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Sound attenuation in stable glasses

Lijin Wang, ab Ludovic Berthier, c Elijah Flenner, *b Pengfei Guan*a and
Grzegorz Szamel b

Understanding the difference between the universal low-temperature properties of amorphous and

crystalline solids requires an explanation for the stronger damping of long-wavelength phonons in

amorphous solids. A longstanding sound attenuation scenario, resulting from a combination of

experiments, theories, and simulations, leads to a quartic scaling of sound attenuation with the wavevector,

which is commonly attributed to the Rayleigh scattering of sound. Modern computer simulations offer

conflicting conclusions regarding the validity of this picture. We simulate glasses with an unprecedentedly

broad range of stabilities to perform the first microscopic analysis of sound damping in model glass

formers across a range of experimentally relevant preparation protocols. We present convincing evidence

that quartic scaling is recovered for small wavevectors irrespective of the glass’s stability. With increasing

stability, the wavevector where the quartic scaling begins increases by approximately a factor of three and

the sound attenuation decreases by over an order of magnitude. Our results uncover an intimate

connection between glass stability and sound damping.

1 Introduction

Many theoretical descriptions of sound attenuation in low tem-
perature (athermal) amorphous solids predict a quartic scaling of
sound attenuation with the wavevector. Early arguments, used to
explain the plateau in the temperature dependence of thermal
conductivity,1,2 invoked the picture of the scattering of sound
waves by uncorrelated inhomogeneities that are much smaller
than the wavelengths, which is the physical scenario known as
Rayleigh scattering. In several theories, these inhomogeneities
have been modeled as local fluctuations of elastic constants.3–8

These theories predict that the sound attenuation scales with the
fourth power of the wavevector, Gl(k) B k4 (l = L denotes long-
itudinal waves and l = T denotes transverse waves) for small
wavevector k. Mean-field theories9–12 arrive at the same prediction,
albeit in a different way. Yet another theoretical treatment, the
soft-potential model, predicts that a quartic scaling regime exists
due to phonons interacting with soft modes.13

Longitudinal sound attenuation can be directly obtained from
X-ray and light scattering experiments. A compilation of many
experimental results14–28 shows that the wavevector dependence
of the longitudinal sound attenuation parameter, GL(k), can be

divided into three regimes: (1) GL(k) B k2 for low k; (2) GL(k) B k4

for an intermediate k regime; and (3) GL(k) B k2 for large k. While
the intermediate wavevector quartic and the large wavevector
quadratic scalings of the sound attenuation parameter are well-
documented, the small wavevector quadratic dependence was
only seen in a few experiments.17–20 Because the experiments are
performed at finite temperature and the small wavevector quadratic
scaling increases with temperature, the small wavevector quadratic
scaling can be ascribed to thermal and anharmonic effects.5

Computer simulations offer a conflicting view of these
results. Most computer studies investigate sound attenuation
in the limit of zero temperature in order to remove anharmonic
effects. To our knowledge, no simulation reproduced the GL(k) B
k2 scaling observed at small wavevectors in experiments,17–20

including a recent finite temperature study of Mizuno and
Mossa29 that included anharmonic effects. Regarding the quartic
Rayleigh scattering regime, no firm conclusion can be drawn
either. By simulating large glasses created by quenching config-
urations from a mildly supercooled liquid, Gelin et al.30 found a
logarithmic correction to the quartic scaling, Gl(k) B k4 ln(k).
They invoked the existence of correlated inhomogeneities of the
elastic constants31 to rationalize this observation. However, a
more recent, larger-scale study32 of harmonic spheres close to
their unjamming transition confirmed the Rayleigh scattering
scenario in 2D glasses and conjectured its validity in 3D glasses.
Finally, a very recent preprint33 (which appeared when the
present paper was being finalized for submission) presented
the first convincing evidence of the small wavevector quartic
scaling of the transverse sound attenuation in a 3D glass created by
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quenching from a mildly supercooled liquid. However, the status of
the longitudinal sound attenuation, even for simple glass-formers
in the zero-temperature harmonic limit, remains unsettled.

