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Abstract

The experimental achievement of Bose-Einstein condensation and Fermi degeneracy with ul-

tracold gases boosted tremendous progresses both in theoretical methods and in the development

of new experimental tools. Among them, intriguing possibilities have been opened by the im-

plementation of optical lattices: periodic potentials for neutral atoms created by interfering laser

beams. Degenerate gases in optical lattices can be forced in highly anisotropic traps, reducing the

effective dimensionality of the system. From a fundamental point of view, the behavior of matter

waves in reduced dimensions sheds light on the intimate properties of interparticle interactions.

Furthermore, such reduced-dimensional systems can be engineered to quantum-simulate fasci-

nating solid state systems, like bidimensional crystals, in a clean and controllable environment.

Motivated by the exciting perspectives of this field, we devote this Thesis to the theoretical study

of two systems where matter waves propagate in reduced dimensions.

The long-range and anisotropic character of the dipole-dipole interaction critically affects the

behavior of dipolar quantum gases. The continuous experimental progresses in this flourishing

field might lead very soon to the creation of degenerate dipolar gases in optical potentials. In the

first part of this Thesis, we investigate the emergence of a single dipolar-induced resonance in

the two-body scattering process in quasi-one dimensional geometries. We develop a two-channel

approach to describe such a resonance in a highly elongated cigar-shaped harmonic trap, which

approximates the single site of a quasi-one-dimensional optical lattice. At this stage, we develop a

novel atom-dimer extended Bose-Hubbard model for dipolar bosons in this quasi-one-dimensional

optical lattice. Hence we investigate the T = 0 phase diagram of the model by exact diagonal-

ization of a small-sized system, highlighting the effects of the dipolar-induced resonance on the

many-body behavior in the lattice.

In the second part of the Thesis, we present a general scheme to realize cold-atom quantum

simulators of bidimensional atomic crystals, based on the possibility to independently trap two

different atomic species. The first one constitutes a two-dimensional matter wave which interacts

only with the atoms of the second species, deeply trapped around the nodes of a two-dimensional
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optical lattice. By introducing a general analytic approach, we investigate the matter-wave trans-

port properties. We propose some illustrative applications to both Bravais (square, triangular) and

non-Bravais (graphene, kagomé) lattices, studying both ideal periodic systems and experimental-

sized, eventually disordered, ones. The features of the artificial atomic crystal critically depend

on the two-body interspecies interaction strength, which is shown to be widely tunable via 0D-2D

mixed-dimensional resonances.

Keywords: matter waves, reduced dimensions, dipolar-induced resonances, mixed-dimensional

resonances, extended Bose-Hubbard model, atomic artificial crystals.



Riassunto

La realizzazione sperimentale della condensazione di Bose-Einstein e della degenerazione di

Fermi con gas ultrafreddi ha catalizzato enormi progressi sia nei metodi teorici sia nello sviluppo

di nuove tecniche sperimentali. Tra queste, affascinanti prospettive nascono dall’implementazione

di reticoli ottici: potenziali periodici per atomi neutri generati dall’interferenza tra raggi laser. Un

gas degenere in un reticolo ottico può essere confinato in trappole fortemente anisotrope, sino a

ridurne l’effettiva dimensionalità. Da un punto di vista fondamentale, il comportamento delle onde

di materia in dimensioni ridotte fa luce sulle proprietà intrinseche delle interazioni tra particelle.

Inoltre, questi sistemi a dimensionalità ridotta possono essere manipolati per creare simulatori

quantistici della materia condensata, come ad esempio di cristalli bidimensionali, in un ambiente

più precisamente controllabile. Motivati dalle appassionanti prospettive offerte da questo ambito,

abbiamo dedicato questa Tesi allo studio teorico di due sistemi in cui delle onde di materia si

propagano in dimensionalità ridotte.

Il carattere a lungo range e anisotropo dell’interazione dipolo-dipolo ha un forte impatto sul

comportamento dei gas quantistici dipolari. Gli incessanti progressi sperimentali in questo fiorente

ambito rendono plausibile l’imminente realizzazione di gas dipolari degeneri in potenziali ottici.

Nella prima parte di questa Tesi analizziamo l’insorgenza di una singola risonanza dipolare nel-

l’interazione tra due corpi in geometrie quasi unidimensionali. Sviluppando un approccio a due

canali, descriviamo questa risonanza in una trappola armonica “a sigaro” fortemente allungata,

che approssima un singolo sito di un reticolo ottico quasi unidimensionale. A questo punto svi-

luppiamo un nuovo modello esteso di Bose-Hubbard atomo-dimero, valido per bosoni dipolari in

questo reticolo ottico quasi unidimensionale. Studiamo, quindi, il diagramma di fase del modello

per T =0 tramite diagonalizzazione esatta per un sistema di piccole dimensioni, sottolineando gli

effetti della risonanza dipolare sulla fisica a molti corpi del reticolo.

Nella seconda parte della Tesi, presentiamo uno schema generale per la realizzazione di simu-

latori quantistici di cristalli bidimensionali con atomi freddi, basato sulla possibilità di intrappolare

indipendentemente differenti specie atomiche. La prima forma un’onda di materia bidimensionale
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che interagisce esclusivamente con gli atomi della seconda specie, fortemente intrappolati intor-

no ai nodi di un reticolo ottico bidimensionale. Introducendo un approccio analitico del tutto

generale, studiamo le proprietà di trasporto dell’onda di materia. Proponiamo alcuni esempi di ap-

plicazioni sia a reticoli di Bravais (quadrato e rettangolare) che di non-Bravais (grafene e kagomé),

analizzando sia sistemi periodici ideali sia sistemi sperimentalmente realistici, eventualmente af-

fetti da disordine. Le caratteristiche di un cristallo atomico artificiale dipendono in maniera critica

dall’interazione inter-specie a due corpi, che mostriamo essere manipolabile tramite risonanze a

dimensionalità mista di carattere 0D-2D.

Parole chiave: onde di materia, dimensionalità ridotta, risonanze dipolari, risonanze a dimen-

sionalità mista, modello esteso di Bose-Hubbard, cristalli atomici artificiali.



Résumé

La réalisation de condensats de Bose-Einstein et de gaz de Fermi dégénérés ont déclenché

d’énormes progrès dans les méthodes théoriques ainsi que dans la mise en place de nouvelles

techniques expérimentales. Parmi celle-ci, de fascinantes possibilités viennent de l’implémenta-

tion de réseaux optiques : potentiels périodiques pour atomes neutres créés à travers l’interférence

de rayons laser. Un gaz dégénéré dans un réseau optique peut être forcé dans des pièges fortement

anisotropes, jusqu’à réduire la dimensionalité du système physique. Du point de vue fondamental,

le comportement des ondes de matière en dimensions réduites éclaircit les propriétés intrinsèques

des interactions entre particules. En outre, ces systèmes à dimensionalité réduite peuvent être ma-

nipulés afin de créer des simulateurs quantiques de la matière condensée, comme par exemple

des réseaux à deux dimensions, dans un environnement pur et contrôlable. Motivé par les passion-

nantes perspectives de ce domaine, on a consacré cette Thèse à l’étude théorique de deux systèmes

dans lesquels une onde de matière se propage en dimensions réduites.

L’interaction dipôle-dipôle, à longue portée et anisotrope, affecte fortement le comportement

des gaz quantiques. Les progrès expérimentaux dans ce domaine florissant permettront bientôt de

piéger dans des réseaux optiques un gaz dégénéré de dipôles. Dans la première partie de cette

Thèse, on considère l’apparition d’une seule résonance dipolaire dans l’interaction entre deux par-

ticules pour différents systèmes quasi-unidimensionnels. On propose une approche à deux canaux

qui décrit cette résonance dans un piège harmonique fortement allongé “en forme de cigare”, qui

représente l’approximation d’un site d’un réseau optique quasi-unidimensionnel. À ce stade on

développe un nouveau modèle étendu de Bose-Hubbard atome-dimère, qui est valable pour des

bosons dipolaires dans un réseau optique quasi-unidimensionnel. On étudie donc le diagramme de

phase du modèle pour T =0 par la diagonalisation exacte de systèmes de petite taille, en soulignant

les effets de la résonance dipolaire sur la physique à plusieurs corps dans le réseau.

Dans la seconde partie de la Thèse, on propose un modèle pour réaliser des simulateurs quan-

tiques de cristaux bidimensionnels avec des atomes froids, basé sur le piégeage indépendant de

deux espèces atomiques. La première constitue une onde de matière bidimensionnelle qui inter-
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agit exclusivement avec les atomes de la seconde espèce, piégés aux nœuds d’un réseau optique

bidimensionnel. En introduisant une approche théorique générale, on examine les propriétés de

transport de l’onde de matière. On propose des exemples d’application pour réseaux soit de Bravais

(carré, triangulaire), soit de non-Bravais (graphène, kagomé), en étudiant soit des systèmes pério-

diques idéaux, soit des systèmes de taille expérimentale et désordonnés. Les caractéristiques d’un

réseau atomique artificiel dépendent de l’intensité de l’interaction entre les deux espèces, qu’on

montre être largement réglable grâce à des résonances à dimensionalité mixte de type 0D-2D.

Mots clés : ondes de matière, dimensionalité réduite, résonances dipolaires, résonances à di-

mensionalité mixte, model étendu de Bose-Hubbard, cristaux atomiques artificiels.
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Introduction

Different fields of modern physics overlap in the domain of condensed-matter physics. Quan-

tum mechanics, statistical mechanics, and electromagnetism together contribute to the understand-

ing of solid-state systems. Historically, the leading subject of condensed-matter physics has been

the study of crystals. These are solid materials whose building block is a microscopic elementary

cell, periodically repeated in space until reaching a macroscopic scale. In a natural crystal, a lattice

of ions kept together by chemical bounds creates a periodic potential landscape in which a shared

electronic cloud propagates. The ionic structure also scatters light, creating interference patterns

in diffracted x-rays. The connection between the crystalline structure and the transport properties

of charge carriers has been widely investigated, relating the macroscopic behavior of a material

to the quantum behavior of its elementary constituents [1, 2]. In a real solid, several unavoidable

factors concur with the lattice periodicity in determining its physical properties, such as defects in

the crystalline structure, impurities and disorder. Shortly, condensed-matter systems are complex

quantum objects. It is thus useful to follow Feynman’s suggestion and look for a “quantum simu-

lator”: an easily controllable and manipulable system, able to reproduce the quantum behavior of

the complex one [3]. Cold gases in tailored potentials turn out to be a good candidate to this aim.

With them, one naturally obtains ideal systems, clean from impurities and disorder, which can be

both introduced in a controllable way. Furthermore, the lattice constant is much larger than in real

materials, being in the micrometer range, and allows to control and image the system up to the

single-site level.

When a dilute gas is cooled down to few nK, the de Broglie wavelength associated to each

of its particles becomes much larger than the average interparticle distance. Then, the quantum

nature of the gas emerges in a series of intriguing phenomena. As predicted by Bose and Einstein

in 1924 [4–6], a gas of bosons, below a critical temperature Tc, can behave as a macroscopic

matter wave, made of a large number of atoms coherently participating in the same wave function:

a Bose-Einstein condensate (BEC) [7]. Similarly, a cold gas of fermions reaches the quantum

regime of filled Fermi sea, in which the Pauli exclusion principle plays a crucial role [8]. The first

1
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realizations of BECs in 1995 [9–11] and the achievement of degeneracy with fermions in 1999

[12] are considered milestones of 20th-century physics. Since then the number of groundbreaking

theories and experiments in the field of cold gases grew constantly. One of the reasons of this

success is the versatility of cold gases. The properties of a quantum degenerate gas are, indeed,

strongly connected to the way in which particles interact. Typically, as we recall in Chap. 1, the

interatomic interactions can be modeled by a contact potential, whose strength turns out to be

tunable through several experimental techniques, such as the application of an external magnetic

field [13], or by changing the shape of the trapping potential [14–16].

A fundamental property of neutral atoms is their sensitivity to optical potentials. When im-

mersed in the electromagnetic field, atoms get polarized and the Stark effect shifts their energy

levels. A field-intensity gradient results in a force on the atoms [17]. Therefore, one can exploit

the interference of counterpropagating laser beams to create a spatially modulated light pattern, an

optical lattice, which results in a modulated potential energy landscape for the atoms. Within such

a lattice, the atoms perceive a periodic potential, likewise electrons in a solid, and can be used to

quantum simulate a solid-state system [18–20]. In this case, the interplay between lattice potential

and interatomic interactions is modeled by effective Hamiltonians, able to predict, for instance, the

occurrence of quantum phase transitions between insulating and superfluid phases [21–23], which

have been experimentally detected [24]. To summarize the main features of matter waves and

their behavior in optical lattices, we present a short and non-comprehensive review on the topic in

Chap. 1. Briefly, the optical lattice can be modeled as an array of microtraps among which cold

atoms can tunnel. Weakly-interacting particles get delocalized along the lattice and the ground

state of the system is represented by a superfluid (SF) phase, in which atoms behave as a coherent

matter wave in the lattice. Contact-interacting particles contribute to the system energy only when

they occupy the same lattice site. Then, a strong interatomic repulsion can inhibit tunneling, since

the system tends to avoid large number fluctuations at each lattice site. If the number of atoms

and sites in the system is equal (unitary filling factor), this phase correspond to a Mott insulator

(MI) in which there is exactly one atom per site. This scenario is enriched in the presence of

long ranged interactions. In this case also atoms sitting in adjacent sites contribute to the energy,

and new insulating phases with a density modulation different than the one of the optical lattice

can arise. In the unitary-filling scenario, if the nearest-neighbor interaction dominates the on-site

interaction, atoms prefer to multiply occupy a site and leave empty the nearest ones, ending up in

a mass density wave (MDW) phase. While the different phases of the model can be pictured in-

tuitively, advanced numerical techniques are required to provide exact phase diagrams. Moreover,

the dependence of the model parameters on real physical quantities requires a detailed study of the

lattice geometry and of the elementary two-body scattering process in the periodic potential.
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The long range and anisotropic character of the dipole-dipole interaction [25, 26], together

with the advances in the manipulation of dipolar particles [27–31], makes dipolar systems suitable

to implement lattice Hamiltonians with nearest and further-neighbor interactions [32]. With this

motivation, in Chap. 2 we investigate in detail the interplay between dipole-dipole interaction and

trapping geometry in a one-dimensional (1D) array of elongated cigar-shaped traps, forming a

quasi-1D optical lattice. We start by analyzing the two-body scattering at the single-site level,

replacing the dipole-dipole interaction with an effective interaction for quasi-1D systems [33]. We

point out the emergence of a single dipolar-indiced resonance (DIR) in a quasi-1D tube, which is

a low-energy resonance occurring when the dipole strength is varied. The occurrence of the DIR

in a cigar-shaped harmonic trap is demonstrated both by numerical investigations and by means

of an analytically solvable toy-model potential [34]. The DIR is reproduced by a two-channel

model [35], where the channels correspond to a bi-atomic state and a two-body bound state. In the

lattice, this two-channel approach translates in a two-band model, which we introduce under the

name of atom-dimer extended Bose-Hubbard model [35]. The T =0 phase diagram of the system

is then investigated, as a function of the optical lattice depth and of the dipole-dipole interaction

strength, which are both tunable parameter in an experimental system. We point out the effects

of the DIR on the phase diagram. In particular, SF, MI, and MDW phases appear in regions of

the phase diagram different from those predicted in the absence of the DIR. Interestingly, we also

predict the occurrence of a collapse phase for strong dipolar interactions in a geometry where two

classical dipoles would just repel each other.

A central role in the condensed matter realm is entitled to two-dimensional (2D) materials.

This branch received a significant boost in 2004, due to the experimental isolation of graphene

[36]: a monolayer of carbon atoms arranged in a honeycomb lattice. In this material, conduction

and valence bands touch in isolated points of k space, the Dirac points, around which the energy-

momentum dispersion relation is conical and a Dirac-like equation for massless fermions replaces

the Schrödinger equation to describe the quantum motion of the charge carriers [37, 38]. In parallel

to the analysis on graphene and other 2D materials, a number of proposal for quantum simulators

of 2D crystals flourished [39], among which the idea of using single-species matter waves in

optical lattices. For an honeycomb lattice, the appearence of Dirac cones in the energy-momentum

dispersion was expected, a phenomenon experimentally observed in 2012 [40].

Following these ideas, we introduce in Chap. 3 a new model for the realization of artificial

bidimensional crystals of arbitrary geometry based on the use of two atomic species [41, 42]. In

our proposal, a 2D matter wave made up of A atoms interacts only with point-like scatterers of

the second atomic species, denoted by B, independently trapped around the nodes of a 2D optical

lattice. Since the periodic potential felt by the matter wave is generated by atom-atom interac-

tions, and not by an optical potential, we name this system atomic artificial crystal (AAC). The
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experimental realization of our model relies on the use of species-selective optical lattices, that

are trapping potentials engineered to act on one atomic species (B in the present case) being at the

same time invisible to a second one (for us, A) [43, 44]. By tuning the B−B interaction, one can

reach the MI phase in the optical lattice, ending up with an artificial crystal with the lattice period-

icity. With respect to one-species models, disorder can be naturally introduced in AACs: it appears

in the form of randomly distributed empty sites if the lattice filling is lower than one. We investi-

gate the crystal properties starting by a brief analysis of the elementary scattering process between

an atom of the matter wave and a trapped scatterer, which amounts to a problem of scattering in

reduced and mixed dimensions [45]. Then, we present a theoretical model for the entire AAC,

valid for ideal periodic structures, as well as for finite-sized and disordered systems. Our approach

allows to determine the Green’s function of the matter wave and, hence, its transport properties.

We specify the model to some paradigmatic cases, among which the atomic artificial graphene

[41], discussing features and tunability of the AAC band structure, such as omnidirectional gaps,

Dirac cones, and non-dispersive flat bands.



CHAPTER 1

Matter Waves in Optical Lattices

This first, introductive chapter is thought as a brief and non-comprehensive review of the
physics of matter waves in optical lattices. The combination of cold gases and periodic po-
tentials revealed as a powerful tool to quantum simulate condensed-matter systems in highly
controllable models. A fundamental role is played by the coaction of inter-particle and op-
tical potentials, respectively discussed in Secs. 1.2 and 1.3, which leads to the emergence of
many-body quantum phase transitions. In Sec. 1.4, we consider how the external potential
affects the two-body scattering properties when the applied trapping reduces the effective di-
mensionality of the matter wave. Finally, we resume in Sec. 1.5 some relevant features of
the dipolar interaction, a long-ranged and anisotropic potential which allows to mimic more
general Hamiltonians than those obtained by using contact-interacting particles.
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1.1 Ultracold gases as waves of matter

After centuries devoted to the investigation of macroscopic phenomena, 20th-century physi-

cists focused on the nature and behavior of the elementary constituents of matter. The Bohr model

for electrons’ orbits in hydrogen atoms and Eistein’s conjectures on the photoelectric effect showed

that something was missing in the classical distinction between particles and waves. The gap was

filled in 1924 by Louis de Broglie, that postulated in his Thesis the wave-particle duality [46].

