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Abstract: 

 

The formation of aggregates in simplified industrial styrene-butadiene nanocomposites 

with silica filler has been studied using a recent model based on a combination of electron 

microscopy, computer simulations, and small-angle X-ray scattering. The influence of the 

chain mass (40 to 280 kg/mol, PI < 1.1), which sets the linear rheology of the samples, 

was investigated for a low (9.5%v) and high (19%v) silica volume fraction. 50% of the 

chains bear a single graftable end-group, and it is shown that the (chain-mass dependent) 

grafting density is the structure-determining parameter. A model unifying all available 

data on this system is proposed and used to determine a critical aggregate grafting 

density. The latter is found to be closely related to the mushroom to brush transition of 

the grafted layer. To our best knowledge, this is the first comprehensive evidence for the 

control of the complex nanoparticle aggregate structure in nanocomposites of industrial 

relevance by the physical parameters of the grafted layer.  
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2 

 

1. Introduction 

Nanocomposites made of hard inorganic nanoparticles (NPs) embedded in a soft polymer 

matrix may have mechanical, electrical, or thermal properties of interest for various 

applications 1-4. These properties depend to a high extent on the characteristics of the 

dispersion of the filler NPs in the matrix, which may be individual, or in the form of 

aggregates, or networks 5-10. Different types of dispersion may be achieved with different 

starting materials: in model systems, well-defined colloidal particles allow for a better 

structural control 6, 11 than pre-aggregated and polydisperse NP-powders used in 

industrial applications 10, 12, 13. Within a given filler system, the structure can be tuned, by 

varying either the process conditions, which is particular relevant for industrial 

applications, or the colloidal interactions between NPs. The latter depend strongly on the 

surface properties of the NPs, where grafting of small (coating) or large (polymer 

brushes) molecules are methods of choice. These interactions also influence process 

conditions, like the viscosity during mixing, which is easily modified by changing the 

mass of the polymer chains 14-16. 

The dispersion of the NPs in model systems has been found to depend on both grafting 

density and grafted chain mass, via the following mechanisms: (a) For too low grafting 

densities (typically below the establishment of a brush), NPs are not stabilized and tend to 

aggregate in a so-called allophobic regime 14, 17, 18. (b) As soon as brushes are formed, 

NPs grafted with long chains (i.e., longer than the matrix chains) may increase the 

compatibility with the matrix due to wetting of the brush by the shorter matrix chains. 

This leads to swollen brushes favoring a better state of dispersion 16, 19, 20. (c) Short 

brushes usually favor aggregation due to the entropic penalty for the longer matrix chains 

to wet the brush (autophobic regime 14). (d) In a similar way, very high grafting densities 

may lead to ‘dry’ polymer layers, i.e. not wetted by the matrix chains, which causes 

attractive interactions and aggregation 21.  

In systems with industrial, highly disorder filler, similar mechanisms are expected to 

affect the final dispersion state, but there is little quantitative information available in the 

literature, among others due to the intrinsic difficulties to actually characterize the 

aggregate structure. In a series of papers, we have conducted a systematic study of the 

dispersion state of simplified industrial nanocomposites formulated by melt mixing of 

styrene-butadiene (SB) chains with silica pellets of industrial origin 22-24. A fraction %D3 

of chains may bear a single grafting function, and all nanocomposites are made with both 
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matrix and grafted chains of the same mass. The influence of three parameters has been 

investigated: silica volume fraction, matrix composition in terms of the fraction of 

graftable chains, and chain mass. The dispersion of the silica NPs was described in a first 

article in terms of size and mass of aggregates 22. The latter have been characterized with 

an original model based on a quantitative combination of transmission electron 

microscopy (TEM) with synchrotron small-angle X-ray scattering (SAXS). The finding 

was that the silica NPs are organized in small aggregates containing some forty beads, 

surprisingly independent of silica volume fraction and thus mixing viscosity. In a second 

article, we have studied the effect of fraction of graftable matrix chains on the aggregate 

size 23. There, it has been shown that the mass of the aggregates can be decreased by 

about a factor of four using grafting. In a letter, finally, “twin samples”, i.e. 

nanocomposites with identical grafting density but different chain mass were shown to 

have identical structures 24.   