To our knowledge, all prior simulations investigated sound
attenuation in glasses with stabilities dramatically different
from those of typical laboratory glasses, preventing direct
comparison between results obtained for simulated and real
materials. This constraint is imposed by the large preparation
times required to equilibrate systems close to the experimental
glass transition, which, therefore, cannot be simulated using
conventional techniques. In this work, we use an efficient swap
Monte-Carlo algorithm34 that was recently developed35,36 to
prepare glasses with stabilities comparable to, or even exceeding,
the stability of experimental glasses. If we quantify the glass
stability in terms of cooling rate, the improvement due to the
swap algorithm is equivalent to decreasing the cooling rate by
more than 10 orders of magnitude, thus closing the gap between
previous computer investigations and realistic materials. In
previous studies, it has been demonstrated that both the low-
frequency vibrational properties37 and mechanical properties38

of computer generated glasses dramatically evolve upon increasing
the glass stability over such a broad range.

We find that changing the glass stability over a broad range
fully clarifies the elusive picture of sound attenuation. Generally,
sound attenuation decreases with increasing stability, implying
that more stable glasses are also less dissipative solids (classical
zero temperature crystalline solids are non-dissipative). More
importantly, we find the wavevector dependence of sound attenua-
tion at low wavevectors exhibits a quartic scaling, for both trans-
verse and longitudinal modes and in glasses with very different
stabilities. Thus, we unambiguously demonstrate the universality
of the Rayleigh scattering scaling in 3D glasses. The quartic scaling
of the sound attenuation with the wavevector is more prominent in
more stable glasses, which adds to the conjectured connection
between glass stability and sound damping.

2 Methods
2.1 Simulation details

We perform computer simulations using a three-dimensional
cubic system composed of polydisperse particles with equal
mass m = 1. The distribution of particle diameters s follows

PðsÞ ¼ A

s3
, where s A [0.73, 1.63] and A is a normalization

factor. The cross-diameter sij is determined according to a non-

additive mixing rule, sij ¼
si þ sj

2
ð1� ejsi � sj jÞ with e = 0.2.

The interaction between two particles i and j is provided by the

inverse power law potential, VðrijÞ ¼
sij
rij

� �12

þVcutðrijÞ, when

the separation rij is smaller than the potential cutoff rc
ij = 1.25sij,

and zero otherwise. Here, VcutðrijÞ ¼ c0 þ c2
rij

sij

� �2
þc4

rij

sij

� �4

,

and the coefficients c0, c2 and c4 are set to guarantee the
continuity of V(rij) at rc

ij up to the second derivative.

We produce zero-temperature glasses by instantaneously
quenching supercooled liquids equilibrated through the swap
Monte Carlo algorithm at different parent temperatures Tp,
which controls the glass’s stability,37,38 to their local potential
minima using the fast inertial relaxation engine minimization.39

We calculate the normal modes by diagonalizing the dynamic
matrix using Intel Math Kernel Library (https://software.intel.
com/en-us/mkl/) and ARPACK (http://www.caam.rice.edu/soft
ware/ARPACK/). We study glasses with Tp ranging from well
above the onset of supercooling, denoted as Tp = N, down to
Tp = 0.062, which is about 60% of the mode-coupling tempera-
ture Tc E 0.108.36 The onset of slow dynamics in an equili-
brated fluid occurs around To = 0.2. The parent temperature
Tp = 0.062 is lower than the estimated experimental glass
temperature Tg E0.072 for this model,36 and thus the glass
with Tp o 0.072 qualifies as ultrastable. One robust measure of
stability is the energy at the potential energy minimum,40–43

the inherent structure energy EIS. Shown in Fig. 1 is the
inherent structure energy for our glasses as a function of
parent temperature Tp, and we find that the inherent structure
energy dramatically drops below the onset temperature To. The
particle number N varies between 48 000 and 1 000 000 for
glasses at Tp = N, and between 48 000 and 192 000 for glasses
with 0.062 r Tp r 0.120. For all glasses studied the number
density r = 1.0.