Nowadays we know that a light wave of angular frequency ω transports energy in “packets” of

!ω, ! being the Planck’s constant on 2π, and that a particle with momentum modulus p has an

associated wavelength λdB = 2π!/p, known as de Broglie wavelength. But when does the wave

nature of particles emerge? If one considers a gas at temperature T , from the Maxwell-Boltzmann

distribution one gets that the average momentum of one particle is 〈p〉 ≃
√

mkBT , where m is the

particle mass and kB the Boltzmann constant. At room temperature, λdB is smaller than the atomic

radius, so that the particles of an everyday gas do not act as quantum objects, but rather as billiard

balls. Fortunately, the technological advances of the last decades allowed to develop experimental

techniques which permit to reach temperatures down to few nK, at which λdB is not only larger

that the particle radius, but also exceeds the average inter-particle distance.

The low-temperature behavior of bosons, particles with integer spin, was theoretically investi-

gated in 1924 by Bose and Einstein [4, 5]. They predicted a low-temperature phase transition for

noninteracting particles, the so-called Bose-Einstein condensation, in which all the bosons con-

dense in the ground state of the system, sharing the same wave function and behaving as a coherent

matter wave. The first experimental observations of this new phase of matter were realized in 1995

for dilute clouds of alkali atoms [9–11]. Fermions, particles with half-integer spin, cannot occupy

the same quantum state due to Pauli exclusion principle. Hence, a quantum degenerate Fermi gas

consists of N particles occupying the N lowest energy eigenstates of the system, a phase achieved

by several experimental groups starting from 1999 [12, 47, 48].

Interactions are crucial in determining properties and stability of quantum-degenerate systems.

A Bose gas, for instance, collapses if the particles attract each other, while strongly-interacting

bosons can behave as impenetrable particles and act as fermions in low-dimensional systems.

On the other hand, interacting fermions can build-up “pairs” and condense as composite bosons.

Due to the fundamental role of interactions, we dedicate Sec. 1.2 to the analysis of the two-body

scattering process between cold particles. In particular, in Sec. 1.2.1, we describe how isotropic,

short-ranged interactions can be replaced by an effective contact potential, ruled by a single param-

eter: the s-wave scattering length. Remarkably, strength and sign of the contact potential can be

experimentally adjusted in cold atomic system, through the mechanism of Feshbach resonances,

discussed in Sec. 1.2.2.
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The interaction between an induced dipole moment and an external electric field is the basic

mechanism allowing to store ultracold quantum gases in artificial periodic potentials of light: the

optical lattices [17]. As discussed in Sec. 1.3, this possibility paved the way to innovative con-

trol and manipulation techniques, earning to matter waves in optical lattices the title of quantum

simulators of solid-state systems [18–20]. The interplay between lattice potential and interatomic

interactions is modeled by effective Hamiltonians, able to predict the occurrence of quantum phase

transitions. Furthermore, optical potentials allow to strongly confine cold gases in thin pancake- or

cigar-shaped traps, making it possible to achieve of low-dimensional systems where new quantum

phases can emerge. An overview on the scattering process in this kind of geometries is presented

in Sec. 1.4.

Finally, more general Hamiltonians can be mimicked by resorting to interatomic potentials

going beyond the contact approximation. In this direction a leading role is played by the dipolar

interaction, which, as presented in Sec. 1.5, manifests both long-range and anisotropic character.

The experimental realization of BECs of magnetic dipoles [27–29] and the recent progresses with

the association of heteronuclear molecules [30, 31], boosted both theoretical and experimental

investigations in this direction.

1.2 Two-body scattering of ultracold particles

The behavior and the experimental realization of ultracold quantum gases are strictly related

to the way in which their elementary constituents interact between each other. Typically, the

interatomic potential is isotropic and short ranged and, as we will see in Sec. 1.2.1, this allows to

replace it with a contact pseudopotential, whose strength and sign depend on the s-wave scattering

length a3D. A Bose-Einstein condensate (BEC) counting a large number of atoms is stable only

in the presence of interparticle repulsion. Instead, a condensate of attractive bosons collapses if

the number of particles exceeds a critical threshold [49]. Pauli exclusion principle prevents two

fermions in the same spin state to undergo s-wave scattering. However, if different internal states

coexist, by tuning a3D one can explore the crossover from a BEC of composite molecules to a

superfluid of weakly-bound Cooper pairs, described by the Bardeen-Cooper-Schrieffer theory of

superfluidity [50]. Thanks to the mechanism of Feshbach resonances, described in Sec. 1.2.2, a3D

actually becomes an experimental knob, adjustable via an external magnetic field.
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Figure 1.1 : Schematic of the three dimensional scatter-

ing from a central potential V(r). In the relative coordi-

nate frame an impinging plane wave of wave vector ki

enters in the region |r|<r0 in which the central potential

V(r) is considerable. After the scattering process, and

far from the scattering center, the wave function is the

superposition of an emerging plane wave of wave vec-

tor k plus an outgoing spherical wave, whose amplitude

is modulated in space depending on θ, the angle between

k and the detection direction.

1.2.1 Contact pseudopotential for 3D scattering

Let us consider the elementary problem of two particles of mass m1 and m2 in a three-

dimensional space, interacting via a relative potential V(r1− r2), where r1 and r2 are the particles’

positions. In a wide range of circumstances the interaction is isotropic, so that the potential only

depends on the relative distance r = |r1 − r2|. Usually, V(r) decays fast with r, manifesting a

finite-range character and being relevant only within a region of radius r0. A well-known example

violating these properties is given by the dipolar interaction, which will be extensively treated in

Sec. 1.5. The solution of the two-body scattering problem for V(r) comes from the relative-motion

Schrödinger equation [
V(r) −

!
2

2µ
∇2

r

]
Ψ(r) = EΨ(r), (1.2.1)

in which we introduced the reduced mass µ=m1m2/(m1+m2) and the relative coordinate r=r1−r2.

In this frame of reference an incoming wave packet of wave vector k is scattered by the central

potential V(r), as schematically represented in Fig. 1.1. Far from the collision center, i.e. for

r≫r0, the wave function takes the asymptotic form [51]

Ψ(r) ∝ eik·r
+ f3D(k, θ)

eikr

r
, (1.2.2)

that is, the superposition of an emerging plane wave of wave vector k plus an outgoing spherical

wave, modulated by the 3D scattering amplitude f3D. For low scattering energies, this amplitude

takes the simple, θ-independent form

f3D =
1

−1/a3D + rek2/2 − ik

k→0−−−→ −a3D (1.2.3)

where the parameter re is the effective interaction range, while a3D is the s-wave scattering length

for the three-dimensional system. The predominance of s-wave scattering at low temperatures

appears from a proper rewriting of Eq. (1.2.1). Being V(r) a central potential, the wave function

Ψ can be factorized in its radial and angular contributions as Ψ(r)=ψℓ(r)Ym
ℓ

(θ, φ), where Ym
ℓ

is a
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potential well. The main features of V are caught by the square potential Vsq [dashed (red) line]. Right:

3D s-wave scattering length a3D [solid (red)] and bound state energies Ebs [dashed (green)] for the potential

Vsq introduced in the left panel. A divergence in a3D occurs each time a new bound state is allowed in the

system, i.e., when the resonant condition Ebs =0 is fulfilled. The unit of energy is ε0 =!
2/2µr0, µ being the

reduced mass of the two-body system.

spherical harmonic with ℓ and m the angular momentum quantum numbers. The resulting radial

equation is [
V(r) +

!
2ℓ(ℓ + 1)

2µr2
− !

2

2µ

(
∂2

∂r2
+

2
r

∂

∂r

)]
ψℓ(r) = Eψℓ(r). (1.2.4)

For ℓ!0 a contribution ∝1/r2 adds to V(r), forming a centrifugal barrier. Its height, converted in

temperature, is typically of the order of 1mK so that in the micro- and nano-K regime the barrier

freezes out the scattering in ℓ > 0 states. This approximation fails only in some special cases

in which, beyond the centrifugal barrier, there exists a bound state resonant with the scattering

energy, situations in which a so-called shape resonance occurs [52]. The value of the scattering

length a3D for a given potential V(r) can be deduced by solving Eq. (1.2.4) for ℓ = 0 and k→ 0.

From Eqs. (1.2.2) and (1.2.3) it follows that the asymptotic behavior of this zero-energy s-wave

solution takes the simple form

ψs(r) ∝ 1 − a3D

r
, (1.2.5)

from which a3D is immediately defined. The low-k behavior of the scattering amplitude f (k) =

−(ik + 1/a3D)−1 is exactly reproduced by the regularized contact pseudopotential

V3D
c (r) · · · =

2π!2

µ
a3D δ(r)

∂

∂r
(r · · · ). (1.2.6)

This means that, for low-energy scattering, one is allowed to replace the real potential V(r) by

the contact potential V3D(r). A useful quantity is the 3D coupling constant of the pseudopotential

g3D=2π!2a3D/µ, which measures the strength of the regularized δ.

In order to predict the value of the s-wave scattering length for two cold particles, the knowl-

edge of the relative potential V(r) is of fundamental importance. Generally, two distant neutral
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onantly enhanced. Figure from [13].

particles attract each other via the van der Waals potential VvdW(r)=−C6/r
6, for which the coeffi-

cient C6 defines the characteristic length ac = (2µC6/!)1/4. For alkali atoms ac is typically of the

order of some nanometers [19]. When particles get extremely close, the short-range interaction

prevails on VvdW, resulting in a strong repulsion. A qualitative sketch of the inter-particle potential

is presented in Fig. 1.2 (left), showing how the competition of short-range repulsion and long-

range attraction gives rise to a potential well, which can support several bound states. To get a

feeling of their fundamental role in determining a3D, one can consider the instructive toy potential

Vsq shown in Fig. 1.2 (left): the long-range attraction is mimicked by a square well of depth V0

for |r|<r0, while the short-range repulsion is taken into account by a hard-wall in r=0. For such a

potential, Eq. (1.2.4) can be solved analytically, determining both asq and the energy of the bound

states Ebs. Their behavior is shown in Fig. 1.2 (right) for increasing values of the well depth V0.

A series of resonances occurs in the scattering amplitude, which oscillates from −∞ to +∞. Even

if Vsq has a deep attractive well, the corresponding pseudopotential (1.2.6) spans all the regimes

from no interaction to strong attraction and repulsion. In particular the scattering amplitude asq

diverges each time a new bound state is allowed in the system, i.e. when Ebs is resonant with zero.

The behavior of a3D for the real interatomic potential V(r) [Fig. 1.2 (left)] is qualitatively the same.

More refined toy models, like the one presented in [53], show that, far from the resonances, the

lengthscale of a3D is typically ac, but an ab initio calculation of its exact value requires the knowl-

edge of the short-range behavior. For this reason such calculations are a vary hard theoretical task.

However, in many cases, the scattering length a3D for a given pair of atomic states, determined

experimentally, shows a remarkable agreement with the theoretical predictions [54].

1.2.2 Tuning the contact interaction: Feshbach resonances

The value of a3D strongly affects the physics of an ultracold gas and it is interesting to find

a way to tune experimentally its value. The simple example of Vsq (cf. Fig. 1.2) shows how, by
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changing the shape of the potential, one can induce resonances in a3D. Unfortunately, once the

atomic species in play are fixed, their reciprocal scattering potential is in turn assigned and cannot

be modified. On the other hand, in order to tune a3D one can take advantage of the existence of

different channels for the scattering process. This idea was introduced independently by Feshbach

[55, 56] and Fano [57], respectively in the context of nuclear and atomic physics. The origin of

the Fano-Feshbach resonance, or more commonly just Feshbach resonance, can be deduced by the

simple picture depicted in Fig. 1.3. The actual scattering process takes place in the background

channel, corresponding to the ground state spin configuration of the incoming particles. From

Vbg(r) one gets the background scattering length abg. If particles are in a different spin configu-

ration they feel a different relative potential Vc(r), which we assume admitting a bound state of

energy Ec. Such a channel is commonly referred to as the closed one. If the scattering energy E is

far from Ec, the existence of the closed channel is unperceived by the particles, so that a3D =abg.

But, if E ∼ Ec, even a small coupling between the channels would result in a strong amplifica-

tion of the scattering length, being the closed-channel bound state resonant with the scattering

energy. The key to the experimental tuning of a3D is that, having the two spin configurations dif-

ferent magnetic moments, the relative distance between the channels can be adjusted by a static

magnetic field.

By tuning the applied magnetic field B, Ec crosses zero and, correspondingly, the scatter-

ing length diverges, similarly to the case of the square potential depicted in Fig. 1.2. A sim-

ple expression for the s-wave scattering length as a function of the applied field B has been

introduced in [58]:

a3D(B) = abg

(
1 −

∆

B − B0

)
, (1.2.7)

and its behavior is plotted in Fig. 1.4, together with the dependence on B of the binding energy

Eb of the dimer state associated to the resonance. The value B0 indicates the point at which the
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resonance occurs, while ∆ sets its width, a widely varying parameter which in average remains

around 1G. For B=B0 + ∆ one finds a3D=0, i.e. the ideal limit of noninteraction. Far from B0 the

scattering length tends to its background value abg. The energy of the weakly bound state Eb is

linear in the magnetic field, with a slope fixed by the difference in magnetic moment δµ between

open and closed channel. Close to the resonance, the strong coupling between the two channels

changes this linear into a quadratic behavior, with the typical dependence Eb=−!2/2µa2
3D (cf inset

of Fig. 1.4). Note that both ∆ and abg can be positive or negative. Since their first observation in a

BEC [59], Feshbach resonances became a fundamental tool in cold-atoms experiments, allowing

not only to set the interaction regime but also to dynamically change it during the experiment.

For instance, when a resonance is adiabatically crossed from the negative- to the positive-a3D

side, the two separate atoms can be driven into the dimer state [13]. Feshbach resonances can

be similarly obtained by optically coupling the open and closed channel [60, 61]. However, this

method, although in principle more flexible, suffers of heating issues which makes it less suitable

than the magnetic mechanism in cold-atoms experiments.

1.3 Many-body physics in optical lattices

A versatile and useful technique to trap cold atoms relies on the possibility of trapping neutral

atoms with laser light. Exploiting the interference of different beams, it is possible to create a

periodic light-induced potential, known as optical lattice (OL). These light potentials were origi-

nally conceived as convenient tools in the cooling of cold gases [62, 63]. Nevertheless, since their

first realizations in the early ’90s [64, 65], they turned out to be a useful tool to trap and study

particles in periodic potentials. In the last years, the investigation of propagation of matter waves

in ideal periodic, quasi-periodic, and disordered optical potentials has allowed to create a close

link between cold atoms and solid-state physics [19].

In this section we review the origin and versatility of optical potentials, stressing the possibility

to mimic condensed-matter systems by loading cold atoms in optical lattices (Sec. 1.3.1). Then,

we introduce in Sec. 1.3.2 the Hamiltonian describing a system of contact-interacting bosons in a

periodic potential: the Bose-Hubbard model. We point out the quantum phases of such a system,

together with their experimental detection. Finally, we consider how the scenario is modified when

the interparticle interaction is long-ranged, intoducing and discussing the extended Bose-Hubbard

model in Sec. 1.3.3.
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Figure 1.5 : Left: Schematics of a Gaussian-beam optical potential of central width w0 and Rayleigh length

zR. For a beam red-detuned to the closest atomic transition, the optical potential creates a quasi-harmonic

trapping around the beam focal point, in the region enclosed by the dot-dashed (black) line. Right: Same as

left, but for two counterpropagating beams of wavelength λL. The interference light pattern results in a peri-

odic optical potential along the lasers axis. This is the simplest configuration for a one-dimensional optical

lattice. Atoms are trapped in a linear array of pancake-shaped micro trap. Lengths are in arbitrary units.

1.3.1 Origin and features of optical potentials

Under the action of an electric field the atoms develop an induced electric dipole moment

proportional to the field intensity [66]. When immersed in a laser beam of frequency ωL, an atom

gets polarized by the electric component of radiation. The optical potential

Vo = −
1
2
α(ωL)|E(r)|2 (1.3.1)

arises from the interaction of the induced dipole with the polarizing field itself [17, 67]. The

direction of the optical force crucially depends on the sign of the atomic polarizability α(ωL).

In the vicinity of an atomic transition between a ground state |g〉 and an excited state |e〉, with

Ee − Eg=!ωeg, one can approximate

α(ωL) ∼ | 〈e|d̂E|g〉 |2

!(ωeg − ωL)
, (1.3.2)

being d̂E the dipole operator in the field direction. Since the intensity of the light field I(r)∝ |E(r)|2,

it follows that atoms are attracted at the intensity maxima if the laser light is red-detuned with

respect to the atomic transition (i.e., ωL < ωeg), while they move towards intensity minima for

blue-detuned beams (i.e., ωL>ωeg).

A stand-alone Gaussian beam is already sufficient to generate a trapping potential. In polar

coordinates around its propagation axis z, its intensity profile is

I(ρ, z) ∝
w2

0

w2(z)
e
− 2ρ2

w2(z) , (1.3.3)

where the function w(z)=w0

√
1 + z2/z2

R
accounts for the beam divergence far from its focal plane

z=0. Typically, the central beam waist w0∼100µm, while the Rayleigth length zR=πw
2
0/λL is in

the millimeter or centimeter range. For a red-detuned beam, the optical potential (1.3.1) creates
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(a) (b)

Figure 1.6 : (a) Two- and (b) three-dimensional optical lattices, obtained by superimposing two or three

pairs of counterpropagating laser beams. In (a), atoms are confined along quasi-one-dimensional tubes.

Figure from [19]

an attractive well along the beam axis and around its focal point, as represented in Fig. 1.5 (left).

The realization of periodic potentials naturally comes by exploiting the interference of counter-

propagating laser beams. If two equally polarized Gaussian beams of wavelength λL interfere,

the resulting light intensity presents an interference pattern. Consequently, the optical potential is

periodically modulated in space and, in the vicinity of the focal plane, it takes the form

V1D
OL = −V0 sin2(2πz/λL) e

− 2ρ2

w2(z) , (1.3.4)

where V0 represents the maximum depth of the the optical potential. This example of 1D OL is

sketched in Fig. 1.5 (right). An atomic cloud in a deep potential of this kind gets “sliced” into

pancake-shaped traps of radius ∼w0 and thickness ∼λL/2, which provides the lattice constant.

The interference mechanism can be immediately extended to higher-dimensions. Bidimen-

sional OLs result from the interference of two pairs of counterpropagating beams, as depicted

in Fig. 1.6 (a). In this case atoms form a collection of highly elongated cigar-shaped traps in

which the axial trapping frequency (of the order of 10-200Hz) is much smaller than the radial one

(∼100kHz). Three orthogonal standing waves generate a micro-trap structure with the periodicity

of a simple cubic lattice, as shown in Fig. 1.6 (b). For distances r≪w0 from the common focal

point, the trapping potential is well approximated by a homogeneous periodic lattice potential

V3D
OL = V0

(
sin2(2πx/λL) + sin2(2πy/λL) + sin2(2πz/λL)

)
. (1.3.5)

Nowadays the degree of control on the optical potentials is such that, playing around with lasers

frequencies, geometries and polarizations, a plethora of geometrical configurations can be exper-

imentally realized [40, 67], allowing to control the system up to the single-site and single-atom

level [68, 69].