In this article, a systematic investigation of the influence of the chain mass on the 

nanocomposite properties and in particular aggregate structure is presented. Different 

chain masses (40 to 280 kg/mol) induce different mixing viscosities, but also different 

grafting densities because each graftable chain has a single grafting end-function. Longer 

chains thus lead to lower grafting densities. The aim of the study is to draw conclusions 

on the mechanisms of aggregate formation in the mixing process from the evolution of 

aggregate structure. After the materials and methods section (2), the results are presented 

in section 3. Starting with the mixing of the nanocomposites (3.1) as a function of chain 

length, the rheology of the pure and filled matrices (3.2) is discussed. This 

characterization highlights the strong changes in relaxation time when the chain mass is 

varied. In section 3.3, the structure of the nanocomposites is studied by SAXS. The data 

are analyzed in terms of aggregate size from Kratky plots, as well as average aggregation 

numbers using our coupled SAXS-TEM model. It is based on a measurement by TEM of 

the volume fraction of (possibly fractal) branches containing aggregates, Φfract, reported 

in the SI. In the discussion, a unified model of the aggregate size dependence on all 

experimental parameters (chain mass, matrix composition, silica volume fraction) is 

proposed and compared to all available data. 
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2. Materials and methods 

 

Nanocomposite formulation: Simplified industrial nanocomposites with silica and SB 

chains of different mass have been formulated in an internal mixer. The final temperature 

was set to 160±5°C. The size distribution of the NPs constituting the silica pellets (Zeosil 

1165 MP from Solvay) obeys a log normal law in agreement with TEM studies (R0 = 

8.55 nm, σ = 27%, leading to the average bead volume of Vsi = 3.6 103 nm3). This silica 

has the nominal specific surface of 160 m2/g. The silica volume fraction in the 

nanocomposites Φsi has been determined by thermogravimetric analysis (Mettler Toledo). 

The styrene-butadiene random copolymer chains have been purpose-synthesized by 

Michelin. SB chains were generated by anionic polymerization 23 and their masses are 

MSB = 40, 80, 140, and 280 kg/mol, all with polydispersity index (PI) below 1.1 as 

measured by size exclusion chromatography. By measuring the mass distribution of 

extracted chains, it has been checked that the PI is only very slightly changed by the 

nanocomposite mixing.  The fraction of graftable chains bearing a single graftable end-

function is called the matrix composition and denoted %D3, where D3 refers to the 

silanol one-end functionalized chain SB–SiMe2-OH. We define the nominal grafting 

density of the polymer chains on the available silica surface as: 

( )
 Φ M 3

)exp(2.5σ R d  %D3 N Φ1
=ρ

siSB

2
0SBAsi

D3

−

    (1) 

where dSB = 0.94 g.cm-3 is the density of the polymer, and NA is the Avogadro number. 

Further details may be found in references 22, 23. In Table 1, the characteristics of 

nanocomposites formulated at 50%D3 with the different chains at low (≈9.5%v) and high 

(≈19%v) silica volume fraction are summarized. 

 

MSB  

(kg/mol) 

ΦΦΦΦsi (TGA, 

average 9.5%v) 

ρρρρD3  

(10-3 nm-2) 

ΦΦΦΦsi (TGA, 

average 19%v) 

ρρρρD3  

(10-3 nm-2) 

40 10.4%v 208 20.1%v 96 

80 9.8%v 111 19.5%v 50 

140 8.4%v 75 16.8%v 34 

280 9.5%v 33 19.4%v 14 
 

Table 1: Nanocomposite samples formulated with chains of different mass at fixed matrix 

composition (50%D3). 
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System characterization: SAXS experiments were performed on beamline ID2 (1.1 Å, 

12.46 keV, 0.001 to 0.5 Å-1) and on its Bonse-Hart set-up (qmin = 10-4 Å-1) at ESRF 

(Grenoble). Sample thickness was ≈ 0.8 mm. Our scattered intensity I(q) denotes the 

scattering cross section per unit sample volume dΣ/dΩ (in cm-1). It was obtained with 

standard procedures given by ESRF. The contrast of silica in polymer in SAXS 

experiments can be deduced from the scattering length densities (ρSB = 8.85 1010 cm-2, 

ρSiO2 = 1.97 1011 cm-2, ∆ρ = 1.09 1011 cm-2). 

 

Linear rheology: A stress-controlled rheometer AR 2000 in the strain-controlled 

mode was used to study the rheological response in the linear regime of the 

nanocomposites (plate-plate geometry, 20 mm diameter) with frequency sweeps at fixed 

low deformation level (γ = 0.1%) between 10°C and 80°C. Using time-temperature 

superposition, master curves at 50°C of the storage G’(ω) and loss G”(ω) moduli were 

constructed between ω = 2πf = 2π 10-3 and 2π 103 rad/s. In addition, dynamic mechanical 

analysis (DMA) has been performed on a Rheometrics RDAII instrument with the same 

control strain (0.1%). The sample geometry was rectangular with average dimensions of 

12 × 7.5 × 1.5 mm3. Temperature sweeps at 10 Hz were measured from -80°C to 80°C 

(temperature step 3 K, soak time of 60 s).  