2.2 Sound attenuation

We use two different methods to obtain sound attenuation:
(1) we calculate the T = 0 dynamic structure factor utilizing
the eigenvalues and eigenvectors of the dynamic matrix;44 and
(2) we study the decay of an excited sound wave in the harmonic
approximation.30

We calculate the T = 0 dynamic structure factors using the
eigenvalues and eigenvectors of the dynamic matrix,44

Slðk;oÞ ¼
k2

No2

� � X3N�3
n¼1

Fn;lðkÞdðo� onÞ; (1)

Fig. 1 The inherent structure energy versus the parent temperature. The
onset of slow dynamics To and the estimated glass transition temperature
Tg

36 are shown. The glass becomes more stable with decreasing inherent
structure energy.
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where l is T for transverse or L for the longitudinal structure
factor, on is the frequency (square root of the eigenvalue)
associated with the n-th eigenvector. The sum is taken over
all but the three modes correspond to a universal translation.
In eqn (1)

Fn;TðkÞ ¼
XN
j¼1
ðen; j � k̂Þeik�r

0
j

�����
�����
2

; (2)

and

Fn;LðkÞ ¼
XN
j¼1
ðen; j � k̂Þeik�r

0
j

�����
�����
2

; (3)

where en,j is the polarization vector of particle j in the n-th
eigenvector, r0

j is the position of particle j in the inherent
structure, and k is the wavevector satisfying periodic boundary
conditions, k � |k| and k̂ = k/|k|. We extract the damping
coefficients Gl and the characteristic frequencies Ol by fitting
Sl(k,o) to a damped harmonic oscillator model,45

Slðk;oÞ /
Ol

2ðkÞGlðkÞ
½o2 � Ol

2ðkÞ�2 þ o2Gl
2ðkÞ: (4)

Another method to determine Gl and Ol is to study the
decay of excited sound waves in the harmonic approximation,
and most of our results shown in this work are from this method
(unless specified). Specifically, following ref. 30, we excite a sound
wave at t = 0 by giving each particle a velocity :u0

i = al sin(k�r0
i ),

where aL p k̂ and aT�k = 0. We then numerically solve the
equations of motion,

€uiðtÞ ¼ �
XN
j¼1

Dij � ujðtÞ þ _u0i dðtÞ: (5)

Here, Dij is the dynamic matrix and ui(t) denotes the displace-
ment of particle i at t from its inherent structure position. We
calculate the velocity correlation function,

ClðtÞ ¼

PN
i¼1

_uið0Þ � _uiðtÞ

PN
i¼1

_uið0Þ � _uið0Þ
; (6)

and fit it to

Cl(t) = exp(�Gl(k)t/2)cos(Ol(k)t), (7)

to determine the frequency Ol and the sound attenuation Gl.
Since the calculation affords Ol through a fit for a fixed k, the
wavevector is precisely known but there is uncertainty in Ol.

Shown in Fig. 2 is an example of the excited sound wave
method.30 The snapshots in Fig. 2 show the velocity field for
k = (0, 4p/L, 0) in a 48 000 particle system for times at the peak
values of CT(t) indicated in the figure. As expected, the sound
wave is scattered and the initial velocity profile decays.

The two methods introduced above encode the same dyna-
mical information, but there exists a finite size effect that is
impossible to correct by using the normal mode analysis. See

the Appendix section for details on how we account for this
finite size effect and for details on how we obtain Gl.

3 Sound attenuation in stable glasses

Shown in Fig. 3 are Gl(k) for a range of stabilities for (a) trans-
verse sound waves and (b) longitudinal sound waves. For large
wavevectors we observe quadratic scaling, which is consistent with
previous results. There is no difference in the attenuation for
Tp = 0.2 and Tp = N suggesting that zero-temperature glasses
quenched from parent temperatures above the onset tempera-
ture To = 0.2 have identical attenuation. There is a crossover to
quartic scaling, Rayleigh scaling, for our least stable glasses
Tp = N and our most stable glasses Tp = 0.062. Therefore, Gl(k) =
Blk4 for small wavevectors irrespective of the glass’s stability.