To investigate the behavior of a quantum gas in an OL, we start by considering a single atom

in a periodic potential like those of Eq. (1.3.5). An important energy scale is fixed by the recoil

energy Er = 2π2
!

2/mλ2
L
, that is the kinetic energy that a laser photon can transfer to an atom of
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s = V0/Er J/Er J(2)/J | 〈w0|φ0〉 |2

3 0.111 0.101 0.972

5 0.066 0.052 0.984

10 0.019 0.012 0.994

15 0.007 0.003 0.996

20 0.002 0.001 0.998

Table 1.1 : For 1D optical lattices of different depths

s = V0/Er. Behavior of the hopping coefficients to

nearest J and next-nearest neighbors J(2), obtained

using the Wannier functions trough Eq. (1.3.10). We

also show the overlap between the single particle

Wannier function w0 and the Gaussian ground state

φ0 of the single-site harmonic approximation. Data

from [19].

mass m. The depth of the OL is measured by the dimensionless ratio

s =
V0

Er

. (1.3.6)

At low temperatures, an atom ideally occupies the vibrational ground state of the single site po-

tential well, but can still gain kinetic energy by tunneling from one site to a neighboring one. The

energy eigenfunctions of a particle in a periodic potential are the Bloch states

ψn,p(r) = un(r) eik·r, (1.3.7)

where n is the band index and p the particle quasi-momentum within the first Brillouin zone (FBZ)

of the reciprocal lattice [1]. The Bloch functions (1.3.7) are essentially plane waves modulated by

a periodic function un(r) having the same periodicity of the potential. Consequently, each ψn,p(r)

extends over the whole lattice. To evaluate the hopping between lattice sites it is convenient to

introduce the Wannier functions wn,R(r), related to the Bloch functions by

wn,R(r) =
1
√

Ns

∑

k

e−ik·r ψn,p(r), (1.3.8)

where Ns is the number of sites of the lattice, where k takes the Ns allowed values in the first Bril-

louin zone. The set of functions wn,R(r) represents a single-particle orthonormal basis, alternative

to the Bloch one. Each Wannier function is centered around the lattice site position R and only

depends on the distance r − R. The Hamiltonian for a free atom in a isotropic periodic potential

like those of Eq. (1.3.5) is then

Hsingle = −
∑

R,R′,n

Jn(R − R′)a†
R,n

aR′,n, (1.3.9)

where aR′,n is the annihilation operator for a particle in the corresponding Wannier state and Jn(R−
R′) quantifies the gain in kinetic energy due to the tunneling from the site centered in R to that

centered in R′. The tunneling coefficient depends on the overlap between wR,n and wR′,n [32]:

Jn(R − R′) = −
∫

d3r w∗n,R(r)
[
V3D

OL(r) −
!

2∇2

2m

]
wn,R′(r). (1.3.10)
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Jn rapidly decays with the distance R −R′ (c.f. Tab. 1.1), so that, typically, only nearest-neighbor

hopping is taken into account. At low energies, transitions to excited bands are unlikely, so that

one can restrictHsingle to the n=0 band, dropping the index n and the corresponding sum.

In the deep-lattice limit s ≫ 1, the bottom of each lattice site is well approximated by a

harmonic potential of level spacing !ω0 = 2Er

√
s≫Er and characteristic length ℓ0 = (!/mω0)1/2.

Within this approximation, a single-particle Wannier function w0 can be replaced by the Gaussian

ground state φ0 of the harmonic trap. The validity of this equivalence can be tested by looking at

the overlap | 〈w0|φ0〉 |2 as a function of s, reported in Tab. 1.1. The harmonic approximation turns

out to be suitable in the evaluation of on-site properties, as will be pointed out in the next section.

However, even when the overlap is very large, the evaluation of the tunneling coefficient replacing

w0 by φ0 in Eq. (1.3.10) gives wrong results. This is because the value of Jn critically depends on

the tails of the functions, that are very different between w0 and φ0. In the deep lattice regime, it

is anyhow possible to write approximated expressions for the tunneling coefficient. In particular,

for s>15, one has [19]

J0(λL/2) = J ≃
4
√
π

Er s3/4 e−2
√

s. (1.3.11)

1.3.2 Bose-Hubbard model

Let us now consider a matter wave made of N bosons in a isotropic optical lattice (OL), like

the one in Eq. (1.3.5), in the presence of a short-range interparticle interaction Vint. If two bosons

occupy the same lattice site, centered in R, both of them are described by the same Wannier

function wR. Their interaction energy is [32]

U =

∫∫
d3r1 d3r2 w∗R(r1) w∗R(r2) Vint(|r1 − r2|) wR(r1) wR(r2). (1.3.12)

If the potential range is much smaller than the lattice spacing λL/2, the interaction between parti-

cles sitting in different sites can be neglected. As discussed in Sec. 1.2.1, an isotropic and short-

ranged potential like Vint can be replaced by the corresponding pseudopotential V3D
c [Eq. 1.2.6].

In this case Eq. (1.3.12) becomes

U = g3D

∫
d3r|wR(r)|4

s≫1−−−→
√

2π
a3D

λL

Er s3/4. (1.3.13)

The value of U for s≫ 1 can be easily reproduced by the local harmonic approximation of the

lattice potential.

A simple model for the description of bosons in an OL can be obtained summing the kinetic

energy, as expressed in Eq. (1.3.9), and all the two-body contributions U [Eq. (1.3.12)]. In this
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way one obtains the Bose-Hubbard model (BHM) Hamiltonian [70]

HBHM = −J
∑

〈R,R′〉
a
†

R
aR′ +

U

2

∑

R

nR(nR − 1) +
∑

R

εRnR. (1.3.14)

In Eq. (1.3.14) the symbol 〈R,R′〉 denotes that the first sum includes, for each site at position R,

only the R′ of nearest-neighbor sites. The operator aR annihilates a particle in the site labeled

by R, while nR is the corresponding number operator. The hopping coefficient J = J0(R − R′) is

typically positive. The quantity εR, which gives the zero-point energy of the single-site trap, can

be spatially dependent if there is an external trapping potential. Unless differently specified, we

will consider the uniform case in which εR=ε0 for any R. Case by case, depending on the kind of

interaction and on the OL considered, a careful mapping is needed to relate the physical quantities

of the system with the model parameters J, U, and εR. The BHM remains valid for anisotropic

lattices, provided a direction dependence of the tunneling parameters is included.

Let us consider an OL in which the density of bosons per site (i.e., the lattice filling factor) is

one. In such a system, a quantum phase transition ruled by the ratio U/J emerges from the BHM.

In the limit U = 0, the ground state of the system is a BEC in which all atoms occupy the p = 0

Bloch state. In the periodic potential, this translates in a coherent superposition of site-localized

states, which corresponds to a superfluid (SF) phase. This implies that the number of atoms

per site fluctuates around the average value of one. Hence, in the SF phase, there is a non-zero

probability of finding two or more atoms in the same site. For finite U>0, such configurations are

energetically disfavored, and, in the limit U ≫ J, the system is driven towards the configuration

with exactly one atom per site. This corresponds to the Mott insulator (MI) phase. Note that in the

case of two-body attraction, i.e., U < 0, the ground state of the BHM is the collapse of all bosons

in the same lattice site.

This quantum phase transition has been observed experimentally in 2002 for a 3D OL loaded

with 87Rb atoms [24]. Once the scattering length a3D is set to a positive value, the ratio U/J can be

adjusted via the lattice depth s. In a shallow lattice, tunneling is naturally favored, and the system

tends to the SF phase. As it can be deduced from Eqs. (1.3.11) and (1.3.13), for a deep lattice

U/J ∝ exp(2
√

s), so that for s≫ 1, one can approach the condition U ≫ J and the MI becomes

the ground state. In [24] the phase transition has been detected by time-of-flight imaging of the

matter wave, after its release from the trapping and optical potentials [c.f. Fig. 1.7 (left)]. If the

trapped matter wave is in the SF phase, after expansion, it develops interference peaks at positions

corresponding to the Brillouin zones’ centers. These comes from the coherent superposition of

components originally localized around different lattice sites. In the MI, instead, atoms in dif-

ferent sites are completely incoherent, so that, once released, the cloud just expands ballistically

without any interference phenomena. The transition between the two regimes shows up in the
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Figure 1.7 : Left: Schematic setup for absorption imaging after a time-of-flight period. The matter wave

(MW) is released from its trap and falls under the effect of gravity. An imaging laser beam, resonant with the

atomic transition, projects the cloud shadow on a CCD chip which captures the image. Picture from [19].

Right: Time-of-flight images of MWs released from optical lattices of different depths. In (a) s = 0 and

the image is that of a nearly pure BEC. In (b) s = 3 and the interference peaks are the signature of the

superfluid phase. The other panel correspond to (c) s = 7, (d) 10, (e) 13, (f) 14, (g) 16, and (h) 20. The

interference pattern progressively disappears by increasing s, marking the transition to the Mott insulating

phase. Figures from [24].

experimental pictures proposed in Fig. 1.7 (right). The SF-MI crossover is marked by the fading

of the interference peaks when s is progressively increased.

1.3.3 Extended Bose-Hubbard model

The BHM relies on the hypothesis that bosons in two adjacent sites do not interact. The

development of cooling and trapping techniques for dipolar particles makes it possible to realize

systems beyond this limit [32]. As it will be discussed in Sec. 1.5, the dipolar interaction cannot be

replaced by a contact potential, so that two-body non-local terms need to be added to the system

Hamiltonian. The presence of a long-ranged interaction enriches the phase diagram with respect

to that of the BHM. The simplest model accounting for non-zero-range interactions is the extended

Bose-Hubbard model (EBHM) [22], which reads

HEBHM = −J
∑

〈R,R′〉
a
†

R
aR′ +

U

2

∑

R

nR(nR − 1) + V
∑

〈R,R′〉
nRnR′ + ε0

∑

R

nR. (1.3.15)

The nonzero value of V takes into account only the long-range interaction between atoms sitting

in nearest-neighboring sites. The coefficient V can be evaluated similarly to U [Eq. (1.3.12)] by

the two-body interaction potential Vint and the Wannier functions wR [32]:

V =

∫∫
d3r1 d3r2 w∗R(r1) w∗R′(r2) Vint(|r1 − r2|) wR(r1) wR′(r2). (1.3.16)

Long-range interactions might induce also other terms like two-particle hopping and density-

assisted tunneling [71], which are usually neglected in the standard EBHM.
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Figure 1.8 : Left: Phase diagram of the extended Bose-Hubbard Hamiltonian [Eq. (1.3.15)] for a one-

dimensional lattice at unitary filling factor. Full lines indicate the insulator-superfluid (SF) crossovers. The

dashed line marks the first-order transition between the two insulating phases: Mott insulator (MI) and mass

density wave (MDW). The shaded region corresponds to V >U. Results, from [22], have been obtained by

density-matrix renormalization calculations. Right: Sketches of the system configurations in the SF, MI, and

the two-fold degenerate MDW.
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Figure 1.9 : Ground-state phase diagram for

the 1D EBHM. Phase boundaries have been

numerically evaluated via density-matrix renor-

malization group techniques in [72]. Besides

the phases already presented in Fig. 1.8, the

Haldane insulator (HI) appears.

The phase diagram of the EBHM in (1.3.15) is presented in Fig. 1.8 for a 1D OL loaded at

unitary filling factor. Along the line V=0,HEBHM reduces toHBHM and we find again the SF-MI

transition. When J → 0, two different insulating phases exist. As long as U > 2V , the on-site

repulsion is strong enough to push atoms apart, making of the MI the system ground state. On

the other hand, as soon as U < 2V , the nearest-neighbors repulsion gets stronger than the on-

site one, so that atoms prefer to doubly occupy a site and leave empty the neighboring ones [c.f.

Fig. 1.8 (right)]. The corresponding two-fold degenerate ground-state configurations are named

mass density wave (MDW). In these states, the matter wave density is periodically modulated with

twice the period of the OL.

It has been recently pointed out that the presence of long-range interactions in the EBHM

can lead to the emergence of a further insulating phase, the Haldane insulator (HI) [73], char-

acterized by an underlying hidden order. As shown in Fig. 1.9, such a phase can be detected

between the MI and MDW. In the HI, the system is in a superposition of different configurations
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in which a twice occupied site is always followed by an empty one, but the two can be separated

by a string of arbitrary length of singly-populated sites [72]. This means that configurations like

{· · · 1, 2, 1, 0, 1, 1 · · · } or {· · · 2, 0, 2, 1, 1, 0 · · · } are compatible with the HI phase, but not configu-

rations like {· · · 2, 0, 1, 1, 0, 2 · · · }, since, excluding the singly occupied sites, two empty sites are

consecutive. The preponderance of such configurations is detected evaluating the mean value of

an appropriate operator, called string correlator, on the ground state of the system.

Other relevant phases occur for non-unitary filling. One can consider, for instance, the case

of a 2D square lattice with filling factor 1/2. Limiting the model to nearest-neighbors terms, the

ground state of the system for J≪V is a checkerboard phase, in which, similarly to the MDW, four

empty sites surround each occupied one. It is also interesting to include in the EBHM Hamiltonian

[Eq. (1.3.15)] interactions beyond the nearest-neighbor one. It is possible to progressively consider

farther sites [32] as well as taking all the contributions up to infinite distances [74].

1.4 Scattering in reduced dimensions

The experimental control on optical and magnetic potentials allows to strongly confine a mat-

ter wave along one or more directions, leading to systems in which the effective dimensionality

is reduced. In this section we describe how the trapping potential directly affects the two-body

scattering of cold particles. We begin in Sec. 1.4.1, by introducing the contact pseudopotentials

for strictly 2D and 1D geometries. We then show, in Sec. 1.4.2, how the 3D contact potential

[Eq. (1.2.6)] defines effective 2D and 1D scattering lengths in strongly-confined systems, dis-

cussing the emergence of confinement-induced resonances when a3D or the trapping frequencies

are modified. Finally, we address the problem of scattering in mixed dimensions, considering the

interaction between a free particle and a trapped one. In particular, we focus in Sec. 1.4.3 on the

exemplary case of 3D-1D scattering.

1.4.1 Contact pseudopotential in 1D and 2D

Before investigating the combined effects of trapping and s-wave interaction, it is useful to

introduce the scattering formalism in strictly 2D and 1D systems. As for the 3D case (cf. Sec. 1.2),

also in 2D and 1D it is possible to replace a short-ranged potential with a contact pseudopotential,

weighted by a scattering length.
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Figure 1.10 : Squared modulus of the 2D low-k scat-

tering amplitude ζk [Eq. (1.4.6)]. Here a2D is the 2D

s-wave scattering length, while the wavevector k is

related to the scattering energy by E = !2k2/2µ. The

limit a2D → ∞ (a2D → 0) corresponds to weakly at-

tractive (repulsive) interaction.

Let us start from the 2D case. In the presence of an isotropic potential V(ρ), whose finite range

of interaction is ρ0, the relative-motion 2D Schröedinger equation is
[
V(ρ) − !

2

2µ
∇2
ρ

]
Ψ(ρ) = EΨ(ρ). (1.4.1)

The scattering process looks similar to the 3D one sketched in Fig. 1.1, and, for interparticle

distances ρ≫ρ0, the relative-motion wavefunction is the superposition of the incident plane wave

plus an outgoing circular wave:

Ψ(ρ) ∝ eik·ρ −
√

i

8π
f2D(k, θ)

eikρ

√
kρ
. (1.4.2)

In Eq. (1.4.2) we introduced the quantity f2D(k, θ), that is the 2D scattering amplitude modulating

the outgoing circular wave [51, 75]. It is convenient to factorize the wavefunction as Ψ(ρ) =

ψm(ρ)eimθ, so that we are left with the radial equation
[
V(ρ) +

!
2m2

2µr2
− !

2

2µ

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ

)]
ψm(ρ) = E ψm(ρ), (1.4.3)

where m is the angular-momentum quantum number. Similarly to the 3D case [Eq. (1.2.4)], a

potential barrier emerges for states with m!0, so that only scattering in s-wave is relevant at very

low energies. For E→0, Eq. 1.4.3 is solved by

ψs(ρ) = J0(kρ) − i

4
f2D(k) H

(1)
0 (kρ), (1.4.4)

where J0 and H
(1)
0 are the Bessel and Hankel functions. Contrary to the 3D case, the scattering

amplitude f2D remains k-dependent at low energies [76]:

f −1
2D (k)

k→0−−−→ ζ−1
k −

r2
e k2

8π
, (1.4.5)

with the introduction of the effective range of interaction re and of the low-k leading term

ζk =
2π

iπ2 − ln
(

eγ

2 ka2D

) . (1.4.6)
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Here a2D is the the 2D s-wave scattering length and γ ≃ 0.577 is the Euler-Mascheroni constant.

One obtains again the solution (1.4.4) of the Schrödinger equation 1.4.3 by replacing the true

potential V(ρ) by the 2D contact pseudopotential [77, 78]

V2D
c (ρ) = −

π!2

µ

1
ln(a2D/a)

δ(ρ)
(
1 − ln(ρ/a)ρ

∂

∂ρ

)
, (1.4.7)

for an arbitrary choice of the unit of length a. Note that the 2D scattering length a2D can assume

only positive values, ranging from zero to +∞. The strength of the regularized bidimensional δ

is set by the coupling constant g2D = −(π!2/µ)/ ln(a2D/a). The square modulus of the scattering

amplitude (1.4.6), plotted in Fig. 1.10, constitutes an indicative quantity to visualize the properties

of the 2D scattering. Being linearly proportional to the scattering cross section, it quantifies how

likely the two particles feel each other. For ka2D=2/eγ, |ζk|2 reaches its maximum value, marking

the strong-interaction regime. Elsewhere the cross section decays logarithmically. Furthermore,

the pseudopotential (1.4.7) admits a dimer state of energy

E2D
dim = −

1
µ

(
!

eγa2D

)2
. (1.4.8)

In the limit a2D→∞ (i.e., g2D→0−) the particles weakly attract each other. For a2D→0, instead,

the dimer state becomes infinitely deep in energy and the interaction results weakly repulsive (i.e.,

g2D→0+).

For a 1D system we can proceed similarly. Let us consider a symmetric potential V(x), whose

finite range is x0. In this case the Schrödinger equation reduces to
[
V(x) − !

2

2µ
∂2

∂x2

]
Ψ(x) = EΨ(x). (1.4.9)

For x≫ x0, the relative-motion wavefunction tends to a superposition of the impinging plane wave

plus an even and an odd scattered waves [14]:

Ψ(x) ∝ eikx
+ f e

1D eik|x|
+ f o

1D sgn(x) eik|x|, (1.4.10)

where fe and fo are the scattering amplitudes for the even and odd channels. A crucial difference

with respect to the 3D and 2D cases is that here none of the two scattering channels can be ne-

glected at low energies, since no centrifugal barrier exists. Nevertheless, important simplifications

come for identical particles. Being the center-of-mass wavefunction always symmetric under par-

ticle exchange, only the even (odd) channel will be experienced by bosonic (fermionic) particles.