 

Structural analysis: The SAXS intensities are analyzed quantitatively using input from 

the TEM analysis, a model for a polydisperse hard sphere structure factor, and a 

polydisperse form factor, as explained in detail in ref. 22. The TEM observations allow the 

determination of the fraction of branches containing aggregates. Results as a function of 

matrix composition at fixed mass have been published previously 23. The TEM pictures 

used for the present article are shown in the SI. They show that the fraction of branches 

for different polymer masses are fully compatible with the previously published data. 

Size information is taken from the observation of the position qagg of breaks in slope of 

I(q), which can be highlighted with a Kratky plot, q2I(q) vs q. The outcome is the average 

radius of aggregates, Ragg = π/qagg, as well as the number of silica NPs making up the 

aggregate, Nagg. The latter is obtained by dividing the total silica volume of an aggregate 

by the average volume of a single NP, Vsi:  

si

aggin  si
agg V

V
N =                      (2) 
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Nagg and Ragg are related by the aggregate compacity κ, which we define as the internal 

silica volume fraction of the aggregates: 
 

si in agg agg si

3agg
agg

V N V
κ  

4V
π R

3

= =     (3) 

 

 

3. Results 
 

3.1 Nanocomposite mixing rheology as a function of chain mass   
 

A strong effect on the (non linear) mixing rheology is obtained for different chain mass, 

due to the variation of the terminal relaxation time and thus viscosity with chain length 25. 

Here, the chain mass is varied from 40 to 280 kg/mol, and the torque-level increases 

considerably. This is shown in Figure 1, for nanocomposites containing ≈9.5%v silica (cf. 

Table 1), with fixed matrix composition (50%D3). After the addition of the silica, the 

overall shape of the curve remains relatively flat, even at high viscosity (high mass). At 

constant mass (140 kg/mol), a decrease may be noticed at high volume fractions, 

presumably related to the even higher viscosity for Φsi > 13% 22. An inversion in torque 

between 140 and 280 kg/mol is observed, which may be due to wall slip in too viscous 

samples leading to the measurement of a lower apparent viscosity.  
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Figure 1: Torque observed during mixing of SB nanocomposites for a series in chain 

mass (40, 80,  140, and 280 kg/mol, Φsi ≈ 9.5%v, 50%D3).  
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In a previous article 23, we have discussed the influence of the fraction of graftable chains 

on the mixing rheology: the observed torque in the mixer increases weakly with the 

matrix composition %D3. Here, the nominal %D3-value remains constant (50% of the 

chains are graftable), but the number of chain ends per unit silica surface decreases with 

increasing chain mass. According to eq. (1), the nominal grafting density ρD3 given in 

Table 1 decreases thus by a factor of seven. The torque increase with chain mass shown 

here thus demonstrates that the chain mass dominates the mixing process, and it 

outweighs by far any contribution from the grafting. One may also note that the increase 

in torque – for comparison a factor of ten after 2.5 minutes between the lowest and the 

highest torque – is less strong than the increase in relaxation time (typically by a factor 

greater than 500) and viscosity with chain mass, which will be discussed below. 

 

3.2 Matrix and nanocomposite rheology as a function of chain mass 

 

The effect of chain mass also dominates the linear rheological response of the silica-free 

matrices. In Figure 2a, the storage modulus G’(ω) is plotted for matrices with MSB = 40 

to 280 kg/mol. These curves have the typical shape of the moduli of entangled polymer 

melts: they converge to a high-frequency rubbery plateau G0 in the range between 0.8 and 

1.0 MPa. This plateau is quite flat, which is a characteristic feature of the narrow mass 

distributions of the polymers used in this study. Next, the moduli possess a chain-length 

dependent characteristic crossover located at 1/τ to a low-frequency flow regime. Here τ 

is the terminal relaxation time, and in the flow regime G’(ω) is given by G0(ωτ)β. For 

ideal melts, β should be 2, whereas it is between 1.2 for the higher masses and 1.6 for the 

lower ones here. The corresponding loss moduli with their characteristic peaks are shown 

in Figure 2b. Again the power law of G” in the flow regime − G”(ω) = η0ω − is not 

exactly verified, as the exponent decreases from almost one (0.98) to 0.75 with increasing 

mass. From the peak position, relaxation times τ = 1/ωpeak are found to evolve by several 

orders of magnitude with chain mass. This evolution is compared in the inset of Figure 2b 

to the usual power law of linear chains.  
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Figure 2: Master curves at the reference temperature of 50°C for (a) the storage moduli 

G’(ω) for pure polymer matrices of composition 50%D3, with different chain mass (40, 

80, 140, and 280 kg/mol), and (b) the corresponding loss moduli G”(ω). The inset shows 

the evolution of the relaxation time with mass for matrices and 9.5%v-nanocomposites as 

compared to a M3.4 power law.  