To examine the stability dependence of Bl and the possibi-
lity of a logarithmic correction, in Fig. 3 we plot Gl(k)/k4 for
Tp = N, 0.1, 0.085, 0.075, and 0.062 for transverse sound (c) and
the longitudinal sound (d). There is a factor of 15 decrease in
Bl from our least stable glass to the most stable glass. We note
that in the representation in Fig. 3 a straight line with a negative
slope would indicate the �k4 ln(k) scaling suggested by Gelin
et al.30 We can identify a range of wavevectors that is described
by GT(k) B �k4 ln(k) for our least stable glasses, but this fit
appears to be just a crossover from quadratic scaling at large
wavevectors to quartic scaling at small wavevectors. Indeed, we
observe a distinct plateau at low wavevectors, indicating a purely
quartic scaling without a logarithmic correction. The small
wavevector quartic scaling is clearly observed for the least stable
glass Tp = N and the most stable glass Tp = 0.062, and thus it
would be expected to exist for intermediate stability.

As noted by Monaco and Mossa45 when studying glasses
created by quenching from mildly supercooled liquids, the trans-
verse and longitudinal sound attenuation differ by a constant
factor when examined as a function of frequency o = vlk, where

Fig. 2 Decay of CT(t) for a transverse excitation with a wavevector k = (0,
4p/L, 0) for our most stable glass, Tp = 0.062 (blue circles). The red curve is
a fit to CT(t) = exp(�Glt/2)cos(Olt). The velocity field for the whole system
is shown in the upper left corner and a section at representative times
corresponding to the peaks in CT(t) is indicated by the arrows. The longer
and brighter red arrows indicate larger velocities.
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vT ¼
ffiffiffiffiffiffiffiffiffi
G=r

p
, vL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ 4G=3Þ=r

p
, G is the shear modulus, and

K is the bulk modulus, Fig. 4. We find GL(o) = GT(o)/n irrespective
of the glass’s stability, but the scaling factor n is stability
dependent with n E 5 for our poorly annealed glass, Tp = N,
and n E 3 for our most stable glass, Tp = 0.062, indicating a
decreasing difference between GT(o) and GL(o) with increasing
stability. This scaling suggests that the sound attenuation is
governed by a stability dependent frequency (time) scale and
possibly not a characteristic length scale. However, a changing
length scale cannot be ruled out.

With increasing stability, the glass becomes less dissipative
and quartic scalings of GT and GL start at larger wavevectors.
The wavevector at which the quartic scaling begins depends on
the polarization, transverse or longitudinal, of the sound wave.
In contrast, if we plot the sound attenuation as a function of
frequency, the frequency where the quartic scaling begins does
not depend on the transverse or longitudinal sound wave.
Again, this crossover frequency increases with increasing sta-
bility The glass becomes more uniform, resulting in a decrease
in the dissipation30,31 with an increase in the stability.

For small and intermediate wavevectors the wavevector-
dependent speed of sound vT(k) = OT/k is a well defined
quantity. In particular, for every parent temperature the k - 0

limit is given by
ffiffiffiffiffiffiffiffiffi
G=r

p
, which is shown as horizontal lines in

Fig. 5. However, with increasing wavevector different methods
lead to slightly but systematically different results for the
wavevector-dependent speed of sound. If we determine the
speed of sound from the fit to the frequency-dependent
dynamic structure factor (filled circles), the resulting quantity
exhibits a minimum, which has been reported in previous
simulations8,30,32,45 and experiments.23,24,47 This minimum is
replaced by a plateau for our stable glasses. However, if we rely
upon the fit to the time-dependent function Cl(t) (open
symbols), the wavevector-dependent speed of sound exhibits a
more pronounced minimum, which is also present for the
stable glasses. The difference between the two methods is small
(less than 7% for wavevectors shown in Fig. 5) but systematic.