The corresponding scattering amplitudes can be evaluated by solving Eq. (1.4.9) for Ψ(x)=ψp(x),

where we introduced the parity index p= e, o. The low-energy scattering length for each channel

is defined by [79]

a
p

1D = lim
x→∞

[
x −
ψ′p(x)

ψp(x)

]
. (1.4.11)
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Figure 1.11 : Left: Representation of two contact-interacting particles harmonically confined on a quasi-

1D tube. The tube size is fixed by the transverse-trapping characteristic length ℓ⊥. Right: Schematics of the

mechanism responsible for the occurrence of the confinement-induced resonance (CIR) in the quasi-1D tube

geometry. The energy levels near the resonance are plotted as a function of ℓ⊥/a3D.

We stress that in the limit of a contact potential, i.e. x0→ 0, fermions do not perceive the scat-

tering potential, being ψo(0) = 0. It follows that fo = 0 and fe = −1/ae
1D. For this reason, from

now on we will identify ae
1D as the unique 1D scattering length a1D, unless differently specified.

The same scattering properties are obtained if the potential V(x) is replaced by the 1D contact

pseudopotential

V1D
c (x) = −

!
2

µ

1
a1D
δ(x). (1.4.12)

1.4.2 Anisotropic trapping: confinement-induced resonances

In this section we consider the scattering process between two contact-interacting particles,

both subject to an external, highly anisotropic trapping potential. We start by considering two

particles, harmonically confined along the x axis, with transverse trapping frequency ω⊥ and os-

cillator length ℓ⊥ = (!/mω⊥)1/2, as sketched in Fig. 1.11 (left). The center-of-mass and relative

motions are decoupled. The relative motion Hamiltonian of such a quasi-1D system is described

by [
V3D

c (r) +
1
2
µω2
⊥ρ

2 − !
2

2µ
∇2

r

]
Ψ(r) = EΨ(r), (1.4.13)

where we adopted a cylindrical coordinates around the x axis. Two different lengthscales com-

pete in this system: one is set by a3D, appearing in the contact potential V3D
c [Eq. (1.2.6)], the

other by the oscillator length ℓ⊥. This tube can be considered as an effective 1D system if the

particle energy E≪!ω⊥. In this case the transverse component of Ψ(r) reduces to the transverse-

trap groundstate φ0(ρ). By setting Ψ(r) = φ0(ρ)ψ(x), Eq. (1.4.13) can be cast as an effective
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Figure 1.12 : Representation of two contact-

interacting particles harmonically confined on a

plane. The thickness of the quasi-2D system is fixed

by the characteristic length ℓz.

1D Hamiltonian for ψ(x):
[
V1D

c (x) − !
2

2µ
∂2

∂x2

]
ψ(x) = (E − !ω⊥)ψ(x), (1.4.14)

with the introduction in V3D
c of the effective 1D scattering length [14]

aeff
1D=

ℓ⊥
2a3D

(Ca3D − ℓ⊥), C ≃ 1.4604 . (1.4.15)

In virtue of Eq. 1.4.15, the 1D coupling parameter g1D=−!2/µaeff
1D diverges for ℓ⊥=Ca3D, leading

to a confinement-induced resonance [14, 80]. The physical origin of the resonance relies, once

more, on the coupling between a scattering and a closed channel. As sketched in Fig. 1.11 (right),

the resonance occurs when the scattering energy in the transverse groundstate coincides with that

of a transversely excited bound state. The confinement-induced resonance allows to tune the

effective interaction in quasi-1D systems and represents a crucial ingredient to reach strongly

interacting regimes in which bosons behaves as impenetrable particles [81, 82].

Analogously one can consider two contact-interacting particles harmonically confined on a

plane, as represented in Fig. 1.12. The Hamiltonian of this quasi-2D system is
[
V3D

c (r) +
1
2
µω2

z z2 − !
2

2µ
∇2

r

]
Ψ(r) = EΨ(r), (1.4.16)

where the trapping frequency ωz defines the confining length ℓz= (!/mωz)1/2 in the perpendicular

direction. For E≪ !ωz we can factorize Ψ(r) = φ0(z)ψ(ρ), conveniently setting the z axis as the

polar one and introducing the perpendicular ground state φ0(z). The quasi-2D system is equivalent

to the effective 2D one ruled by
[
V2D

c (ρ) −
!

2

2µ

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ

)]
ψ(ρ) = (E − !ωz/2)ψ(ρ). (1.4.17)

The effective 2D s-wave scattering length aeff
2D, entering in the contact pseudopotential V2D

c [see

Eq. (1.4.7)], is given by [15, 75]

aeff
2D =

2ℓz
eγ

√
π

B
exp
(
−
√
π

2
ℓz

a3D

)
, B ≃ 0.915 . (1.4.18)
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3D harmonic confinement

l0

A

B

Figure 1.13 : Representation of the 0D-3D

scattering process. The free atom A scatters on

the B atom, confined by an isotropic harmonic

trap of frequency ω0 and associated length ℓ0 =

(!/mBω0)1/2.

Figure 1.14 : Effective scattering length aeff
3D [solid (black)

curve] as a function of 1/a3D for mB/mA=0.15 (correspond-

ing to a trapped 6Li on which scatters a free 40K atom). The

unit of length aho corresponds to ℓ0 in our notation. Verti-

cal (red) lines mark the positions of the effective scattering

resonances. Figure from [16].

Generally, the effective 2D scattering amplitude f2D [Eq. (1.4.5)] will present the low-k resonant

behavior shown in Fig. 1.10, where the role of a2D is now played by aeff
2D. In the limit of a3D

small and positive, aeff
2D→0 and the contact interaction is repulsive. The effective potential can be

visualized as cylindrical step of radius ℓz and height V0 ∼ !2a3D/mℓ
3
z . On the other hand, for a3D

small and negative, we recover the limit of weak attraction aeff
2D →∞. In this case the potential

looks, indeed, like a shallow well supporting a weakly bound state.

1.4.3 Species-dependent trapping: mix-dimensional resonances

In Sec. 1.4.2 we discussed the emergence of confinement-induced resonances when two scat-

tering atoms are subject to the same confining potential. Here, we consider a slightly different

scenario in which only one of the two particles feels a confining potential, as depicted in Fig. 1.13.

This situation can be experimentally realized resorting to species-selective OLs [43, 44, 83]: op-

tical potentials engineered to act differently on different atomic species. To give an example, we

can consider the mixture of 87Rb and 41K used in [43], and suppose to generate an OL whose

frequency falls exactly between two 87Rb resonances. The attractive and repulsive optical forces

[Eq. (1.3.1)] on a 87Rb atom exactly cancel each other, so that only 41K atoms perceive the optical

potential.

We consider, in the following, the 0D-3D geometry investigated in [16] and sketched in

Fig. 1.13. The elementary scattering process involves a particle A, of mass mA, free to move in a
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3D space, and a particle B, of mass mB, trapped around rs by a harmonic potential of frequency

ω0 and associated length ℓ0= (!/mBω0)1/2. The Hamiltonian of such a system is

H = −
!

2

2mA

∇2
rA
−
!

2

2mB

∇2
rB
+

1
2

mBω
2
0|rB − rs|

2
+ V3D

c (|rA − rB|) , (1.4.19)

where the contact pseudopotential V3D
c is the one defined in Eq. (1.2.6). The scattering process is

ruled by the masses ratio mA/mB, the trapping frequencyω0 and the free-free scattering length a3D.

We restrict the analysis to low scattering energies E≪!ω0, such that after the collision the B atom

still occupies the groundstate of the harmonic trap. As shown in [16], the A-atom wavefunction

far from the scattering center rs is the same as that of an effective system in which the free A

atom impinges on a B pointlike scatterer fixed in rs (i.e., mB → ∞). In this equivalent system,

the scattering length a3D is replaced by an effective s-wave scattering length aeff
3D, depending on

mA/mB, ω0, and a3D, which intrinsically accounts for the actual quantum motion of the B atom in

the trap. An example of the nontrivial dependence of aeff
3D on the real scattering length a3D (for a

given masses ratio) is presented in Fig. 1.14. The effective scattering length experiences an infinite

set of mix-dimensional resonances due to the confinement of only one of the two particles. Hence,

conveniently setting rs=0, the effective Hamiltonian for A simply results

Heff = −
!

2

2mA

∇2
rA
+

2π!2

mA

aeff
3D δ(rA)

∂

∂rA

(rA · · · ). (1.4.20)

Other configurations, namely, the 1D-3D and 2D-3D one, have been theoretically investigated

[84, 85] and some predictions on the emergence of mix-dimensional resonances have been verified

experimentally [43].

1.5 Ultracold gases of dipoles

In many cases the behavior of a cold gas is well characterized by describing the interatomic

interactions in terms of the contact pseudopotential introduced in Eq. (1.2.6). However, one of

the most relevant cases where this is not true concerns particles with an intrinsic dipole moment,

either of electric or magnetic nature, which makes them interact via the dipolar potential Vdd,

defined below in Eq. (1.5.1). The dipole-dipole interaction (DDI) cannot be, generally, replaced

by a contact pseudopotential, due to its long-range and anisotropic nature [79]. In this section we

briefly discuss the main features of the DDI and their effects on an ultracold gas, pointing at some

experimental realization.
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Figure 1.15 : (a) Representation of two dipolar particles arbitrarily oriented in space. The dipole-dipole

interaction (DDI) [Eq. (1.5.1)] depends on their distance r, but also on the orientations e1 and e2. (b) When

the dipoles are aligned by a polarizing field the DDI simplifies [Eq. (1.5.2)] It depends on the distance r

and the angle θ between the direction of polarization and the relative position of the particles. (c) Schematic

representation of the DDI anisotropy. Two side-by-side dipoles repel each other, while they attract in head-

to-tail configuration. The crossover between these two regimes defines the magic angle θm ≃54.7◦ at which

the DDI vanishes.

1.5.1 Properties of the dipolar interaction

When two identical particles possess either a permanent electric or magnetic dipole moment,

the way in which they interact completely changes with respect to the central potential case dis-

cussed in Sec. 1.2. In particular, the dipolar potential Vdd not only depends on the interparticle

distance r, but also on the orientations of the two dipoles in space:

Vdd(r, e1, e2) = d2 (e1 · e2)r2 − 3(e1 · r)(e2 · r)
r5

, (1.5.1)

where e1 and e2 are the unit orientation vectors of the dipoles and d the dipolar strength, which

will be defined later in Eq. (1.5.4) for the electric and magnetic case. This picture, represented in

Fig. 1.15 (a), gets significantly simplified if we consider dipoles aligned by an external polarizing

field. In this case Eq. (1.5.1) reduces to

Vdd(r, θ) =
!

2r∗

m

1 − 3 cos2 θ

r3
, (1.5.2)

where θ is the angle between polarization direction and the relative position of the particles, as

represented in Fig. 1.15 (b). In Eq. (1.5.2) we introduced the dipolar length

r∗ =
md2

!2
, (1.5.3)
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Species dipole r∗

87Rb 1.0µB 0.11nm
52Cr 6.0µB 2.4nm
168Er 7.0µB 11nm
164Dy 10µB 21nm

40K87Rb 0.57D 0.62µm
23Na40K 2.72D 7.0µm

Table 1.2 : Dipolar moments of dif-

ferent atomic and molecular species.

The dipolar length r∗ is defined in

Eq.(1.5.3). Data from [25, 27–31].

which constitutes a fundamental lengthscale in dipolar systems. Two features, both captured in

Eq. (1.5.2), distinguish the DDI from the typical interatomic potential V(r) depicted in Fig. 1.2:

the long-range behavior and the anisotropic character. A necessary condition for a potential U(r)

to be considered finite-ranged in D dimensions is that the integral
∫ ∞

r0
U(r)dDr is finite, where

r0 is a short-distance cutoff [79]. The 1/r6 behavior of the van der Waals potential satisfies this

requirement for D = 1, 2, 3. The DDI decays as 1/r3, so that in 3D it is long-ranged. The

anisotropic character is encoded in the θ-dependence of Eq. (1.5.2). In particular, the DDI is

proportional to the d-wave spherical harmonic Y0
2 (θ,ϕ), being repulsive for particles sitting side

by side and attractive if they are in a head-to-tail configuration, as illustrated in Fig. 1.15 (c). The

crossover between these two cases defines the “magic angle” θm=arccos(1/
√

3)≃54.7◦, at which

the DDI vanishes. An important consequence of these two properties is that Vdd cannot be replaced

by an s-wave pseudopotential of the form (1.2.6), since also in the k→ 0 limit the scattering in

states with ℓ ! 0 remains relevant and, furthermore, different partial waves are coupled by the

angular dependence.

1.5.2 Electric and magnetic dipoles

Dipolar particles come in two flavors: electric and magnetic. The first are usually composite

molecules in which a non-uniform charge distribution leads to a permanent electric dipole D,

typically measured in Debye. Magnetic dipoles can be single atoms, in which the net magnetic

moment comes from an unbalance of electronic and nuclear spins. Its magnitude depends on

the Landé factor gL of the atomic species and is given in units of the Bohr magneton µB. The

DDI (1.5.1) depends on the squared dipole strength d2, defined as:

d2
=


D2/4πǫ0 electric dipoles,

µ0g2
Lµ

2
B/4π magnetic dipoles,

(1.5.4)
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Figure 1.16 : Sketch of the rotating-field

method presented in [87] to tune the strength of

the interaction between permanent dipoles. The

fast precession of the dipole moment around the

axes e0 makes relevant only the time-average of

the DDI. This allows to tune the dipolar length

r∗ in magnitude and sign.

where ǫ0 and µ0 are the vacuum permittivity and permeability. In Tab. 1.2 we present some values

of permanent magnetic and electric dipole moments. Their effective magnitude can be compared

by looking at the dipolar lengths r∗, much larger for electric than for magnetic dipoles. Note that,

beyond the DDI, dipoles also feel a contact potential. This is known and independently tunable

in most cases for neutral atoms [86], while much still has to be understood for heteronuclear

molecules.

The intriguing perspectives opened by the DDI motivated a huge experimental effort in real-

izing degenerate dipolar gases. The first degenerate gas with a clear dipolar character has been

realized in 2005 in Stuttgart [27], where a BEC of ∼ 5×104 atoms of 52Cr has been successfully

realized. The effects of the dipolar interaction, although perturbative, have been observed in the

expansion dynamics of the released cloud [88]. More recently the BEC phase have been reached

also with 168Er [29] and 164Dy [28]. An important feature for experimental purposes is the pos-

sibility to adjust the strength of the DDI with time-depent polarizing fields, through a mechanism

schematically drawn in Fig. 1.16 and presented in [87]. The polarizing field is rotated at frequency

Ω around an axis e0 on a cone of semi-aperture ϕ. A cloud of dipoles immersed in this field would

follow the precession, so that an effective DDI is obtained by time-averaging the actual potential

over the period 2π/Ω:

〈Vdd〉 (r, θ,ϕ) =
!

2

m

(
3 cos2 ϕ − 1

2
r∗
)

1 − 3 cos2 θ

r3
≡
!

2

m
〈r∗〉

1 − 3 cos2 θ

r3
. (1.5.5)

The angle ϕ plays thus the role of a tuning parameter through which adjust the effective value of

the dipolar length 〈r∗〉 between r∗ and −r∗/2.

Electric dipoles present dipolar lengths several orders of magnitude larger than those of mag-

netic ones and are expected to manifest stronger effects of the DDI. The best candidates in this di-

rection are heteronuclear polar molecules. For such particles the tunability of the dipolar strength

would be easier than in the magnetic case, since the magnitude of their dipole moment is pro-

portional to the intensity of the polarizing field, up to the saturation value. These heteronuclear

molecules can be obtained starting from a cold mixture of two atomic species, then associated into

dimers by crossing a Feshbach resonance (cf. Sec. 1.2.2). This method led to the production of
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Unstable

Stable

Figure 1.17 : Stability diagram of a dipolar BEC in a cylin-

drical harmonic trap. The aspect ratio of the confinement

is defined by λ = ωz/ωρ, where ωz and ωρ are the axial

and transverse trapping frequencies respectively. The trap is

spherical for λ=1, while it results cigar- (pancake-) shaped

for λ < 1 (λ > 1), as sketched in the insets. The thin curve

marks the stability threshold evaluated via gaussian ansatz

on the BEC wavefunction [25]. The thick line comes from

numerical solution of the non-local Gross-Pitaevskii equa-

tion [90]. Squares with error bars are experimental data

from [91]. The scattering length is given in units of the

Bohr radius a0≃0.53Å. Figure from [25].

40K87Rb [30] and 23Na40K [31], whose remarkable dipolar lengths are reported in Tab. 1.2. Quan-

tum degeneracy with this kind of composite particles has not yet been achieved, but one may expect

it in a not too far future. One of the main issues is the recombination of the heteronuclear molecules

into homonuclear ones after collisions. Other candidates of the electric family are light-induced

dipoles and Rydberg atoms [25]. Even if their use is more and more widespread in cold-atoms

experiments, their condensation is still far from being realized mainly due to lifetime reasons.

1.5.3 Stabilization and collapse

The long-range and anisotropic character of the DDI makes the stability issue central in exper-

imental realizations of degenerate dipolar gases. Even considering the contact interaction alone,

a condensate collapses for negative scattering lengths if the number of particles is larger than a

critical value, eventually exploding in a Bosenova [89]. In the presence of the DDI the situation

is even more complicated: the potential (1.5.2) has indeed the symmetry of a d wave, so that a

region of attractive interaction exists for any value of r∗. In such a scenario, contact interaction

and trapping anisotropy play a major role in determining the stability of an ultracold dipolar cloud.

It is intuitive that confining dipoles polarized in the z direction in the xy plane would stabi-

lize the condensate, since the head-to-tail configuration gets prevented. On the other hand, in

cigar-shaped trap elongated along z dipoles would likely collapse, unless a strong repulsive con-

tact interaction overcomes the dipolar attraction. This intuition is confirmed by both numerical

investigations and experimental realizations, the results of which are summarized in Fig. 1.17.

The dynamics of a collapsing BEC can unveil peculiar properties of the interatomic interac-

tions. It is thus worth to take a peek to a collapsing dipolar BEC to see how the DDI affects

this phenomenon. The first experimental observation dates back to 2008, when the collapse and
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Figure 1.18 : Left: Comparison of numerical predictions and experimental results on the collapse of

a dipolar BEC. The time-lapse have been obtained by time-of-flight imaging of the collapsed cloud after

different in-trap evolution times. The field of view is 130µm × 130µm. Figure from [92]. Right: A stained-

glass window realized by the artist Brigitte Simon, inspired by the results of [92]. Picture from [25].

explosion of a 52Cr BEC have been observed [92]. In this experiment a BEC of ∼20000 atoms

was created in the stability region of the diagram in Fig. 1.17, then a3D was rapidly switched be-

low the stability threshold. The collapsed BEC was left evolving for an adjustable time thold and

then imaged by time-of-flight measurements. A time-lapse of the collapse can be reconstructed by

varying thold, obtaining the series of pictures presented in Fig. 1.18 (left). Initially, the condensate

is just elongated in the polarization direction z, than it develops a torus-shaped structure on the xy

plane and lobes along z, a structure reminiscent of the d-wave symmetry of the DDI.