 

The rheological properties of the samples evolve as silica is added to the matrices. In 

Figures 3a and b, the moduli G’(ω) and G”(ω) are plotted for nanocomposites with ca. 

9.5%v of silica, for the four different chain masses. The arrow in Figure 3a demonstrates 

the scattering of the data: more precise measurements of the plateau modulus have been 

performed by DMA, and the data normalized to the DMA value. The graphs resemble the 

ones of the pure matrices, in the sense that a flow regime and a plateau can be 

distinguished in G’, and a peak in G”. The effect of the chain mass on the peak position is 

shown via the relaxation time together with the pure matrix case in the inset of Figure 2b. 

The relaxation time is found to increase with a power-law exponent comparable to the 

one observed in absence of silica and compatible with 3.4. Within error bars, the 

relaxation time does not seem to evolve from the matrix to the loaded sample. 

Consequently, the dynamics of the nanocomposites probed in this frequency range 

appears to be similar to the pure melt one. 
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Figure 3: Master curves at the reference temperature of 50°C for (a) G’(ω) and (b) 

G’’( ω) for nanocomposites (≈ 9.5%v; 50%D3; 40, 80, 140, and 280 kg/mol). The arrow 

indicates the scattering of the moduli which have been renormalized to the corresponding 

DMA values. 

 

The slopes and the plateau moduli of the data shown in Figure 3a and b, however, are 

different from the pure-matrix values. The G0 are higher, which is a consequence of the 

reinforcement effect. The low-frequency slopes of the storage moduli evolve from 1.2, 

i.e. well below their Maxwellian value of two, to 0.5 (for 40 to 140 kg/mol, respectively, 

the highest mass slope being out of the window). The corresponding slopes of the loss 

moduli decrease as well, from 0.9 at low mass – which is close to the expected exponent 

of one – to 0.5. These values suggest that the flow regime is not properly reached, 

although most of the sample relaxes at ω < 1/τ. Indeed, identical power law exponents 

close to ½ for both G’ and G” have been reported to be a signature of gel-like rheology 26, 

27. Higher mass nanocomposites thus have non relaxing, elastic contributions to the stress, 

which is due to a filler network, as typically encountered with nanocomposites 23, 28, 29. In 

the present study, the higher chain mass pushes the system to higher elasticity in the low 

frequency range, presumably as a different dispersion state of the filler is reached.  

 

3.3 Filler structure in nanocomposites as a function of chain mass 
 

As with the rheological data presented in the previous section, our objective here is to 

characterize the impact of the chain mass on the structure of the silica in the polymer 

matrix. In Figure 4, the scattered intensities of nanocomposites of fixed matrix 
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composition (50%D3), for two silica volume fractions (≈ 9.5%v and ≈ 19%v, 

respectively, see Table 1 for exact values), are shown for the four different chain masses.     
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Figure 4:  Silica structure in nanocomposites. (a) Reduced SAXS intensity I(q)/Φsi with 

Φsi ≈ 9.5%v, D3-fraction 50%, for various matrix chain masses: 40, 80, 140,  280 kg/mol. 

In the inset, the Kratky representation of the 280k-data. (b) Same result for Φsi ≈ 19%v.  

 
 
We start the discussion with the structure of the low concentration nanocomposites in 

Figure 4a. First, a singular sample needs to be discussed. Unlike all other samples, the 

10.4%v silica sample with the 40 kg/mol chains is a highly viscous liquid, which induces 

a very low torque in the mixer (Figure 1). Intuitively, one suspects that such a low torque 

is insufficient to break down the silica pellets into nano-sized objects. We have therefore 

measured the structure of the silica pellet powder by SAXS, using sticky tape as a sample 

holder. Due to the imprecise sample mass in the beam, the resulting intensity is not in 

absolute units, but its shape can be compared to the one of the viscous sample, which is 

done in Figure 5.  
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Figure 5: Silica structure in nanocomposite (Φsi = 10.4%v, 50%D3, 40 kg/mol) 

compared to structure of pure filler dispersed on sticky tape and renormalized to the same 

high-q values.  