It is expected that the two methods could disagree when the
excitation is no longer well described as a propagating sound
wave, which is generally associated when the mean free path is

Fig. 3 Wavevector k dependence of sound attenuation (a) GT(k) and (b) GL(k) in poorly annealed glasses (Tp = N) to stable glasses (Tp = 0.062). The
different symbols denote different system sizes: star = 1000 K, plus = 600 K, � = 450 K, triangle = 192 K, square = 96 K, and circle = 48 K. The k2

dependence is evident at large wavevectors and the crossover to k4 scaling can be seen for Tp = N and Tp = 0.062. The reduced sound attenuation
(c) GT/k4 and (d) GL/k4. A straight line with a negative slope would indicate a logarithmic correction, which is valid only for a small range of wavevectors.

Fig. 4 Frequency o = vlk dependence of sound attenuation in our least
stable glass Tp = N (filled symbols) and our most stable glass Tp = 0.062 (open
symbols). The different symbols denote different system sizes: star = 1000 K,
plus = 600 K,� = 450 K, triangle = 192 K, square = 96 K, and circle = 48 K. The
red symbols are the results of the longitudinal attenuation and the blue symbols
are results of the transverse attenuation. The transverse attenuation is scaled by
a Tp dependent factor n, where n = 5 for Tp = N and n = 3 for Tp = 0.062.
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equal to half the wavelength, i.e. the Ioffe-Regel limit. Shown in
the inset in Fig. 5 is the Ioffe-Regel limit obtained from when
OT(kIR) = pGT(kIR) as a function of the parent temperature. For
this calculation we used OT determined from the fits to the
dynamic structure factor. The result is not sensitive to which
method is used to determine OT. For Tp = 0.2, kIR E 0.5 and for
Tp = 0.062, kIR E 0.87. Both of these quantities lie slightly above
where the two methods to obtain the wavevector-dependent
speed of sound begin to diverge. Thus, the classification of
these excitations as propagating sound waves is breaking down
for wavevectors slightly smaller than kIR.

Nevertheless, we find that increasing the stability of the
glass allows propagating sound waves at smaller wavelengths,
and this can be quantified by the change in kIR. For decreasing
Tp, kIR increases by a factor of 1.8 over our range of stabilities.
For wavevectors above kIR it is expected that the vibrations are
more localized and there is a change in the energy transport
from a propagating regime below kIR to a diffusive regime above
kIR.48–50 Therefore, the decreased dissipation and the increase
in kIR should have significant effects on the thermal conductivity
and the stability dependence of thermal energy transport.

4 Connection between sound
attenuation, vibrational modes, and the
boson peak

A recurring idea is that sound attenuation and the excess
in vibrational modes over the Debye theory are intimately
connected. Recall that in the Debye theory the density of states
increases with a decrease in the speed of sound. Using this
idea, the minimum in vT(o) has been associated with an
increase of the density of states D(o) and the boson peak using
a generalized plane wave approach.45 However, we find that the
description of the vibrational modes as well defined sound
waves breaks down for wavevectors below the boson peak
whose position is close to kIR.51

In previous studies37,52 it was found that the low-frequency
modes could be divided into extended and quasi-localized modes.
The density of the low-frequency extended modes obeys the Debye
theory and the density of the localized modes Dloc = A4o

4. There-
fore, these localized modes are the modes in excess of the Debye
theory. The density of the low-frequency quasi-localized modes was
found to decrease significantly with the glass stability.37 Here we
find that the sound attenuation and the Rayleigh scattering
plateau Gl/k4 also decrease the glass stability rapidly. In Fig. 6
we show that coefficient A4 quantifying the density of the low-
frequency quasi-localized modes and the Rayleigh scattering
plateau BT = GT/k4 are proportional to each other, BT p A4.