To conclude with a pleasant curiosity, we mention that the results of [92], appeared also in the

newspaper Frankfurter Allgemeine Zeitung, inspiring the artist Brigitte Simon in the realization of

stained-glass window, pictured in Fig. 1.18 (right).
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CHAPTER 2

Dipolar-Induced Resonances in Quasi-1D

In this chapter we investigate the effects of the dipole-dipole interaction (DDI) in quasi-1D
geometries: systems in which the dynamics along two directions is frozen due to a tight con-
fining potential. The DDI is known being responsible for dipolar-induced resonances (DIRs)
in free space, which are low-energy resonances occurring when the dipole strength is var-
ied. Here we consider, at first, the two-body scattering problem for dipolar particles confined
along a quasi-1D tube, pointing out the emergence of a single DIR, related to the existence
of a dimer-state sustained by the DDI. Hence, we turn our attention to cigar-shaped harmonic
traps, introducing a two-state model to describe the DIR. The cigar trap is then taken as build-
ing block of a quasi-1D optical lattice loaded with dipolar bosons. The two-state description
of the single-site physics naturally leads to the introduction of a novel atom-dimer extended
Bose-Hubbard model to descibe the lattice. Its ground state is numerically investigated with
exact diagonalization techniques on small-sized systems, revealing the emergence of super-
fluid, Mott insulator, mass density wave and collapse phases. Clues of the presence of a
Haldane insulator domain are also discussed. In conclusion, both the two-body and many-
body physics are strongly affected by the DIR, whose effects are likely to be detectable with
present experimental techniques.
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Figure 2.1 : Schematic representation of a quasi-1D optical latice loaded with dipolar bosons. Dipoles

are supposed to be polarized perpendicularly to the lattice axis. The zoom-in on a single site represents

its approximation by a cigar-shaped harmonic trap in which l⊥ = (!/mω⊥)1/2 and l0 = (!/mω0)1/2 are the

oscillator lengths associated respectively to the transverse and axial confinement.

2.1 Introduction

In the last years the study of cold dipolar gases has been boosted by the experimental realiza-

tion of Bose-Einstein condensates (BECs) of magnetic atoms, such as chromium [27], erbium [29],

and dysprosium [28]. In spite of the relatively weak dipolar moment of these species, perturbative

effects of the dipolar interaction have been observed [88, 93]. On the other hand, encouraging

developments come also from the frontline of cold heteronuclear molecules, like RbK [30] and

NaK [31]. These carry much larger dipole moments of electric nature but quantum degeneracy

remains to be achieved. The interest toward the dipole-dipole interaction (DDI) is motivated by

its long-range and anisotropic character [25, 26]. These features, already presented in Sec. 1.5, al-

low to quantum simulate much more general Hamiltonians than those realizable with non-dipolar,

neutral particles, disclosing new physical scenarios and intriguing properties. An example is given

by the realization of optical lattices (OLs) loaded with dipolar bosons, a system already experi-

mentally realized with atomic magnetic BECs [94] and non-condensed heteronuclear molecules

[95, 96]. In such systems the long-range character of the DDI is caught by the extended Bose-

Hubbard model (EBHM) discussed in Sec. 1.3.3, for which, beside the standard Mott-insulator

and superfluid phases, a supersolid phase, a mass density wave [22, 97], and a Haldane insulator

[72, 73] can appear.

The final goal of this chapter is the study of the many-body physics of a quasi-1D optical lattice

loaded with dipolar bosons as a function of the DDI strength. The system, realizable with present

experimental techniques, is thus a collection of cigar-shaped aligned micro-traps hosting dipoles

which can eventually tunnel from one site to the neighboring ones, as represented in Fig. 2.1.

The EBHM can be used to describe the system, prior the determination of the dependence of the

model parameters on the DDI strength. It is thus essential to address, at first, the elementary two-
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Figure 2.2 : Schematic representation of two polarized dipoles, of relative distance x, harmonically trapped

along a quasi-1D tube. The tube size is determined by the confinement length l⊥ = (!/mω⊥)1/2. The polar-

ization direction and the tube axis form an angle θ.

body scattering problem for two dipolar particles in a single lattice site, task to which we dedicate

Sec. 2.2. Already this preliminary study can reveal interesting features of the dipolar system, since

resonances induced by the DDI are likely to occur [98]. Subsequently, in Sec. 2.3, we will focus on

the optical lattice, investigating how the dipolar-induced resonances (DIRs) affect the many-body

physics. We sum up our conclusions in Sec. 2.4.

2.2 Two dipoles in quasi-1D systems

This section is devoted to point out and characterize the emergence of DIRs in the two-body

scattering process between dipolar particles confined in quasi-1D geometries [35, 99]. We begin

showing the emergence of a single resonance in the case of two dipoles harmonically trapped along

a tube [34], a system as sketched in Fig. 2.2. Then we introduce a multi-channel approach able to

describe the resonance in a cigar-shaped trap. In the tight binding regime this trap represents the

elementary single site of the quasi-1D optical lattice depicted in Fig. 2.1.

2.2.1 Dipolar-induced resonance in a 1D tube

Generally, the DDI [Eq. (1.5.1)] not only depends on the inter-particle distance, but also on

the relative orientation of dipoles in space [25]. As shown in Sec. 1.5, it is considerably simplified

by taking dipoles (of either electric or magnetic nature) aligned by a polarizing external field. In

this case the relative dipolar potential takes the form

Vdd(r, θ) =
!

2r∗

m

1 − 3 cos2 θ

r3
, (2.2.1)

previously presented in Eq. 1.5.2, where θ is the angle between the polarization direction and

relative distance vector r [c.f. Fig. 1.15 (b)]. The dipolar length r∗=md2/!2 quantifies the strength
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Figure 2.3 : Left: Effective 1D dipole-dipole interaction V1D
dd [Eq. (2.2.3)] for the system presented in

Fig. 2.2. Here θc<θ<π/2, corresponding to the regime in which two classical dipoles would just repel each

other. Right: Numerical results for the even-channel scattering length ae
dd associated to V1D

dd as a function of

the DDI strength [solid (blue)], as obtained from Eq. (2.2.7) for xmax = 100l⊥. A dipolar-induced resonance

occurs for ρ∗θ ≃2.6, in coincidence with the entrance of a dipolar bound state of energy Ebs
dd [dashed (geen)].

Here ε⊥=!ω⊥ and l⊥= (!/mω⊥)1/2, where ω⊥ is the frequency of the transverse trapping potential.

of the dipole moments. The system we want to investigate, represented in Fig. 2.2, consists of two

polarized dipoles harmonically trapped on a quasi-1D tube by the radial potential

V⊥(r) =
1
2

mω2
⊥(y2
+ z2). (2.2.2)

The trapping frequency ω⊥ fixes the harmonic oscillator length l⊥ = (!/mω⊥)1/2. Two classical

dipoles restricted to 1D motion would simply repel (attract) each other for θc<θ<π/2 (0<θ<θc),

where θc≃54.7◦ is the “magic angle” at which the DDI vanishes [cf. Fig. 1.15 (c)]. Nevertheless,

in the quantum case, we need to account for the radial extension of the particles’ wavefunctions.

By restricting the analysis to scattering energies E ≪ ε⊥ = !ω⊥, we assume the dipoles to lie in

the ground state of V⊥. Properly integrating out the transverse degrees of freedom [33, 100], one

can map the system onto an effective 1D system, in which Vdd is replaced by the effective relative

potential

V1D
dd (x) = ε⊥ρ∗θ

[
w

(
x

l⊥

)
− 2

3
δ

(
x

l⊥

)]
, (2.2.3)

where we introduced the wing function

w(ξ) =

√
π

8
(1 + ξ2) exp

(
ξ2

2

)
erfc
(
|ξ|
√

2

)
−
|ξ|

2
(2.2.4)

and the dimensionless quantity

ρ∗θ =
r∗

l⊥
(1 − 3 cos2 θ). (2.2.5)

The derivation of Eq. (2.2.3) is described in App. A. The behavior of V1D
dd is plotted in Fig. 2.3 (left)

for ρ∗θ > 0, corresponding to the regime of classical repulsion θc < θ < π/2. Distant particles
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(x ≫ l⊥) perceive each other as classical dipoles, so that the potential has the expected 1/x3

behavior, reminiscent of the 1/r3 appearing in Eq. (2.2.1). On the other hand, getting closer, the

dipoles’ quantum nature emerges: the interplay of transverse extension and interaction anisotropy

results in a non-divergent repulsion plus an attractive contact term. For ρ∗θ < 0 (i.e. 0< θ< θc) the

potential is reversed, resulting mainly attractive, and for any small value of r∗ there exists at least

one dipolar bound state.

The scattering properties of V1D
dd can be investigated by solving numerically the relative-motion

zero-energy 1D Schrödinger equation

[V1D
dd (x) − !2∂2

x/m]ψp(x) = 0. (2.2.6)

The parity index p = e, o distinguishes between even and odd solutions, corresponding, respec-

tively, to bosonic and fermionic particles [101]. The scattering length for each channel is defined

by Eq. (1.4.11):

a
p

dd = lim
x→∞

[
x −
ψ′p(x)

ψp(x)

]
. (2.2.7)

Due to the long-range character of V1D
dd , it is not possible to associate to it a well defined scattering

length, since Eq. (2.2.7) does not converge [79]. Anyhow, one can evaluate a
p

dd for a large, but

finite value x= xmax [34]. The even-channel scattering length of Vd for xmax = 100l⊥ is presented

in Fig. 2.3 (right). A DIR occurs at ρ∗θ ≃ 2.6, due to the presence of the attractive δ-term which

takes over the repulsive wings, allowing for the existence of a bound state of energy Ebs
dd also in the

regime of classical repulsion. It is worth stressing how, similarly to other scattering resonances

presented in Sec. 1.2, the entrance of the bound state exactly coincides with the occurence of

the DIR. Remarkably, the resonance position is unaffected by the choice of xmax. Numerical

estimations suggest that this is the only DIR existing for ρ∗θ>0 in a quasi-1D tube. Since ψo(0)=0,

the odd branch is insensitive to the contact term in Eq. (2.2.3), so that no resonances due to the

attraction-repulsion interplay arise in this scattering channel.

2.2.2 Toy model for the DIR in quasi-1D

To investigate the physical properties of V1D
dd , we propose a versatile toy model for which a

p
toy

is properly defined and can be evaluated analytically, together with the energy Ebs
toy of the dimer

state appearing at the resonance. Hence, we replace the fast decaying wings of the 1D DDI with a

finite-range step function, obtaining

Vtoy(x) = ε⊥ρ∗θ

[
1
2
σ

(
x

l⊥

)
− 2

3
δ

(
x

l⊥

)]
, with σ(ξ) =


1 |ξ| ≤ 1,

0 |ξ| > 1.
(2.2.8)
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Figure 2.4 : Left: Toy potential Vtoy [Eq. (2.2.8)] mimicking the dipole-dipole interaction V1D
dd for the

system presented in Fig. 2.2 and θc<θ<π/2. Right: Even-channel scattering length ae
toy [Eq. (2.2.11), solid

(red) curve] associated to Vtoy as a function of the DDI strength. The qualitative behavior it the same as ae
dd

[Fig. 2.3 (right)], with a resonance occurring for ρ∗θ ≃ 3.3, coinciding with the entrance of a bound state of

energy Ebs
toy [dashed (green)]. The quantities ε⊥ and l⊥ are defined like in Fig. 2.3.

The step width 2l⊥ corresponds to the region in which V1D
dd deviates from the classical 1/x3 behav-

ior, while its height ε⊥/2 has been chosen so that areas under the wings w(ξ) and the step σ(ξ) are

the same. The potential Vtoy is plotted in Fig. 2.4, together with the corresponding even-channel

scattering length ae
toy(ρ∗θ). The model is able to reproduce the DIR, with a resonance appearing

at ρ∗θ ≃ 3.3 for even wave functions. Furthermore the analytic expression of atoy, reported in

Eq. (2.2.11) for a more general case, confirms that only one DIR exists for positive values of ρ∗θ.

In addition to the DDI, we now consider the presence of a contact potential V1D
c , which, as

discussed in Sec. 1.4.2, depends on the 3D scattering length a3D and on the tube width l⊥. In the

limit a3D≪ ł⊥, this dependence is resumed by [102]:

V1D
c (x) = 2ε⊥

a3D

l⊥
δ

(
x

l⊥

)
. (2.2.9)

In a real system one can thus imagine to change independently the contact and long-range terms of

the total interaction V1D
dd +V1D

c by tuning a3D via a Feshbach resonance (Sec. 1.2.2) and changing ρ∗θ
with the polarizing field (Sec. 1.5.2). Correspondingly we can generalize the toy-model potential

as

Ṽtoy(x) = ε⊥

[
βσ

(
x

l⊥

)
+ α δ

(
x

l⊥

)]
, (2.2.10)

where the parameters α=2a3D/l⊥ − 2ρ∗θ/3 and β=ρ∗θ/2 set, respectively, the contact and non-zero-

range interaction strengths. By analytically solving the Schrödinger equation (2.2.6) for Ṽtoy, one

gets the scattering lengths [34]

ãe
toy(α, β) = 1 −

1
κ

α sinh(κ) + 2κ cosh(κ)
2κ sinh(κ) + α cosh(κ)

, ão
toy(β) = 1 −

tanh(κ)
κ
, (2.2.11)

with κ=
√
β for β>0 and κ= i

√
|β| for β<0.
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Figure 2.5 : (Color online) Left: Solid blue (dashed red) lines correspond to solutions of 1/̃ae
toy=0 (1/̃ao

toy=

0) [cf. Eq. (2.2.11)]. The green dot-dashed line marks the condition Eα = Eβ (cf. text). Gray-shadowed

regions (β<0) indicate the direction in which the Tonks-Girardeau (TG) and super-Tonks-Girardeau (STG)

limits are asymptotically reached. The green-shadowed quadrant (α< 0, β> 0) is the one in which the DIR

mechanism occurs. Right: Illustration of the generalized toy-model potential [Eq. (2.2.10)] at the points

(a,b,c,d,e,f) marked on the resonances diagram at left. Green horizontal lines represent the energy Eα of the

δ-sustained bound state, shifted upwards by the height of the repulsive energy barries Eβ.

In Fig. 2.5 (left) we show the position of the resonances of ã
p
toy varying α and β (p=e, o). The

contact term is invisible to odd solutions since ψo(0)=0. Hence, the corresponding resonances do

not depend on α [see Eq. (2.2.11)]. They exist only for β<0 and are simply those of a square well

of depth |β|. Even solutions are, instead, strongly affected by the δ-potential. No resonances exist

in the purely repulsive quadrant α, β>0. For α>0 and β<0 [Fig. 2.5 (e)], when α→∞ the system

reaches the Tonks-Girardeau limit of impenetrable particles [103]: even wave functions acquire a

zero at the origin to avoid a divergent contribution to the energy and, correspondingly, the even

resonances tend asymptotically to the odd ones. A similar even-to-odd limit occurs in the region

α, β < 0 [Fig. 2.5 (f)]. For α→−∞, the δ-potential sustains only a single, infinitely deep bound

state, so that the other even wave functions must acquire a zero at the origin to keep their energy

finite. The dipoles become, again, effectively impenetrable, reaching the super-Tonks-Girardeau

regime [104, 105].

The DIR occurs if α < 0 and β > 0. It is a (single-channel) shape resonance which results

from a competition between the attractive delta term and the repulsive step potential, and it can be

understood intuitively as follows. In the absence of the step potential (β = 0), the δ term would

support a bound state with energy Eα = −ε⊥α2/4 < 0. If we now add to the Hamiltonian a step

potential whose height Eβ=βε⊥>0 is smaller than ∼ |Eα|, the discrete level survives and its energy

is shifted upwards by ∼Eβ. On the other hand, if Eβ! |Eα|, the discrete level supported by the delta
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dissolves into the continuum and disappears. The resonance occurs at the threshold between these

two regimes, i.e. for Eβ∼ |Eα|. Our results for the resonance position [Fig. 2.5 (left)] show that this

condition is asymptotically exact (if |α| and β are both large, the resonance occurs for Eβ = |Eα|).

In conclusion, we stress that Eq. (2.2.11) proves analytically that, for the toy model, only a single

resonance in the even-channel can exist for α < 0 and β > 0. This is analogous to the case of the

DDI at ρ∗θ > 0.

2.2.3 DIR in a cigar-shaped trap

In this section we consider the building block of our quasi-1D optical lattice depicted in

Fig. 2.1: the two-body problem for bosonic dipoles in a cigar-shaped harmonic trap. The phys-

ical system is similar to that considered in Sec. 2.2.1, with the addition of a harmonic potential

of trapping frequency ω0 along the tube direction. We restrict our investigation to the case of

dipoles polarized perpendicularly to the long axes of the trap (more generally to ρ∗θ > 0), so that

the effective DDI reduces to

V1D
dd (x) = ε⊥

r∗

l⊥

[
w

(
x

l⊥

)
− 2

3
δ

(
x

l⊥

)]
, (2.2.12)

with the definition of w(ξ) given in Eq. (2.2.4). The complete interaction potential should account

also for an effective 1D contact potential V1D
c like the one of Eq. (2.2.9). The latter competes with

the DDI to determine the stability and the phase of the system [91] and can be directly manipulated

tuning a3D with a Feshbach resonance [13]. Being interested in the peculiar properties of the DDI,

we will consider in the following g1D=0, unless otherwise specified.

The Hamiltonian for two particles of mass m in the equivalent 1D system is

H = H
(1)
ho
+H

(2)
ho
+ V1D

dd (x1 − x2), (2.2.13)

where we introduced the 1D harmonic oscillator Hamiltonian

H
(i)
ho
= −
!

2

2m

∂2

∂x2
i

+

1
2

mω2
0x2

i . (2.2.14)

The well known eigenfunctions ofH (i)
ho

are

ψn(xi) =
1
√

2nn!

(
mω0

π!

)1/4
Hn

[√
mω0

!
xi

]
e−

mω0 x2

2! , (2.2.15)

where the function Hn is the nth Hermite polynomial. The corresponding eigenvalues are

En =

(
n +

1
2

)
!ω0, n = 0, 1, 2, · · · . (2.2.16)
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To solve the Schrödinger equation of the system, center-of-mass and relative motion can be de-

coupled. By introducing X= (x1 + x2)/2 and x = x1 − x2, one gets

H = Hcm
ho +H

rel
ho + V1D

dd (x). (2.2.17)

The center-of-mass Hamiltonian is simply that of a quantum harmonic oscillator of frequency ω0

and mass M=2m:

Hcm
ho = −

!
2

2M

∂2

∂X2
+

1
2

Mω2
0X2. (2.2.18)

Its eigenvalues are the same of Eq. 2.2.16, but the eigenfunctions, that we denote by Φn(X), differ

from those of Eq. 2.2.15 in the mass M. The same argument holds for the eigenfunctions φn(x) of

H rel
ho = −

!
2

2µ
∂2

∂x2
+

1
2
µω2

0x2, (2.2.19)

which contain the reduced mass µ=m/2 instead of m. Note that the wavefunction of the two-body

harmonic ground state satisfies ψ0(x1)ψ0(x2)=Φ0(X)φ0(x).