 

The superposition of the scattering curves in Figure 5 indicates that the structures of silica 

on the sub-micron length scale probed in this experiment are close. It can thus be 

concluded that the viscous nanocomposite sample contains only dispersed original silica 

powder, without fragmentation on the nanoscale. This explains why the scattered 

intensity in Figure 4a of this sample is also quite different from the others, which have 

thus undergone filler fragmentation. This sample is ignored in the following discussion. 

 

The remaining scattering curves in Figure 4a display the same features as all curves 

discussed before 22, 23: (a) the low-q upturn which is the signal of large-scale structures, 

(b) the breaks in slope and plateau-like features in the intermediate q-range which reveal 

a typical aggregate size and mass, and (c) the large angle scattering reminiscent of the 

silica NP structure. We now apply a recently developed model to the structural analysis 

of these samples 22, starting with the subtraction of the low-q power law. The breaks in 

slope can be highlighted using a Kratky plot – q2I(q) vs. q – as exemplified in the inset of 

Figure 4a. There the two peaks due to aggregate and silica bead interactions (close 

contact) are easily identified. Fitting a double log-normal to the peaks 22, 23, the log-

normal parameter identifying the low-q peak at qagg can be determined. This procedure 

gives the average aggregate radius Ragg = π/qagg, and we find Ragg = 45.4, 41.3, and 45.9 

nm, for 80, 140, and 280 kg/mol, with an errorbar of ±2 nm. It appears that these radii do 

not follow the order of the masses. Using the volume fraction of fractal branches as 

determined by TEM (see SI), the average compacity of aggregates can be extracted from 
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the data in Figure 4a. It varies between 30 and 40%, and allows the estimation of the 

average aggregation number. The latter follows the evolution of Ragg, i.e. Nagg decreases 

from about 100 to 50 and then goes up to 100 again. The outcome of this structural 

modeling is summarized in Table 2. 
 

 

Table 2: Structural parameters of nanocomposite samples for different chain mass, two silica 

volume fractions, and at fixed matrix composition (50%D3).  

 

The series in chain mass at ≈19%v silica volume fraction shown in Figure 4b is treated 

following the same procedure. The low-q power laws are subtracted, and the intensity 

level is used to calculate the average aggregate compacity. The aggregate radii are 

determined by the Kratky plots, giving Ragg = 29.7, 33.8, 36.8, and 40.1 nm, for 40 to 280 

kg/mol, respectively. Combining the compacity with the radius gives again Nagg, and 

these numbers are also given in Table 2. It is remarkable that the intensity curves are 

rather close in Figure 4a and b, but do not follow the order of the chain mass. In the case 

of the low silica volume fraction (≈ 9.5%v), the model reproduces this non monotoneous 

feature. At high silica volume fraction (≈19%v), it extracts a monotonously increasing 

aggregation number with chain mass. This is because the model uses two key 

characteristics of the intensity curves, the position of the break in slope, and the low-q 

intensity, which evolve differently with mass. Finally, Nagg more than doubles from 40 to 

280 kg/mol at 19%v, while the compacity stays again approximately constant in the 35-

40% range.   

 
 
 
 
 
 

MSB  

(kg/mol) 

ΦΦΦΦsi = 9.5%v    ΦΦΦΦsi = 19%v    

ΦΦΦΦfract    κκκκ Nagg Ragg
 

(nm) 

ΦΦΦΦfract κκκκ Nagg Ragg
 

(nm) 

40 − − − 31.3 77% 36% 25 29.7 

80 54% 36% 86 45.4 75% 38.5% 39 33.8 

140 59% 30.5% 51 41.3 73% 34.5% 44 36.8 

280 47.5% 40.5% 99 45.9 74.5% 39% 65 40.1 
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4. Discussion 
 

It is not easy to identify a general tendency of the structure dependence on chain mass 

with the data given in Table 2. In the intermediate-q domain of interest for aggregate 

structure (≈0.003 Å-1), the intensities shown in Figure 4 are in the same range. Our 

analysis shows that this is due to both relatively close Ragg values and close compacities, 

with weak and – for the lower volume fraction – non monotonic evolutions. The 

compacity staying in the 30-40% range, one can discuss either Ragg or Nagg. In Figure 6, 

the average aggregate radius Ragg is plotted as a function of chain mass for these samples.   
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Figure 6:  Average radius in nm of silica aggregates in nanocomposite for low (≈ 9.5%v) 

and high (≈ 19%v) silica volume fractions (matrix composition 50%D3). The broken line 

is a guide to the eye. The 9.5%v – 80k sample is partially fragmented.  

