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1 Transport processes on networks

•Do the transport characteristics depend significantly on
the topology of a network?

•Driven non-interacting diffusive systems have a rich his-
tory in physics e.g. Kirchoff (1847)[1] In these systems
network structure plays a minor role.

•What happens in strongly interacting systems, e.g.
vehicular traffic, proteins moving on the cytoskeleton?

2 TASEP: a paradigmatic model

2.1 Phase diagram

Minimal model for stochastic out-of-equilibruim transport
with excluded volume interactions between the par-
ticles [2]
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The one-dimensional TASEP has a first-order phase tran-
sitions between a homogenuous low density (LD) phase
and a high density phase (HD). On the coexistence line
a shock between a high and a low density region diffuses
through the system. We speak of a shock phase (SP or
LD:HD).
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2.2 Current-density profiles

The density ρ follows

ρ(α, β) =


α α ≤ β, α < 1/2 (LD)

1− β β ≤ α, β < 1/2 (HD)
1/2 α, β ≥ 1/2 (MC)

with the current J given by the parabolic current-density
relation

J(α, β) = ρ(α, β)
(
1− ρ(α, β)

)
.

3 Generalizing TASEP to complex

networks

MF algorithm [4] which solves the continuity equation

∂ρv
∂t

=
∑
v′→v

J(v′,v) −
∑
v←v′′

J(v,v′′),

using effective rates [3]

α = ρv′/k
out
v′ and β = 1− ρv′′ ,

and homogeneity in the segments

∂ρv
∂t

=
∑
v′→v

J

(
ρv′

kout
v′
, 1−ρv

)
−
∑
v′′←v

J

(
ρv
kout
v

, 1−ρv′′
)
.

3.1 Regular networks

The current-density profile J(ρ) is a truncated parabola
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The plateau corresponds with a SP and widens, when
the number of links leaving from the junctions c, increases.

J (ρ) =

{
c

(c+1)2 for ρ∗ < ρ < 1− ρ∗[ρ∗, 1− ρ∗]
ρ(1− ρ) otherwise

,

where ρ∗ = 1/(c + 1).

3.2 Irregular networks

The MF algorithm determines the sample to sample fluc-
tuations
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The plateau-like region is absent! Does the SP not
appear in irregular networks? (dashed lines indicate
the current-density profile for the corresponding regular
graph)

4 Regular vs. Irregular networks

4.1 Distribution of currents
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4.2 Graphical representation

Average density ρ = 0.5. We thank A. Chesseron for the artwork.

4.3 General networks at high connectivites

Using the concept of bottlenecks (i.e. the junction nodes will accu-
mulate particles and have ρ ≈ 1) the bimodal/unimodal distributions
can be rationalized for general networks with high c.

5 Conclusions

Main results:
•Our mean field method determines how transport char-

acteristics of large scale networks depend on their topol-
ogy

•Regular systems: unimodal density distributions, all
segments in shock phase

• Irregular systems: bimodal density distributions, a frac-
tion of segments at very low density and a fraction at
very high density

Interesting open questions:

•How general are our results? Is TASEP not a too simple
model to account for transport in biological processes?
Can we find bimodality in real data?

•What is the benefit of having a bimodal distribution?
Can the cytoskeleton regulate the fraction of LD and
HD segments to optimize certain functions?
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