Since the solution of the center-of-mass problem is trivial, the key point of our analysis be-

comes the two-body relative-motion Hamiltonian

H2B = H
rel
ho + V1D

dd (x). (2.2.20)

Unlike for the contact interaction (see [106] and App. B), the HamiltonianH2B cannot be diagonal-

ized analytically, so that its ground state needs to be found numerically. A reasonable possibility

is considering the restriction of H2B onto a subspace spanned by a finite number of basis states

{|φn〉}. A natural choice for such a basis is represented by the eigenstates ofH rel
ho

, but the possible

presence of a bound state makes this intuitive choice not suitable. Indeed, from the analysis of the

tube problem proposed in Sec. 2.2.1, we saw that V1D
dd supports either no bound state or a single

one. This bound state is present for large enough values of r∗ and its entrance coincides with the

occurrence of the DIR. The “bare” bound state is supported by the attractive δ-term of V1D
dd (x) and

plays a key role. Its wavefunction can be easily derived and is

ψbs
δ (x) =

√
κ e−κ|x|, (2.2.21)

where κ= r∗/(3l2⊥), and its cusp at x= 0 cannot be reproduced by projecting |ψBS〉 onto any finite

number of harmonic oscillator eigenstates, which are all smooth at x = 0. In App. B, we come

back to the problem of describing a system with a finite basis in the presence of a bound state,

considering the simple example of the contact interaction. Hence, the DIR physics can only be

captured if a wavefunction which has a cusp at x= 0 is included in the basis {|φn〉}. The smallest

such basis is {|φ0〉 , |φ−1〉}, where |φ0〉 is the ground state ofH rel
ho

, and

|φ−1〉 ∝ |ψbs
δ 〉 − 〈φ0|ψ

bs
δ 〉 |φ0〉 (2.2.22)
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Figure 2.6 : Left: Matrix elements of the two-state Hamiltonian H2state [Eq. (2.2.23)] describing two

bosonic dipoles in a cigar-shaped harmonic trap, as a function of the dipolar length r∗. Right: Corresponding

ground-state (red) and excited-state (dashed gray) energies resulting from the diagonalization ofH2state. Here

ω0 and l0 are frequency and characteristic length of the axial potential (loose confinement) while l⊥ = 0.4l0

is the length associated to the strong transverse confinement.

is a linear combination of |ψbs
δ
〉 and |φ0〉, chosen such that the basis is orthonormal. For a given

value of r∗, we thus replaceH2B by the two-state Hamiltonian:

H2state =


〈φ−1| H2B |φ−1〉 〈φ−1| H2B |φ0〉
〈φ0| H2B |φ−1〉 〈φ0| H2B |φ0〉

 . (2.2.23)

Modeling the system with H2state corresponds to picture the DIR, i.e. a shape resonance, as a

two-channel resonance. Each channel corresponds to the following two possible ground states of

the system.

Open channel The dipoles are two distinct particles, both in the ground state of the harmonic

trap. The two-body state of this channel is |ψ(1)
0 〉 |ψ

(2)
0 〉, that is equivalent to |Φ0〉 |φ0〉 in

center-of-mass and relative-motion coordinates.

Closed channel The dipoles form a dimer, whose state in the center-of-mass and relative coordi-

nate is described by |Φ0〉 |φ−1〉.

In both channels the center-of-mass gives a contribution !ω0/2 to the system total energy. The

diagonal elements in Eq. (2.2.23) are, instead, the different relative-motion energies of these two

scattering channels. They vary as a function of r∗ as represented in Fig. 2.6 (left). The off-diagonal

terms couple the two channels, so that the resulting ground state |Ψ2B〉 is a dressed state, mixing a

bi-atomic and a dimer component.

By diagonalizing H2state one gets the relative-motion ground-state energy E2B(r∗) and the

corresponding wavefunction |Ψ2B(r∗)〉. The non-monotonic behavior of E2B(r∗) is a signature of

the DIR. More specifically we can identify the resonance position r∗crit in the point at which the

relative-motion ground-state energy goes below the zero-point energy of the harmonic oscillator

!ω0/2. It follows r∗crit/l0≃0.90 for l⊥/l0 = 0.4 [cf. Figs. 2.6 (right) and 2.7].
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Figure 2.7 : Ground-state energy E2B(r∗) of the

Hamiltonian H2B, for g1D = 0 and l⊥/l0 = 0.4, in-

cluding 1 (blue), 3 (green), 6 (orange), and 9 (red)

harmonic oscillator states, without (dashed lines) and

with (solid lines) the “bare” bound state |φ−1〉 in the

projection basis. The quantities ω0, l0 and l⊥ are de-

fined like in Fig. 2.6.

The applicability of the quasi-1D effective potential [Eq. (2.2.12)] to our harmonically con-

fined system requires l⊥/l0 to be small. The behavior of the matrix elements of H2state is plotted

in Fig. 2.6 for l⊥/l0 = 0.4, together with the energy E2B(r∗) of the dressed 2-body ground state.

The qualitative behavior stays the same for smaller values of the ratio l⊥/l0.

In the many-body treatment described in the following section, we are interested in situations

where the dimer population is very small. Similarly to Feshbach resonance physics [13], the ex-

istence of the closed channel has a strong impact even though it is only marginally populated.

Moreover, the dimer population being nearly vanishing will help us simplify the problem to an

effective open-channel model. This assumption is satisfied here, as the overlap | 〈φ−1|Ψ2B〉 |2 re-

mains smaller than 0.10 for r∗" r∗crit. This overlap only becomes substantial if |φ0〉 and |φ−1〉 have

comparable energies, i.e. for r∗/l0 ! 2.13 (Fig. 2.6, right). The bound state population near r∗crit

increases as l⊥/l0 decreases, but it remains < 0.15 for l⊥/l0 ≥ 0.2.

In Fig. 2.7 we analyze the behavior of the the ground-state energy E2B(r∗) when the diagonal-

ization basis is extended. Moreover, the inclusion of more harmonic oscillator states allows for the

calculation of higher-energy states (Fig. 2.8). The qualitative behavior of E2B(r∗) appears unaf-

fected by the basis size, as long as |φ−1〉 is also included. In particular the non-monotonic character

of the ground-state energy is already captured with the two-state model (2.2.23), and also the res-

onance position r∗crit does not change significantly. On the other hand the lack of |φ−1〉 makes the

resonance disappear and, even including nine oscillator eigenstates, E2B increases monotonically

in the investigated region of r∗.

Figure 2.8 shows the r∗-dependence of the lowest eigenvalues ofH2B, evaluated diagonalizing

the Hamiltonian (2.2.20) on a seven-element basis (six harmonic oscillator eigenstates plus |φ−1〉).
To stress the leading role of the dipolar contact term appearing in Eq. (2.2.12), we compare this

analysis in two different situations: (i) the s-wave interaction term g1D = 0 (as everywhere else

in our analysis) and (ii) g1D ! 0 exactly cancels the contact term in Eq. (2.2.12) [100]. The r∗-

dependence of the energy levels in these two situations is completely different. When the contact

term is canceled out the relative potential is purely repulsive and, as predictable, the energy of
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Figure 2.8 : Right: The four lowest eigenvalues of

H2B as a function of r∗, for g1D = 0 (green) and

choosing g1D = 2!2r∗/(3ml2
⊥) (dashed red) to cancel

the contact term in V1D
dd . Energies have been calcu-

lated including six harmonic oscillator states and the

bare bound state |φ−1〉 in the basis. The quantities ω0,

l0 and l⊥ are defined like in Fig. 2.6.

each state monotonically grows with r∗. In particular the spacing between the ground and the first-

excited state behaves clearly differently in the two cases, and this will allow for an observation of

the DIR using spectroscopic techniques [107].

2.3 Dipolar bosons in a quasi-1D optical lattice

In this section we address the many-body effects of the DIR which, as pointed out in Sec. 2.2,

emerges at the two-body level. For this purpose we consider N dipolar particles in a deep quasi-1D

optical lattice with unity filling factor, as depicted in Fig. 2.1. Such kind of systems is typically

described with the extended Bose-Hubbard model (EBHM), presented in Sec. 1.3.3. We show

how the presence of a DIR at the single-site level naturally leads to the introduction of a two-band

atom-dimer EBHM [35]. Its phase diagram is numerically investigated via exact diagonalization

of the system Hamiltonian for small-sized optical lattices. The properties of larger systems can be

inferred by means of an effective single-band model.

2.3.1 Atom-dimer extended Bose-Hubbard model

The long range character makes ultracold dipolar gases suitable for experimental implemen-

tations of the EBHM. The parameters of the model need to be carefully related to the physical

quantities of the system, such as the dipole strength, measured through the length r∗, and the depth

of the optical lattice. The latter is typically quantified with the parameter s=V0/ER, where V0 is

the intensity of the optical lattice and ER is the recoil energy (see Sec. 1.3). With respect to the

Bose-Hubbard model described in Sec. 1.3.2, the presence of long-range interactions is known to

enrich the phase diagram of the system [20, 22, 23, 25, 26, 32]. The problem we address here

is how effective the DDI can be to unveil or to hide these new phases in realistic scenarios. We

focus on the regime r∗ " r∗crit, so that the DIR affects the two-body properties even though the

number of dimers present in the system is extremely small. Finally we restrict our investigations

to deep optical lattices, i.e. s≫ 1, so that the bottom of each single site is well approximated by
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]

εani +
U

2
ni(ni − 1)− Ja(a

†
i
ai+1 +H.c.) + V nini+1

+εdmi − Jd(b
†
i
bi+1 +H.c.) +Ω (b†

i
aiai +H.c.)

HAD =

∑

i

[

Figure 2.9 : Pictorial representation of the atom-dimer extended Bose-Hubbard model introduced in

Eq. (2.3.1). Atomic dipoles live in the atomic band (purple) and can tunnel from site to site, similarly

does dipolar dimers in the dimer band (green). The terms inHAD modeling each band are highlighted in the

corresponding color. The switch of atoms into dimers, and vice versa, takes place at the single-site level at

the conversion rate fixed by Ω (orange).

a harmonic potential. This implies that the analysis performed in Sec. 2.2.3 for the cigar-shaped

trap gives an accurate description of the single-site physics. Due to the fast decay ∝ 1/x3 of the

DDI with distance, we include only nearest-neighbors terms in the EBHM of our system.

As we showed in Sec. 2.2.3, the emergence of the DIR is well reproduced by a two-state

description of the two-body problem [Eq. (2.2.23)]. When several sites are connected to form a

lattice, atoms can tunnel from one to the nearest ones, so that each of the two states |φ0〉 and |φ−1〉
yields a band. Hence we introduce an atom-dimer EBHM whose Hamiltonian, schematically

pictured in Fig. 2.9, reads:

HAD =
∑

i

[
εani +

U

2
ni(ni − 1) − Ja(a†

i
ai+1 + H.c.) + Vnini+1

+εdmi − Jd(b†
i
bi+1 + H.c.) +Ω(b†

i
aiai + H.c.)

]
. (2.3.1)

In Eq. (2.3.1), a
†

i
and b

†

i
are the creation operators in the site i for atoms and dimers, respectively,

and ni=a
†

i
ai and mi=b

†

i
bi are the corresponding number operators. Atoms and dimers are created

in the ground state of the well i.

The atomic on-site and nearest-neighbor interaction parameters U and V are defined in terms

of V1D
dd and the Wannier wavefunctions wi(x) and wi+1(x) localized on the sites i and i+ 1 by [32]:

U =

!
dx1dx2 w2

i (x1)w2
i (x2) V1D

dd (x1 − x2) , (2.3.2a)

V =

!
dx1dx2 w2

i (x1)w2
i+1(x2) V1D

dd (x1 − x2) . (2.3.2b)

We rely on the deep-lattice approximation, discussed in Sec. 1.3.1, to replace the Wannier func-

tions wi(x) with the Gaussian functions representing the ground-state of the harmonic expansion
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of the lattice potential

Vlat(x) = V0 sin2(2πx/λ), (2.3.3)

where λ is the wavelength of the laser used to generate the optical lattice and V0 its intensity. From

the definition of the lattice-depth parameter s=V0/ER and of the recoil energy ER=2π2
!

2/(mλ2)

it finally follows

ω0 =
!

m

(
2π
λ

)2 √
s. (2.3.4)

Eq. (2.3.4) constitutes a fundamental tool in our description of the lattice, since it connects the

single-site trapping frequency ω0 with the lattice parameters s and λ. As a side remark on the

harmonic approximation we point out that the single-site energy scale and the recoil energy are

simply related by !ω0/ER = 2
√

s. Similarly, the lattice spacing results λ/2 = πl0 4√s, where l0 =

(!/mω0)1/2 is the typical extension of the oscillator ground state in the lattice direction.

The model parameters U, εa, εd, and Ω of Eq. (2.3.1) account for on-site properties and can be

directly related to the matrix elements appearing in Eq. (2.2.23). To do so we replace the Wannier

state of the jth particle |w( j)〉 with its Gaussian approximation |ψ( j)〉. The simplest example is

εa = 〈w( j)|H
( j)
ho
|w( j)〉 ≃ 〈ψ( j)|H

( j)
ho
|ψ( j)〉 = !ω0/2. (2.3.5)

We proceed similarly for two-particles contributions, like U. In this case we start from the braket

version of Eq. (2.3.2a):

U = 〈w(1)| 〈w(2)|V1D
dd |w

(2)〉 |w(2)〉

≃ 〈ψ(1)| 〈ψ(2)|V1D
dd |ψ

(2)〉 |ψ(2)〉

= 〈Φ0| 〈φ0|V
1D
dd |φ0〉 |Φ0〉

= 〈φ0|V
1D
dd |φ0〉 = 〈φ0|H2B|φ0〉 − !ω0/2. (2.3.6)

All the energy of a dimer in a lattice site is encoded in

εd ≃ 〈Φ0| 〈φ−1|H
cm
ho +H2B|φ−1〉 |Φ0〉

= 〈Φ0|H
cm
ho |Φ0〉 + 〈φ−1|H2B|φ−1〉

=!ω0/2 + 〈φ−1|H2B|φ−1〉 . (2.3.7)

The last single-site parameter to set is Ω. It is the conversion rate of a two-atom state |Φ0〉 |φ0〉 into

a one-dimer state |Φ0〉 |φ0〉 in the same lattice site. Hence:
√

2Ω = 〈Φ0| 〈φ−1|H
cm
ho +H2B|φ0〉 |Φ0〉

= 〈Φ0|H
cm
ho |Φ0〉 〈φ−1|φ0〉 + 〈Φ0|Φ0〉 〈φ−1|H2B|φ0〉

= 〈φ−1|H2B|φ0〉 . (2.3.8)



2.3. Dipolar bosons in a quasi-1D optical lattice 47

The
√

2 factor in the previous equation comes from the fact that operators like b
†

i
aa, weighted by

the parameter Ω in Eq. (2.3.1), couple a two-particles state with a single-dimer one. In summary,

the single-site model parameters are

εa = !ω0/2 , (2.3.9a)

U = 〈φ0| H2B |φ0〉 − !ω0/2 , (2.3.9b)

εd = !ω0/2 + 〈φ−1| H2B |φ−1〉 , (2.3.9c)

Ω = 〈φ−1| H2B |φ0〉 /
√

2 . (2.3.9d)

Making use of the harmonic approximation, the nearest-neighbor coefficient V can be easily cal-

culated from the integral expression in Eq. (2.3.2b). Case by case, we verified that the Gaussian

approximation gives a good agreement with the values obtained using the exact Wannier functions.

Finally, for the atomic tunneling coefficient Ja we used the numerical approximation [108]

J

!ω0
≃ 0.725 s0.48 e−2.07

√
s. (2.3.10)

The nearly-vanishing dimer population allows for a crude description of the dimer dynamics,

therefore we neglect atom-dimer and dimer-dimer interaction in the Hamiltonian (2.3.1), and we

take Jd = Ja/10. This choice for Jd reflects the assumption that the molecule, being heavier than

a single atom, less likely tunnels from one site to another. Anyhow this rough approximation does

not affect our numerical results in the low-population regime we consider.

2.3.2 Quantum phases of the system

Once the model is set we can determine the quantum phases of the system at T = 0 by eval-

uating the lowest-energy state of the Hamiltonian (2.3.1). Before discussing the different phases,

it is useful to determine the parameters convenient to investigate the phase diagram. Like for the

two body problem, on whose solution all our analysis relies, we consider l⊥/l0 fixed and small.

Hence, as shown further on in Fig. 2.10, we determine the ground state of the system in func-

tion of the two parameters r∗/l0 (abscissa) and V/U (ordinate, right side). The choice of r∗/l0 as

phase-diagram parameter allows for a direct comparison with the two-body physics illustrated in

Sec. 2.2.3. Keeping the assumption g1D = 0, Eqs. (2.3.2) show that the ratio V/U does not depend

on r∗, indeed it decays with the lattice depth s. Hence, one can exploit the one-to-one correspon-

dence between V/U and s and equivalently use the latter as phase-diagram parameter (cf. left side

of the ordinate axis in Fig. 2.10). The harmonic approximation requires s to be large enough and

thus imposes an upper bound on V/U. This maximum value depends on l⊥/l0. For instance, in the

case l⊥=0.4l0 of Fig. 2.10 we find (V/U)max≃6.2 × 10−2.
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Figure 2.10 : Comparison of the many-body phase diagrams obtained using the single-band (Ω = 0, left)

and atom-dimer (Ω ! 0, right) EBHMs. The phases have been obtained performing exact diagonalization

on a six-atom, six-well system fixing the ratio l⊥/l0 = 0.4. The effective on-site interaction Ueff < 0 on the

right of the vertical dashed line. The phase boundaries have been obtained with a quasianalytical variational

method described in Sec. 2.3.3. Here l0 and l⊥ are the harmonic-oscillator length respectively associated to

the single-site axial and transverse potential.

N configurations

2 5

4 85

6 1715

8 36693

Table 2.1 : Number of possible con-

figurations for N dipoles in N lattice

sites, accounting for the eventual exis-

tence of dipolar dimers. The configu-

rations number gives the basis size for

the exact diagonalization of the atom-

dimer EBHM (2.3.1).

The ground state of the model is numerically detected with an exact diagonalization routine.

Fixed the number of particles and lattice sites, all possible configurations of atoms and dimers in

the sites are constructed and this set of configurations constitutes the basis on which the Hamil-

tonian (2.3.1) is diagonalized. This technique allows to know exactly the state of the system at

T = 0 but its implementation becomes fast numerically demanding when the system size grows.

The basis size, indeed, rapidly increases if the number N of particles and sites increases, as shown

in Tab. 2.1. The following results have been obtained for a six-atom, six-well system. Some hint

on the behavior of larger systems, up to the thermodynamic limit, can be deducted by the effective

single-band approach presented in Sec. 2.3.3.

