. We consider a system composed of 
N traps. We initialize the simulation with an equilibrium condition by sampling 
the traps’ energies directly from the equilibrium distribution Peq(T, E). Since the 
cumulative probability distribution of energies Ceq

I
 cannot be explicitly computed, 

we use Mathematica to evaluate it, and to numerically construct the reciprocal 
function E ¼ Ceq�1

I
. For each of the N traps, we generate X uniformly distributed 

in [0, 1], and assign it an energy E ¼ EðXÞ
I

. This procedure generates an initial 
condition in equilibrium. Each trap is assigned a renewal time exponentially 
distributed, with mean eE/T. We initialize persistence pi(t = 0) of all the traps to one.

The dynamics proceeds as follows. First, we identify trap io with the smallest 
renewal time τmin, which will relax first. We update all the other traps by 
subtracting τmin to their renewal time τi. When the trap io relaxes, its persistence is 
set to zero, that is, pio ¼ 0

I
, and we give it a new energy value sampled from ρ(E), as 

well as a new renewal time, as described above.
This relaxation event then affects all the other traps. We attempt to displace 

their energy by a random amount δE (different for each trap) uniformly distributed 
in � Δffiffiffi

N
p ; Δffiffiffi

N
p

h i

I

: E→Eʹ = E + δE. The scaling with N ensures that the resulting 
dynamics is independent of N. We then accept or reject this attempt to leave the 
equilibrium probability distribution Peq unchanged. To this end, we introduce an 

effective potential V = –T log Peq, and compute the change in effective potential 
δV = T(Eʹα – Eα) – δE. We then use the Metropolis filter: if δV < 0, the change in 
energy is accepted; otherwise, it is accepted with probability exp(–δV/T). When 
accepted, we pick a new renewal time exponentially distributed with average eE0=T

I
. 

When the move is completed, we again determine which of the traps is the next 
one to relax, and proceed as before.

We measure the average persistence pðtÞ ¼
P

ipiðtÞ=N
 

I
, where the brackets 

indicate average over independent runs, and where the sum runs over all the traps. 
We simulate the dynamics of the model until the total persistence is equal to zero.
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