 

Under the mentioned restrictions, the trend appears to be an increase of aggregate size 

with chain mass for 19%v silica. This is consistent with the decrease of the number of 

graftable functions, which was previously shown to have the same effect at fixed chain 

mass 23. The solid line in the Figure is a logarithmic function (A+ B ln M) used as guide 

to the eye. A model leading to a linear fitting function will be presented below and 

compared to all available data.  

 

For the 9.5%-samples, the relationship is non-monotonic, and a combination with an 

additional effect must be invoked to explain the data. In Figure 5, the 40 kg/mol sample 

was shown not to fragment due to the too low matrix viscosity. One may argue that these 
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aggregates are thus the biggest, whereas they are more fragmented in matrices of longer 

chains. This leads to a mechanism of decrease of aggregate size with chain mass up to 

140 kg/mol, with presumably partial fragmentation at 80 kg/mol. At 19%v, the high 

amount of silica ensures a high viscosity, and only the effect of the number of grafting 

ends influences the aggregate size. 

 

We come to the conclusion that once the samples are viscous enough for effective mixing 

and fragmentation to take place (i.e., all samples but the one shown in Figure 5), it is the 

density of grafting ends per unit silica surface ρD3, as defined in eq. (1), which determines 

the structure. This hypothesis has been tested successfully in ref. 24, where the existence 

of so-called “twins”, i.e. samples of identical grafting density having also identical 

structure, was evidenced. We now generalize this concept and examine the evolution of 

structure with ρD3.  

 

Our goal is to compare all structures of nanocomposites formulated for different silica 

volume fraction Φsi, matrix composition %D3, and chain mass. Instead of comparing the 

full intensity curves, we compare the aggregate radii Ragg obtained with the Kratky plots, 

and alternatively the average aggregation numbers Nagg. All data are taken from Table 2, 

Figure 6, and previously published data for the Φsi of interest here. In Figure 7a, all Ragg-

values at our disposal are plotted as a function of ρD3. These data have been regrouped in 

two subsets, for ≈9.5%v and ≈19%v silica contents. The same is done for Nagg in Figure 

7b. 
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Figure 7: a) Average aggregate radius Ragg as a function of the nominal grafting density 

ρD3, for all data regrouped in subsets at ca. 9.5%v and 19%v silica. The fit functions use 

ρD3
c = 0.01 nm-2 and Rmax = 49.15 nm for both volume fractions, and Rmin = 39 and 26.7 

nm for 9.5%v and 19%v data, respectively, see text for details. b) Average aggregation 

number Nagg for the same subsets compared to the model prediction with compacity κ = 

35%. The points at ρD3 = 0 are singular due to a considerably higher κ and not captured 

by the model with κ fixed to 35%. 

 

The data points in Figure 7 are rather scattered for all data sets, but a general tendency is 

recognized. Error bars are due to scattering in the fraction of branches determined by 

TEM (cf. SI), and are found to be smaller than the symbols apart from those visible in the 

graph. Both Ragg function in Figure 7a start from around 50 nm, then decrease measurably 

– by some 25% resp. 40% of their initial value – , and level off for higher grafting 

densities. Such a decrease followed by saturation has already been observed in the study 

of the grafting fraction (%D3) 23. In the present article, more data sets are simultaneously 

described, including the variation of the chain mass and matrix composition %D3. Both 

Ragg-sets have been compared to a simple function as derived below: 

 

R���	�ρ��	 = � R��	for		ρ�� <	����			R��� 	+ 	 ����	���� �!
		elsewhere                    (4) 

 

Here Rsi is a radius representative of the silica bead radius, and the values of Rmax and ����  

will be discussed below. We use Rsi = R0 and κ = 35% (see Table 2) for simplicity. The 
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function in eq.(4) defines a critical grafting density ���' . We find ���' = 0.01 nm-2 for both. 

It is obvious from Figure 7a that ρD3 is the structure determining parameter for a given 

silica volume fraction of such simplified industrial nanocomposites. The critical 

aggregate grafting density ���'  gives the limit above which the size of the aggregates is 

not affected any more by the grafting. At high grafting, the aggregate radius saturates at a 

minimum value Rmin, which depends on the silica volume fraction. The higher Φsi, the 

lower the final aggregate radius Rmin, i.e., the stronger the breakdown mechanism in the 

mechanical mixer. In absence of or for low grafting ρD3 < ����  in Figure 7a, the system is 

not prone to deagglomeration, and a maximum aggregate radius Rmax is conserved from 

the initial silica pellets, independent of silica concentration and thus mixing rheology. In 

the framework of eq.(4), this is accounted for by introducing a cut-off value ����  in 

grafting density, below which the aggregate radius has been set to Rmax = 49.15 nm in the 

model, for both Φsi. It is interesting to note that the 10.5%v-40k sample, which we have 

shown in Figure 5 to have a nanostructure very similar to the unperturbed powder, has a 

Ragg value compatible with Rmax (data and fit shown in SI). To summarize, primarily high 

viscosities seem to be necessary – i.e. either high chain masses or high silica volume 

fractions – in order to have an efficient break-down; secondly, it is mandatory to have a 

high grafting density to impede re-agglomeration. 