Let us consider the case l⊥=0.4l0. The observable in our phase diagrams is the single-particle

off-diagonal density matrix element ρ1 = 〈a†2a1〉, which is able to distinguish the superfluid phase

(ρ1 ! 0) from the insulating phases (ρ1 = 0). The different insulating phases can subsequently be

told apart by examining the ground-state wavefunction. If the emergence of the DIR is neglected
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the phase diagram of the system is the one presented in the left panel of Fig. 2.10. These results

have been obtained considering the single-band EBHM [22], that is analogous to put Ω = 0 in

Eq. (2.3.1) to prevent the conversion of atoms into dimers. In the considered range of parameters

only two phases are accessible: the superfluid (SF) and the Mott insulator (MI). The fast decay of

the DDI repulsive wings makes indeed V always much smaller than U, so that the mass density

wave (MDW) never appears as the ground state of the system.

The right panel of Fig. 2.10 shows instead the phase diagram of the complete atom-dimer

EBHM, presenting three qualitative differences with the single-band case.

1. The phase diagram includes a narrow MDW domain, occurring for very small values of

V/U. A zoom-in on this region is presented in the left panel of Fig. 2.11. Such a result is

in contrast with previous models which predicted the MDW phase to occur in an extended

domain corresponding to large values of V/U [22].

2. The MI phase region stops at r∗=r∗crit.

3. There appears a “collapse” phase where all atoms sit in the same well. A similar phe-

nomenon was predicted in [23] for the 2D case using a mean-field approach to calculate the

Bose-Hubbard parameters. Note that, however, in the present case, the collapse occurs in a

completely different geometry.

As will be described in deeper detail in Sec. 2.3.3, these features can be interpreted in terms of

an effective on-site interaction Ueff . The DIR can make this effective interaction smaller than V ,

bringing the system into the MDW phase. For r∗>r∗crit, Ueff <0 and the particles collapse.

We notice that our phase diagram shows no phases with a period of three sites or more. We

have checked that longer-period insulating phases are not energetically favored in virtue of the

fast decay of the DDI wings. This is in agreement with the density-matrix renormalization group

(DMRG) calculations including next-nearest-neighbor interactions reported in [73]. However,

such phases have been predicted to occur for filling factors !1 (see e.g. [109]).

The central and right panels of Fig. 2.11 show a zoom-in on the atom-dimer phase diagrams for

l⊥/l0 = 0.3 and 0.2 respectively. The comparison with the left panel, corresponding to l⊥/l0 = 0.4,

shows that decreasing the value of l⊥/l0 has a two-fold effect on the phase diagram: (i) the collapse

phase, which starts at r∗ = r∗crit, appears for smaller values of r∗/l0, and (ii) the extension of the

MDW phase domain is reduced. This second result suggests that the experimental observation of

the MDW phase will remain difficult in quasi-1D bosonic systems. It is worth to recall that these

results have been obtained considering only the DDI. Being interested in the pure dipolar effects,

indeed, we assumed g1D = 0. The tuning of this additional parameter could enlarge or shift the

MDW domain.
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Figure 2.11 : Left: Zoom-in on the part of the atom-dimer phase diagram for l⊥/l0 = 0.4 (Fig. 2.10,

right) showing the transitions between the superfluid (SF), Mott insulator (MI), mass density wave (MDW),

and collapse phases. Center and right: Same as left panel, but for l⊥/l0 = 0.3 and l⊥/l0 = 0.2 respec-

tively. The phase boundaries have been obtained with a quasianalytical variational method described in

Sec. 2.3.3. Here l0 and l⊥ are the harmonic-oscillator length respectively associated to the single-site axial

and transverse potential.

As mentioned before, the different insulating phases can be told apart by looking at the ground-

state wavefunction projected on the basis of configurations. Such an analysis gives also some

insight on the nature of the phase transitions. In Fig. 2.12 we show how the ground-state configu-

ration evolves when the physical parameters r∗/l0 and V/U are varied. In Fig. 2.12 (a) we fix V/U

and vary r∗/l0, observing two transitions: MI-MDW and MDW-collapse. The MI configuration

{1, 1, 1, 1, 1, 1} is the only one populated for small r∗/l0. In the MDW the two peaks correspond to

the double degeneracy of this phase, realized for both {2, 0, 2, 0, 2, 0} and {0, 2, 0, 2, 0, 2}. Finally

six configurations are equiprobable in the collapse phase, namely {6, 0, 0, 0, 0, 0} and its permu-

tations. In our small-sized system the insulator-insulator transitions appear sharp, in accordance

with their expected first-order character. In Fig. 2.12 (b) of Fig. 2.12 we fix r∗/l0 and vary V/U,

observing both the MI-MDW and MDW-SF transitions. Contrary to the insulator-insulator cases,

the transition between SF and MDW is smooth. The MDW maxima slowly disappear in a su-

perposition of all the possible configurations, maximizing the particles delocalization. A similar

behavior occurs at the SF-MI and SF-collapse boundaries. This is compatible with the Berezinskii-

Kosterlitz-Thouless character predicted in 1D for such transitions [22]. With the same method we

can also look for another phase, characterized by hidden order: the Haldane insulator (HI) [73]. We

recall that this phase appears as a superposition of configurations in which a doubly-occupied site

is always followed by an empty one but, differently from the MDW, an arbitrary number of singly-

occupied sites can separate these two. To give some example, configurations like {1, 2, 1, 1, 0, 1}

or {2, 1, 0, 1, 2, 0} are Haldane-compatible, while {2, 1, 2, 0, 1, 0} is not because, ignoring the singly

occupied sites, the ones occupied by 2 and 0 particles are not alternating. Several DMRG calcu-

lations performed on the EBHM pointed out the emergence of such a hidden ordering along the
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Figure 2.12 : Evolution of the ground-state wavefunction of the optical lattice along relevant paths in the

phase diagram for l⊥=0.4l0 (presented in the left panel of Fig. 2.11 and reported here in the top-left panel).

The wavefunction is projected on the basis of atomic configurations on which HAD have been diagonalized

(dimer and atom+dimer configurations are not represented since their occupation is always negligible).

Panel a: Evolution as a function of r∗ (horizontal line at V/U = 0.0064) showing the sharp MI-MDW

and MDW-collapse phase transitions. Panel b: Evolution as a function of V/U (vertical line at r∗ =0.897l0)

showing both the sharp MI-MDW transition and the smooth MDW-SF crossover. Panel c: Another evolution

as a function of r∗ (horizontal line at V/U=0.01). This path crosses the region in which an Haldane insulator

phase is likely to emerge. Here l0, l⊥, and the phases acronyms are defined as in Fig 2.11.
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Figure 2.13 : Quasi-analytical phase bound-

aries calculated for the six-atom six-well sys-

tem (solid black) and in the thermodynamic

limit N →∞ (dashed red). The inset sketches

the atomic configuration in the corresponding

phases. Here l0, l⊥, and the phases acronyms

are defined as in Fig 2.11.

MI-MDW transition, in the vicinity of the “triple point” where this boundary meets the SF region

[72, 73]. Unfortunately the small size of our system does not allow to clearly observe the HI,

but in Fig. 2.12 (c) we focus on a region of our phase diagram where some signature of the new

phase can actually be detected. For V/U = 0.01 the MI-MDW transition happens close to the SF

regime and, differently from the cases (a) and (b), beside the MI peak and the two MDW maxima

other configurations are non-negligible. By looking at these latter one notices that they are all

compatible with the Haldane phase.

2.3.3 Effective single-band extended Bose-Hubbard model

The negligible population of the dimer band allows for an interesting interpretation of the

phase diagrams presented above using an effective single-band EBHM, where the on-site interac-

tion Ueff reproduces the two-body ground-state energy:

Heff =
∑

i

[
εani +

1
2

Ueffni(ni − 1) − Ja(a†
i
ai+1 + H.c.) + Vnini+1

]
, (2.3.11)

with Ueff(r∗)=E2B(r∗)− εa. In the parameter range explored in Figs. 2.10 and 2.11, the phase dia-

gram obtained usingHeff is very similar to those obtained with HAD. This is due to the atom-dimer

detuning ∆=εd − U − 2εa being much larger than Ω, Ja and V . The two approaches are expected

to yield different results for small ∆. In this case the dimer population becomes non-negligible,

and the proper description of the system is given by the atom-dimer model of Eq. (2.3.1), where

at this point also the parameters modeling the dimer dynamics should be carefully determined.

Such a regime occurs for r∗≃2.13 at l⊥=0.4l0, which is way after the largest value r∗=1 that we

considered in our calculations. The same reasoning applies for l⊥/l0=0.3 and 0.2.

The effective single-band model turns out to be extremely useful to derive quasi-analytical

approximations for the phase boundaries for any number N of particles and sites. It is easy to
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determine the configurations corresponding to each phase and thus, starting from the Hamilto-

nian (2.3.11), we can calculate the energy of the system deep within each phase in terms of J,

Ueff , V , and N:

EMI = Nεa + NV, (2.3.12a)

EMDW = Nεa + NUeff/2, (2.3.12b)

Ecoll. = Nεa + N(N − 1)Ueff/2, (2.3.12c)

ESF = Nεa + (N − 1)Ueff/2 + (N − 1)V − 2NJa. (2.3.12d)

Equating these energies for two contiguous phases, we obtain the boundaries shown for N = 6 on

Figs. 2.10 and 2.11. we can also predict the boundaries position in the thermodynamic limit taking

N→∞. The results for the finite and infinite systems are presented in Fig. 2.13, showing that the

case N =6 is already very similar to N→∞. It is worth to focus on the boundary between the SF

and the collapse phases, defined by

ESF − Ecoll.
N≫1−−−−→ N(V − 2Ja) − N2Ueff/2 = 0. (2.3.13)

The tunneling and long-range terms scale with N, whereas the interaction one scales with N2.

Hence, for small N, the superfluid phase survives in a region where Ueff <0, but the collapse phase

is energetically favored when N increases. This instability for large N corresponds to the implosion

of a Bose-Einstein condensate with a negative scattering length when its size is increased [49].

To conclude, we point out that the effective model Heff of Eq. (2.3.11) is easier to implement

numerically with DMRG methods with respect to the atom-dimer EBHM presented in Eq. (2.3.1).

This allows to investigate the behavior of larger systems and to compare it with our predictions.

Some preliminary calculations performed by L. Barbiero agrees with the aforementioned results

for the phase boundaries position in the large-N limit. They also confirm the occurrence of a phase

with HI-character when the MI-MDW transition is smooth.

2.4 Conclusions

In this chapter we considered the combined effects of reduced dimensionality and dipolar inter-

action. At the two-body level we pointed out the emergence of a dipolar-induced resonance (DIR)

for dipolar particles tightly confined along a tube. For dipoles polarized perpendicularly to the

tube direction a single resonance occurs in the even scattering channel [34]. Such a phenomenon

implies the existence of a dimer-state sustained by the dipole-dipole interaction (DDI) even for

regimes in which two classical dipoles would simply repel each other. The mechanism responsi-

ble for the resonance have been investigated resorting to an analitycally-solvable toy model. We
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then introduced a two-state Hamiltonian to describe the DIR in a cigar-shaped harmonic potential.

The main effect of the resonance is the non-monotonic behavior of the ground-state energy [35]

(c.f. Fig. 2.8) which may be detected experimentally using to spectroscopic techniques [107].

After a detailed analysis of the two-body problem, we investigated the consequences of the

DIR at the many-body level. The system we considered is a quasi-1D optical lattice of N sites

loaded with N dipolar bosons (c.f. Fig. 2.1). Each lattice site can be approximated by a cigar-

shaped trap, so that its two-state description naturally translates in the introduction of a novel

atom-dimer extended Bose-Hubbard model [35] [Eq. (2.3.1)]. We discussed the new features of

this model with respect to preexisting single-band ones (cf. Figs. 2.10 and 2.11). The phase

boundaries can be predicted quasi-analytically by reducing the atom-dimer model to an effective

single-channel one. This method allows to infer intriguing predictions for large systems without

having to rely on computational-demanding numerical techniques. One possible way to explore

experimentally the foregoing ground-state phase diagrams is to cool the system in a given geom-

etry in the absence of dipolar interactions, and then adiabatically increase r∗. The phases we have

predicted at T =0 may be experimentally identified using in-situ imaging techniques [68] as well

as the recent advances allowing for the detection of non-local order [110].

Among the possible outlooks of our study, one should for sure consider the interplay of DDI

and contact interaction, in order to establish a better connection with realistic experimental situa-

tions. In our work, this has been explicitely done only in the toy-model for the two-body problem.

The inclusion of an independent contact term in the atom-dimer EBHM is expected to modify the

phase diagram, for instance shifting and enlarging the MDW domain. In our work, we have fo-

cused on the configuration of classical repulsion, but the opposite case of classical attraction can

also bare some interesting features due to the cohexistence of an effective finite attractive potential

and an induced on-site repulsion, leading to a finite, and not infinite, number of bound states.

In general, while the DDI has been widely considered in literature for different geometries and

configurations, the DIR has been typically neglected. Hence, it would be interesting to reconsider

such systems, looking for possible effects of the DIR. For example, one may extend our study

to 2D geometries, where the anisotropy of the dipolar interaction is expected to play an impor-

tant role. One may also investigate the transition between 1D and 2D, in which a dipolar gas is

known to exhibit crystal-like phases for a purely repulsive DDI [111]. The extension to higher

dimensions would also allow to study different lattices, like a zig-zag [112] or a staircase [113]

optical lattice. In these geometries, interesting effects can arise from the interplay of anisotropic

interaction and geometric frustration. In the presence of the dipolar-induced bound state, a precise

mapping between real system geometry and Hamiltonian parameters, or even the introduction of

a two-channel model, might be required also in the case of disordered systems [114, 115].
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Another possible development line consists in the study of fermionic systems. The case of

attractive fermions in a quasi-1D tube has been recently investigated in [116], pointing out the

existence of many-body bound states. Considering a fermionic mixture, one may explore the

effects of the DIR between different spin components. Hence, our model could also be adapted to

study the fermionic 1D EBHM with repulsive interactions, where the relevant phases are the spin

density wave, the charge density wave, and the bond order wave [117–120].
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CHAPTER 3

Bidimensional Atomic Artificial Crystals

In this chapter we present a general scheme to realize a cold-atom quantum simulator of
bidimensional atomic crystals. Our model is based on the use of two independently trapped
atomic species: the first one constitutes a two-dimensional matter wave which interacts only
with atoms of the second species, pinned at the nodes of a two-dimensional optical lattice. By
introducing a general analytic approach, we investigate the matter-wave transport properties.
We propose some illustrative applications to both Bravais (square, triangular) and non-Bravais
(graphene, kagomé) lattices, studying ideal periodic systems as well as experimental-size and
disordered ones. Some remarkable spectral properties of these atomic artificial crystals are
pointed out, such as the emergence of single and multiple gaps, flat bands, and Dirac cones.
All these features can be manipulated via the widely tunable interspecies interaction.
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3.1 Modeling bidimensional crystals with cold atoms

In spite of the development of supercomputers and cutting-edge numerical methods, the sim-

ulation of experimental-size many-body systems is still a hard task. Following Feynman’s conjec-

ture of a quantum simulator, it proves useful to analyze manipulable systems able to reproduce,

in a controllable way, the physical scenario that one wants to investigate. As we discussed in

Chapter 1, the theoretical and experimental progress of the last decades, boosted by nanotechno-

logical needs, has made it possible to combine the properties of cold gases and optical lattices

(OLs) to build up artificial simulators of condensed-matter systems [20]. A crucial factor in the

success of these models is their experimental versatility. For instance, in Chapter 1 and 2, we

saw that interactions between cold atoms can indeed be tuned via Feshbach [13], dipolar [98] or

confinement-induced [14] resonances. This combines with the precise control on the potential

landscape offered by OLs, allowing for the exploration of quantum phase transitions [21, 24]. Fur-

thermore, these kinds of simulators enable the exploration of parameter ranges beyond those of

the real material they imitate, unveiling new physical scenarios.

In solid-state physics, among the plethora of crystals that can be investigated, two-dimensional

ones are of special interest due to the intriguing properties that 2D materials have been shown to

possess. Up to the early 2000s the study of these systems was only of academic interest, 2D

solids being considered unstable structures never observed experimentally. Things changed in

2004, when graphene was finally isolated [36]. This discovery paved the way to the study of this

astonishing carbon allotrope composed of a monolayer of ions forming a honeycomb lattice in

which charge carriers manifest peculiar transport properties [37, 38]. In particular, conduction

and valence bands touch in isolated points of k space: the Dirac points. Around them the energy-

momentum dispersion relation is conical and a Dirac-like equation for massless fermions replaces

the Schrödinger equation to describe the quantum motion of the carriers. Graphene thus qualifies

as a quantum electrodynamics simulator on a benchtop scale. Furthermore, relativistic effects, in

general inversely proportional to the speed of light, would be enhanced in graphene: the role of c

is played here by the group velocity vg of the particles around the cone and c/vg∼300 [37].

The growing attention to graphene and other monolayer materials translates in an increasing

interest in their quantum simulators, so that many artificial prototypes of 2D lattices have been

proposed and realized in past years (for a recent review see [39]). In the present work we introduce

a general, highly controllable model for the realization of artificial bidimensional lattices, based on

the use of two cold-atomic species [41, 42]. In our system a 2D matter wave (MW), made up of A

atoms, interacts with point-like scatterers of a second atomic species, denoted by B, independently

trapped around the nodes of a 2D OL. A schematic of our model is presented in Fig. 3.1. Such

a scheme is already experimentally realizable using species-selective OLs: trapping potentials
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Figure 3.1 : Schematic of our model for the realization of bidimensional atomic artificial crystals, specified

here to the exemplary case of the atomic artificial graphene. Two atomic species, namely, A (depicted in

blue) and B (depicted in red), are strongly confined on a plane. Making use of a species-selective optical

lattice, B atoms are trapped to form a 2D lattice of point-like scatterers of arbitrary geometry (a honeycomb

lattice in this example). In-plane confined A atoms form a 2D matter wave which propagates through the

artificial crystal.

engineered to act on an atomic species (B in the present case) being at the same moment invisible

to a second one (for us, A) [43, 44, 83]. This has been done, for instance, in [43] for a mixture

of 87Rb and 41K atoms: when the optical-lattice frequency is tuned exactly in between two 87Rb

resonances, the attractive and repulsive contributions to the optical force cancel each other and

only 41K feels the added potential. In this chapter we limit our investigations to one-body physics

in the MW, i.e., we assume A atoms to be noninteracting with themselves, a situation attainable

by using polarized fermions or bosons at zero scattering length. One can instead employ the B−B

interaction to reach a Mott insulating phase with exactly one atom per lattice site (cf. Sec. 1.3)

and subsequently freeze the atoms in this configuration by increasing the lattice depth. Other

techniques are also available to probe [68] and manipulate [69], at single-site and single-atom

level, the scatterer arrangement. This model has recently been proposed to study the effects of

disorder in 1D [115, 121–123], 2D, and 3D [124] systems, and it has the advantage of showing



60 3. Bidimensional Atomic Artificial Crystals

a one-to-one correspondence with the bidimensional lattices that it can mimic: the A atoms of

the MW play the role of the electronic cloud, while the deeply trapped B atoms represent the

crystalline structure. Henceforth we refer to our system as an atomic artificial crystal (AAC),

since the periodic potential felt by the MW is generated by other atoms and not by an optical

potential.