Our findings for the transverse sound attenuation in moderate
and low stability glasses are in general agreement with the very
recent results of Moriel et al.33 Specifically, both our study and
that by Moriel et al. find quartic small wavevector scaling of the
transverse sound attenuation in 3D glasses. Moriel et al. also
investigated the dependence of the sound attenuation of glasses
with different densities of low-frequency quasi-localized modes.
They found that the decreasing density of these modes corre-
lates with the decreasing extent of the intermediate regime
between the small wavevector quartic scaling and the large
wavevector quadratic scaling, which can be fitted to the �k4 ln k
form proposed by Gelin et al.30 Our finding BT p A4 significantly
extends the qualitative correlation found by Moriel et al.33

A generalized Debye model of Mizuno and Ikeda32 and the
theoretical study of Schirmacher et al.,4 referred to as the
heterogeneous elasticity theory, both relate the excess number
of low-frequency modes above the Debye model, Dex(o), to
sound attenuation. Both of these treatments predict that
Dex E 4BT/(pkD

2vT
6)o4, where kD = (6pr)1/3, for small wavevectors.

Physically, these are the same modes as identified in ref. 37 and
52 and thus Dex(o)/o4 = 4BT/(pkD

2vT
6) can be identified with A4.

We find that A4 is 20% larger than 4BT/(pkD
2vT

6) for our poorly
annealed glass and 150% larger for our most stable glass.
Mizuno and Mossa29 compare the heterogeneous elasticity
theory to zero temperature and finite temperature simulations
and find that the theory captures the main features of the

Fig. 5 The wavevector dependence of sound speed for different parent
temperatures Tp. The horizontal lines indicate the corresponding macro-
scopic values in the long-wavelength limit. The open symbols are obtained
through fits to CT(t) and the closed symbols are obtained through fits to
ST(k;o). (inset) Ioffe-Regel wavevector kIR as a function of Tp.

Fig. 6 The coefficient A4 describing the density of low-frequency quasi-
localized modes, Dloc = A4o

4 correlates very well with the plateau height of
GT/k4 for small wavevectors. They are both strongly suppressed when glass
stability increases.
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frequency dependence of the transverse sound attenuation and
velocity, but there were quantitative differences. Therefore, the
models4,32 are currently not quantitatively predictive and get
worse with increasing stability.

A recent experiment by Pogna et al.46 reported on a connec-
tion between sound attenuation and the boson peak. They find
a decrease in the boson peak height and sound attenuation for
hyperaged amber (conjectured to be much more stable) com-
pared to annealed amber (with ordinary stability), which mirrors
our results.37 Pogna et al. used the fluctuating elasticity theory
of Schirmacher et al.5 (which predicts the quartic scaling of
sound attenuation with the wavevector) to fit the vibrational
density of states. There are two main parameters in the theory,
one quantifies the strength of the disorder and is related to the
width of the local elastic constant distribution, and another
quantifying the spatial range of correlations of elasticity. They
concluded that upon lowering the fictive temperature by 9%
there was a six percent decrease of the strength of the fluctua-
tions and a 22% increase of the elastic correlation length.
Therefore, they conjectured that the change of the low-frequency
vibrational properties is mainly driven by an increased elastic
correlation length. Future work should examine the change of
the disorder strength and the elastic correlation length with
stability more directly to verify this conclusion.

A competing theoretical explanation for the relationship
between sound attenuation and the boson peak is that the sound
modes interact with additional soft modes,13 the soft potential
model. Examination and evaluation of the soft potential model
requires the determination of several parameters, and this
exercise is left for future work.