 

In Figure 7b, all available data points for Nagg have been combined in a single plot. Note 

that Nagg is the outcome of a calculation which takes polydispersity into account, i.e. it 

cannot be simply determined using eq.(3) with the average radius for Ragg, but eq.(3) has 

to be applied to each population of the distribution, and averaged. The result displays 

some singular data points at ρD3 = 0, which correspond to substantially higher 

compacities, well above 50%. Such values have been used in a separate calculation and 

confirm the high aggregation numbers. For all other data points in Figure 7b, we have 

used the average radius Ragg given in eq.(4) using identical parameters (Rmin, Rmax, κ,  ���' ), and combined it with the polydispersity and eq.(3). The typical aggregation number 

as a function of ρD3 can then be predicted. The result is shown in Figure 7b, with again 

reasonable agreement with the data.          

 

To rationalize these ideas, we have constructed a simple model leading to eq.(4). The 

nominal grafting density gives the number of grafts per unit surface on each silica NP. In 
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Figure 8a, this is illustrated by the ideal – experimentally unreached – dispersion of 

individual NPs. If NPs are agglomerated, one may suppose that grafting will 

preferentially take place at the aggregate surface, as illustrated in the next step in Figure 

8a. This defines a new aggregate grafting density, which depends on the aggregate size 

and structure, and which can be expected to be higher than the nominal NP grafting 

density due to the lower surface. To fix ideas, in small aggregates, containing typically 

Nagg = 50 NPs, with Ragg = 50 nm (compacity 35%), about 40 are in the outer shell, i.e. 

80% of the NPs offer a fraction of their surface to grafting, which is thus smaller than the 

total nominal surface of all NPs.     

 

 
 

Figure 8: (a) Schematic representation of hypothetical ideally dispersed NPs with 
nominal grafting density, and the same NPs in experimentally observed aggregates of 
increasing size with grafting of the same number of molecules only on the aggregate 
surface. Obviously the aggregate grafting density increases in this agglomeration process. 
(b) Possible evolution of silica aggregate size during the mixing process allowing a 
rationalization of our results. 

 

If we approximate for simplicity the surface of an aggregate containing Nagg silica NPs by 

the surface of a sphere of radius Ragg, then by conservation of the number of grafts the 

aggregate grafting density reads:  

        

2

agg

si
aggD

agg
D R

R
 Nρρ

33 












=                                               (5)  

 

The aggregation number increases with the aggregate radius, and following eq.(3) we 

may write for large enough aggregates: 



18 

 

3

si

agg
agg R

R
κ N 








=                (6) 

 

Combining eqs.(5) and (6) gives : 

                  
si

agg
D

agg
D R

R
 κρρ

33
=                          (7) 

 

Thus if the compacity stays approximately constant, typically in the 35%-range for the 

samples discussed here (cf. Table 2), then the aggregate grafting density exceeds strongly 

the nominal NP grafting density for big enough aggregates. Naturally, taking into account 

more precise variations of κ, or details of the aggregate surface and internal structure, 

will fine tune the results, but this is not of importance for the present argument.  

 

The following mechanism is proposed to rationalize the observed evolution of aggregate 

size, cf. Figures 7a and b. In the mixing process, due to the action of the torque 

transmitted by the viscosity set by both chain mass and silica fraction, initial silica 

aggregates are broken up to smaller ones of typical radius Rmin. On these aggregates, 

some grafting takes place. If the aggregate grafting density exceeds the critical grafting 

density ���' , then brushes are so dense that these small aggregates are stabilized against 

re-agglomeration by the grafted brush. If however, the aggregate grafting density is too 

low to ensure colloidal stability, then re-agglomeration takes place. According to eq.(7), 

this induces a higher aggregate grafting density because of the lower specific aggregate 

surface. Once the aggregate grafting density reaches ���' , the process is stopped for the 

same reasons as before. This process is illustrated in Figure 8. It is thus straightforward to 

postulate that aggregate radii are set by the grafting density reaching a limiting value: 

 

c
D

agg
D 33

ρρ =                                          (8)  

 

Eqs. (7) and (8) can be solved for the aggregate radius as done in eq.(4), where we have 

also introduced the lower and higher cut-off values, Rmin and Rmax, respectively. The 

latter are intrinsic to the silica aggregates and the maximum torque in the mixer, and their 

values cannot be captured by this simple model. To summarize, the critical grafting 

aggregate density ρD3
c sets the size of the aggregates via the establishment of a dense 
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brush regime. Therefore ρD3
c is naturally compared to the onset of the mushroom-to-

brush transition. 

 

The data shown in Figure 7 are rather scattered, but clearly a characteristic nominal 

grafting density ρD3
c = 0.01 nm-2 can be extracted from the decays. This value is quite 

close to 1/Rg
2 = 0.007 nm-2 for MSB = 140 kg/mol, which is the de Gennes estimate of the 

onset of the mushroom-to-brush transition 30, 31. Unfortunately, our data are not precise 

enough to differentiate critical grafting densities for each mass, which are all in the same 

range.  If on the contrary aggregates are too big, in the sense that their aggregate grafting 

density exceeds ρD3
c, then smaller aggregates may be stabilized, and the big ones de-

agglomerate. 

  

A consequence of this mechanism is seen in Figure 7: once the nominal grafting density 

exceeds the critical one, even the smallest possible aggregates are covered by a brush. 

The size evolution thus saturates at the minimum aggregate breakdown radius Rmin set by 

the viscosity of the sample in the mixing process, which is itself dominated by the silica 

content.  

 

5. Conclusion  

 

In a previous letter 24, we have shown that twin samples with close nominal grafting 

density ρD3 have also a close silica structure and plateau moduli. In the present article, the 

dependence of structure and rheology on the nominal grafting density was further 

explored by varying the matrix chain mass. The plateau moduli were found not to be 

affected by the chain mass at 9.5%v silica, whereas longer chains move the systems away 

from a melt flow regime. Concerning structure, we have rationalized the impact of all 

available parameters – silica fraction, grafting density, and chain mass – in terms of a 

simple model based on the grafting density on the surface of aggregates. First, both for 

the average aggregate radius and aggregation number, the data indicate that higher silica 

volume fractions lead to smaller and lighter aggregates, at least at high grafting, 

presumably due to a better break-down of aggregates at high viscosity in the melt mixing 

process. In the model, the decrease of the minimum aggregate size is expressed 

empirically by a smaller plateau value Rmin. Note that the comparison with the previously 
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observed Φsi dependence is not straightforward, due to the simultaneous change of Φsi 

and ρD3 (see SI for comparison). Secondly, higher nominal grafting densities induce the 

stabilization of smaller aggregates, which leads to a decrease of the aggregate radius with 

the ρD3 observed here. Alternatively, lowering the chain mass also increases ρD3, with the 

same effect.  

 

In the framework of our model, this decrease is governed by a critical grafting density 

ρD3
c, which is identical for both silica contents. The critical value ρD3

c = 0.01 nm-2 is 

found to be compatible with the onset of the mushroom-to-brush transition of the polymer 

layer grafted on aggregates. For aggregates of small enough radii, the effective aggregate 

grafting density is below this value and thus too low to stabilize such aggregates: they 

grow up to a radius where the aggregate grafting density is equal to ρD3
c. 

 

We have seen that changing the grafting density ρD3 gives us the possibility to tune the 

filler structure in complex nanocomposites. The combination of chain mass MSB and 

matrix composition %D3 in eq.(1) allows one then to tune the rheology, as long as the 

ratio of %D3 to MSB is kept constant. A high %D3, together with a high mass, gives 

nanocomposites with a long rubbery plateau, and a strongly hindered flow regime. In the 

opposite situation, a normal flow regime is found, together with a short relaxation time 

and thus a short rubbery plateau. Finally, our findings suggest that it is possible to tune 

rheological behavior while keeping the silica structure unchanged, opening original 

possibilities of rational design of complex nanocomposite systems for applications. We 

also find encouraging that it is possible to develop fundamental understanding based on a 

detailed structural model involving both TEM and SAXS in simplified industrial 

nanocomposites. By construction, these systems still bear a certain model character (e.g., 

well-defined polymer masses as used here), but are close to applications due to the use of 

a highly disordered industrial filler. An interesting perspective of the present work would 

be a structural study of a more polydisperse polymer system, thereby approaching 

industrial chain distributions, and investigate the effect of the grafting density.   
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