5 Discussion

The idea that a Rayleigh scattering mechanism may be respon-
sible for the small wavevector scaling of sound attenuation
spans for over 60 years.32,53 Mizuno and Ikeda considered
scattering of an elastic wave. Their analysis determined that
Gl = dgl

2Dl
3Ol

4/(4pvl
3), where dg is the strength of the elastic

inhomogeneities and D is their characteristic size.32 Since it has
been suggested that kBP = oBP/vT is related to the inverse of the
length scale of elastic inhomogeneities,3,47 and thus D, we
checked to see if this was consistent with the quartic scaling
regimes for GT. We used the approach studied by Mizuno,
Mossa, and Barrat54 to obtain the strength dgT = dG/G, where
dG is the fluctuations of the shear modulus, of the elastic
inhomogeneities. We find that this naive approach does not
correctly predict the change in the sound attenuation for each
parent temperature. One unchecked assumption is that kBP is
related to the length scale of elastic inhomogeneities, and future
work is needed to examine the spatial correlations of the elastic
modulus and the relationship to kBP and sound attenuation.

Recent experiments on amber aged for 110 million years
suggest that the vibrational properties of amorphous materials
are controlled by the distribution of elastic constants and their
spatial correlation.46 Future numerical studies should examine

this relationship for simulated ordinary and stable glasses. The
stability dependence of sound attenuation using ultrastable
glasses, experimentally available via the method of physical
vapor deposition,55 has shown that sound damping decreases
with increasing stability.56 It would be interesting to examine
the wavevector dependence of sound damping at low tempera-
tures, where anharmonicities may come into play, for these
ultrastable glasses. Mizuno and Mossa29,57 found that anhar-
monicities change the small frequency sound attenuation from
G B o4 B k4 to G B o3/2 B k3/2, and the nature of this effect
may be illuminated by its stability dependence.
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Appendix

Molecular dynamics simulations can be subject to effects due
to the small size of the simulation cell compared to experi-
mental systems and the use of periodic boundary conditions.
Bouchbinder and Lerner recently commented on finite size
effects in the calculation of the frequency width of phonon
bands,58 which indicates that finite size effects exist for the
calculation of sound attenuation in amorphous solids. We find
that there are strong finite size effects for the lowest wavevector
sound waves in our simulations, especially for our most stable
glasses. Here we describe a method to calculate sound attenua-
tion that is independent of the system size.

One route to calculate the attenuation of sound waves is to
study the decay of an excitation in the harmonic approximation
as described in the Methods section. After exciting a sound
wave, we study the decay of the velocity correlation function
C(t), eqn (6). For small wavevectors we expect that C(t) =
exp(�Glt/2)cos(Olt).

To demonstrate that a finite size effect exists we can examine
C(t) for similar wavevectors in two systems of different sizes.
The magnitude of the third smallest allowed the wavevector for
the 96 K system k96K

3 = 0.238 and the magnitude of the second
smallest allowed the wavevector k48K

2 = 0.245. The attenuation of
these sound waves should be similar, but we find that they are
very different, Fig. 7. Specifically, at long times the peak heights
of the 96 K system are much larger than those of the 48 K
system. However, C(t) nearly overlaps at short times for both
system sizes. To study the decay of C(t) we calculate the
envelope of C(t), which is the absolute value of the maximum
and minimum of the oscillations.

Shown in Fig. 8 on a linear-log scale is the envelope for
three different sizes for a wavevector of similar magnitude. We
note that the initial decay of all three envelopes is exponential,
but there are deviations from the exponential decay at a system
size dependent time. To determine Gl we fit the envelope to
exp(�Glt/2) up to a time when the decay is no longer exponen-
tial. Our uncertainty in Gl reflects the uncertainty in this
fitting range.
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Another method to obtain sound attenuation is through the
dynamic structure factor Sl(k,o) using the eigenvalues and
eigenvectors of the dynamic matrix, as described in the Methods

section, or Fourier transforming C(t). Sound attenuation Gl is
then obtained by fitting with the damped harmonic oscillator
model, eqn (4).

Shown in Fig. 9 as red symbols are the results of fitting
ST(k,o) and as blue symbols are the results of the restricted
envelope fits. The different symbols indicate different system
sizes. The inset shows an expanded view of a region of very
similar wavevectors for four different system sizes. There is a
clear finite size effect when GT is found through fits of ST(k,o),
which is removed by using the envelope fits.
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