We begin this chapter by introducing our theoretical model in Sec. 3.2. At first, we briefly

address in Sec. 3.2.1 the elementary scattering process between an atom of the MW and a trapped

scatterer, which amounts to a problem of scattering in reduced and mixed dimensions. Then,

we describe the general approach to the study of finite-sized AAC in Sec. 3.2.2, treatment which

naturally applies also to disordered systems. We thus conclude the presentation of the theoretical

model in Sec. 3.2.3, where we specify the model to the case of infinite, periodic arrangements of

the scatterers. In the second part of the chapter we apply our theoretical formalism to concrete

geometries. We investigate the square (Sec. 3.3) and triangular (Sec. 3.4) lattices as illustrative

examples of Bravais lattices. For both of them the spectral properties of the MW are analyzed

as a function of the A−B interaction strength, investigating also finite-size and disorder effects.

Sec. 3.5 is entirely devoted to the atomic artificial graphene (AAG) [41], that is, an AAC whose

scatterers are arranged to form an honeycomb lattice. For the AAG we point out and characterize

the emergence of Dirac cones and nondispersive flat bands. Features that we find again in the

kagomé lattice, investigated in Sec. 3.6. Finally, we present or conclusions in Sec. 3.7.

3.2 Theoretical approach

This section is devoted to the introduction of the main theoretical tools that will be used, in the

following, to investigate the transport properties of a MW in an AAC. After some comment on the

A−B elementary scattering process, we introduce our theoretical formalism for both generic finite

systems and infinite periodic crystals.

3.2.1 0D-2D scattering process

As we extensively discussed in the previous chapters, a remarkable feature of cold-atomic

systems is the possibility of using experimentally controllable parameters as knobs to tune the

interatomic scattering lengths. This can be done, for example, by means of Feshbach or dipolar-

induced resonances [13, 34, 35, 98, 125]. When the interacting particles are subject to a trapping

potential, it can, in turn, lead to confinement-induced resonances [14]. A strong trapping reduces

the effective dimensionality of the system, as discussed in Sec. 1.4, where we also considered
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mensional one (bottom) in which the B atom consti-

tutes a fixed point-like scatterer and the scattering pro-
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aeff
2D [45].

scattering processes involving differently-trapped atoms. Recently such mixed-dimension scatter-

ing have been addressed for system in which a free particle impinges on a trapped one (nD-3D

scattering [16, 84, 85]) and some theoretical predictions have been tested experimentally [43].

The subject of mixed-dimension scattering is related with the physics of AACs. Indeed, the

building-block of our analysis is the two-body low-energy scattering process between an A atom

of mass mA=m, harmonically trapped on a plane, and a B one of mass mB, trapped around a node

of an OL, a process represented schematically in Fig. 3.2. It can be shown that, by providing a

proper effective 2D scattering length aeff
2D, the system is mapped into a strictly 2D space in which

the B atom is now a fixed point-like scatterer. The effective parameter aeff
2D, which takes also

into account the quantum motion of the B atom in the real system, depends on the atomic mass

ratio, the trapping frequencies and the A−B scattering length a3D in free space (c.f. Fig. 3.2).

More details about this 0D-2D scattering process are presented in App. C. For our purposes we

assume, hereafter, aeff
2D to be tunable in its full range of existence [0,∞[, and that the B scatterers

can be always considered point-like. In this regime the interaction can be taken into account by

considering the A atom as free and imposing the Bethe-Peierls contact condition,

ψ(r)
r→rB−−−−→

m

π!2
DB ln


|r − rB|

aeff
2D

 + O (|r − rB|) , (3.2.1)

on its wave function at the position rB of the scatterer, where DB is an arbitrary complex coefficient.

It is worth to briefly recall some important property of the 2D scattering, extensively discussed in

Sec. 1.4.1. Contrary to the 3D and 1D cases, even at low energies the 2D scattering amplitude stays

momentum-dependent and only in the limit aeff
2D→∞ one can consider the interaction to be overall

weakly repulsive. On the other hand, for aeff
2D → 0 the 2D pseudopotential [Eq. (1.4.7)] allows

a single, infinitely deep bound state and results weakly repulsive for positive-energy scattering

states [77, 78].
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3.2.2 Finite-sized and disordered systems

Let us start by considering now a general case in which N point-like B scatterers are fixed at

positions {ri}. The first steps of our calculation follow [124]: we consider the Hamiltonian of the

matter wave (MW) as that of a free A atom, i.e., H =− !2

2m
∇2

2D with ∇2
2D the 2D Laplace operator,

and add the A−B interaction by imposing the boundary conditions (3.2.1) at the position of each

B scatterer. This introduces a set of N independent complex coefficients Di. The same conditions

apply to the MW Green’s function, G(r, r0), solution of the Schrödinger equation for a point-like

source term of matter waves in r0:

(E + i0+ −H)G(r, r0) = δ(r − r0). (3.2.2)

The previous wave equation can be rewritten to take the boundary conditions directly into account.

In particular, making use of the identity ∇2
2D ln(r)=2πδ(r), the effect of contact conditions resumes

in the inclusion of secondary point-like sources of amplitude Di at the position of each scatterer,

leading to

(E + i0+−H) G(r, r0) = δ(r − r0) +
N∑

i=1

Di δ(r − ri). (3.2.3)

Since the poles of G (and of its analytical continuation to complex energies in the lower half-plane)

correspond to eigenstates of the system, its knowledge is of fundamental importance to determine

the properties of the AAC.

To integrate Eq. (3.2.3) we use its solution in the absence of scatterers, which is the case for a

free 2D MW. In this case, G(r, r0)=g0(r − r0), with

g0(r) = −i
m

2!2
H

(1)
0 (kr). (3.2.4)

In Eq. (3.2.4), H
(1)
0 is the zero-index Hankel function of the first kind and the wave-vector modulus

k is linked to the MW energy by the usual relation

E =
!

2k2

2m
, (3.2.5)

with k> 0 for E > 0 and k= iκ with κ> 0 for E < 0 (i.e. for bound states). Hence, we can cast the

formal solution of the wave equation (3.2.3) as

G(r, r0) = g0(r − r0) +
N∑

i=1

Di g0(r − ri), (3.2.6)

where the determination of the N coefficients Di depends on the system geometry, encoded in the

set {ri}. This problem can be tracked back to the solution of a complex linear system in the N
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unknowns Di. Each equation of this system comes from the limit r→ r j of Eq. (3.2.6), imposing

the Bethe-Peierls condition (3.2.1) on the left-hand side and applying

H
(1)
0 (kr) −−−→

r→0
1 +

2i

π
ln
(
eγ

2
kr

)
+ o(1) (3.2.7)

on the right-hand side, where γ≃0.577216 is the Euler-Mascheroni constant. After some straight-

forward algebraic manipulation the complex system becomes

N∑

i=1

M jiDi = −
π!2

m
g0(r j − r0) j = 1, 2, · · · ,N, (3.2.8)

with the introduction of the matrixM of elements

M ji =



π!2

m
g0(r j − ri) r j ! ri,

ln
(

eγ

2 kaeff
2D

)
− iπ2 r j = ri.

(3.2.9)

The formal solution of G [Eq. (3.2.6)] has a pole ifM is not invertible, i.e., if

det(M) = 0. (3.2.10)

In conclusion we can take Eq. (3.2.10) as our general condition for the existence of an eigenstate

for a MW propagating in a gas of scatterers pinned at positions {ri}. Such a general approach holds

equally for quasi-periodic crystals, finite-size structures, and random distributions of scatterers.

In view of a numerical implementation of the theoretical model, we stress that condition (3.2.10)

can be rewritten in a more practical form by noting that the interaction-dependent terms appear

only in the diagonal elements ofM. In particular, one can write

M j j = ln
(
eγ

2
ka

)
− i
π

2
+ α, (3.2.11)

with the introduction of the 2D interaction coefficient

α = ln(aeff
2D/a), (3.2.12)

and for an arbitrary choice of the unitary length a. It follows thatM=Mo
+ Iα, forMo

=M(α=0)

and I the N×N identity matrix. For E < 0 the matrix Mo is real, and looking for solutions of

det(M)=0 is equivalent to solving

mo
i (E) = −α, i = 1, 2, · · · ,N, (3.2.13)

for each of the N eigenvalues mo
i

of Mo. Solutions of Eq. (3.2.13) give real and negative ener-

gies of the MW bound states in the gas of scatterers. For E > 0 the situation is slightly different.
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Figure 3.3 : Left: Real-space representation of a square

lattice of primitive vectors a1 = a(1, 0) and a2 = a(0, 1).

The shaded area represents the unit cell. Right: Recip-

rocal lattice in k space corresponding to the square lat-

tice. Consequently the reciprocal primitive vectors are

b1 =
2π
a

(1, 0) and b2 =
2π
a

(0, 1). The first Brillouin zone

(FBZ) is shaded. The high-symmetry points Γ = (0, 0),

X = π
a
(1, 0), and M =

π
a
(1, 1) are highlighted and the

Γ−X−M−Γ path [dashed (red) line] constitutes an ir-

reducible symmetry path.

A continuum of states is allowed for the MW; nevertheless, for a large enough number of scatter-

ers, precursors of the bulk Bloch states of the infinite periodic system can be identified in the form

of complex poles of the analytical continuation of G to the lower half-plane of complex energies.

In our approach, this corresponds to the fact thatMo is now a complex matrix and the poles of the

extended G can be found by solving

mo
i (z) = −α, i = 1, 2, · · · ,N, (3.2.14)

for complex energies of the form z = E − i!Γ/2, where E and Γ > 0 represents, respectively, the

position and band-width (i.e., inverse lifetime) of the eigenstate. The latter, in an extended and

ordered system, would be a quasi-Bloch state: a state showing the periodicity properties of a Bloch

state within the gas of scatterers but with a finite lifetime inside of it. Further details on the quasi-

Bloch states will be discussed in Sec. 3.3.2, in the framework of the practical application of our

model to the case of a finite-sized square lattice.

3.2.3 Infinite periodic systems

Infinite periodic structures play a crucial role in solid state physics, since their analysis is the

starting point to understand the transport properties of charge carriers in real materials. In the same

way, by looking at ideal systems we can derive bad structure and density of states for a MW in an

AAC. With this purpose in mind, we develop, in the following, the transformation of the finite-size

formalism introduced in Sec. 3.2.2 to a theoretical model valid for ideal periodic crystals.

3.2.3.1 Bravais lattices

In this section we adapt the general formalism introduced in Sec. 3.2.2 to the case in which the

B atoms are arranged in a Bravais lattice: an infinite periodic structure where a unit cell, containing

only one atom, is repeated to cover the entire 2D space (c.f. Figs. 3.3 and 3.4). Such a lattice is
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Figure 3.4 : (Color online) Left: Representation in real-

space of a triangular lattice of primitive vectors a1 =

3a
2 (1, 1/

√
3) and a2 =

3a
2 (1,−1/

√
3). The shaded re-

gion represents the Wigner-Seitz unit cell. Right: Re-

ciprocal lattice for the triangular one, b1 =
2π
3a

(1,
√

3)

and b2 =
2π
3a

(1,−
√

3) being the reciprocal primitive vec-

tors. The first Brillouin zone (FBZ) is shaded and

the high-symmetry points Γ = (0, 0), M =
2π
3a

(1, 0),

K =
2π
3a

(1, 1/
√

3), and K′ = 2π
3a

(1,−1/
√

3) are high-

lighted. The Γ−M−K−Γ path [dashed (red) line] is

a high-symmetry one.

invariant under any translation R∈L with

L = {n1a1 + n2a2 : n1, n2 ∈ Z}, (3.2.15)

where the set L, defined in terms of the two primitive vectors a1 and a2, contains all the real-space

lattice vectors. Consequently, we can define the reciprocal lattice as a periodic structure invariant

under translations K∈RL with

RL = {n1b1 + n2b2 : n1, n2 ∈ Z}, (3.2.16)

where b1 and b2 are the reciprocal primitive vectors, defined by the relation ai ·b j=2πδi j (i, j=1, 2)

[1]. Some examples of Bravais and corresponding reciprocal lattices are presented in Figs. 3.3

and 3.4.

The condition for the existence of an eigenstate, i.e., det(M)=0 [Eq. (3.2.10)], implies that the

homogeneous system
∞∑

i=1

M jiDi = 0, j = 1, 2, · · · ,∞, (3.2.17)

associated with the inhomogeneous one of Eq. (3.2.8) admits a nontrivial solution. Note that the

number of scatterers N, and thus the number of equations and unknowns in the system, is now

infinite [126–128]. In such a periodic structure Bloch’s theorem holds [1], implying that

Di = D je
iq·(r j−ri), (3.2.18)

where q is a vector of the first Brillouin zone (FBZ) in reciprocal space. Resorting to this prop-

erty all the equations of the homogeneous system (3.2.17) become identical, so that the unique

condition to verify is

ln
(
eγ

2
kaeff

2D

)
− i
π

2
+

∑

R∈L∗

π!2

m
g0(R)eiq·R

= 0, (3.2.19)
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where L∗=L\ {0}. Due to the slow convergence of the sum in Eq. (3.2.19), a rewriting of the equa-

tion in terms of reciprocal-lattice vectors is appropriate. The delicate details of this transformation

are reported in the App. D.1, the result being

C∞ + ln
(
eγ

2

)
+

2π
A

1
k2 − q2

+

2π
A

∑

K∈RL∗

(
1

k2 − |K − q|2
+

1
K2

)
+ α = 0. (3.2.20)

Here C∞ is a coefficient depending only on the geometry of the Bravais lattice; its origin and

definition follow from the real-to-reciprocal lattice transformation, presented in the App. D.1. Its

numerical determination for the lattices treated in this work is discussed in the App. D.1.1. In

Eq. (3.2.20), A is the area of the real-space unit cell of the Bravais lattice and we have also

reintroduced the 2D interaction coefficient α= ln(aeff
2D/a), (a being an arbitrary unit of length).

It is worth noting that Eq. (3.2.20) can be cast as

f (q, E) = −α, (3.2.21)

with the introduction of the interaction-independent function

f (q, E) = C∞ + ln
(
eγ

2

)
+

2π
A

1
k2 − q2

+

2π
A

∑

K∈RL∗

(
1

k2 − |K − q|2
+

1
K2

)
. (3.2.22)

It follows by its definition that f (q, E) diverges for

k = |K − q| ∀K ∈ RL, (3.2.23)

recalling that wave vector and energy of the MW are related by E = !2k2/2m. Furthermore,

f (q, E) is monotonically decreasing in E between two divergences, ensuring that for a given q

only one solution of Eq. (3.2.21) exists between them. Another remarkable consequence is that

if Eq. (3.2.23) holds, then condition (3.2.21) is satisfied only for |α|→∞, which is in the limit of

noninteraction between the MW and the scatterers (for a practical example, cf. Fig. 3.6 below).

This implies that for |α|→∞ (i.e., in the limit of weak A−B interaction) one would recover the

dispersion relation of a free MW, whose energy is given by

Efree =
!

2

2m
|K − q|2 ∀K ∈ RL. (3.2.24)

3.2.3.2 Non-Bravais lattices

This section is devoted to generalizing the formalism introduced in Sec. 3.2.3.1 to the case in

which B scatterers are arranged in a non-Bravais lattice: an infinite periodic structure in which

a unit cell, now containing M atoms, is repeated to cover the 2D plane. Such a structure can be



3.2. Theoretical approach 67

t
12

a1

a2

a
a

a a

(a) (b)

(c) (d)

Figure 3.5 : (a) Representation of an M = 2

non-Bravais lattice. It can be seen as a trian-

gular lattice (Fig. 3.4) with two atoms per unit

cell (shaded hexagon) whose relative position is

t12. Equivalently, it can be obtained as the su-

perposition of two interpenetrating triangular lat-

tices (distinguished by colors) displaced by t12

with respect to each other. The generating vectors

a1,2 =
3a
2 (1,±1/

√
3) are also indicated. (b) Rep-

resentation of the triangular lattice as an exam-

ple of a basic Bravais lattice, i.e., with one atom

per unit cell. The distance between nearest atoms

is a
√

3. (c) Representation of the hexagonal lat-

tice of graphene, a two-atom non-Bravais lattice

based on the triangular one, obtained for t12 =

(a1 + a2)/3= (a, 0). With these definitions, the side

of the hexagons has length a. (d) Representation

of the kagomé lattice, a three-atom non-Bravais

lattice based on the triangular one, obtained for

t12 = a1/2 and t13 = a2/2. The nearest-neighbor

distance is a
√

3/2.

equivalently seen as a set of M identical Bravais lattices, the mth and nth being displaced by tmn

with respect to each other. The structure will still be invariant if translated by R∈L [Eq. (3.2.15)],

where a1,2 are the primitive vectors of a sublattice [cf. Fig. 3.5(a)]. All the properties of a Bravais

lattice remain separately valid for each sublattice. If we denote by Ri the central position of the

ith unit cell, and by ρm the position of the mth atom with respect to this reference, the location of a

scatterer in the non-Bravais lattice is given by rim=Ri + ρm. The linear system, (3.2.17), becomes

∞∑

i=1

M∑

m=1

M jn,im Dim = 0 (3.2.25)

for each j = 1, 2, · · · ,∞ and n = 1, 2, · · · ,M. Practically, each index has been split with respect

to previous notation (i.e., j → jn and i → im) such that the first index runs on the lattice cells,

while the second indicates at which of the M sublattices the scatterer belongs. Accordingly, the

definition of M given in Eq. (3.2.9) still holds. Bloch’s theorem is now separately valid for each

sublattice, so that

Dim = D jm eiq·(r jm−rim)
= D jm eiq·(R j−Ri), (3.2.26)

while Dim and D jn stay independent for m!n [128]. This assumption makes the present treatment

not valid in the few accidental cases in which the non-Bravais lattice degenerates into a Bravais
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one. For an arbitrary choice of j, all the equations in system ,(3.2.25), take the form

M∑

m=1

D jm

∞∑

i=1

M jn,im eiq·(R j−Ri)
= 0, (3.2.27)

giving a homogeneous system of M equations in the M unknowns D jm, whose matrix T is defined

by

Tnm =

∞∑

i=1

M jn,im eiq·(R j−Ri). (3.2.28)

The matrix elements read explicitly

Tnm =

∑

R∈L

π!2

m
g0(R + tnm) eiq·R for n!m, (3.2.29a)

Tnn = ln
(
eγ

2
kaeff

2D

)
− i
π

2
+

∑

R∈L∗

π!2

m
g0(R) eiq·R, (3.2.29b)

with tnm=ρn−ρm. The condition

det(T) = 0 (3.2.30)

has to be satisfied so that system (3.2.27) has a solution, which, in turn, means that this is the

condition for the existence of an eigenstate of the A-atom MW in presence of a non-Bravais lattice

of B scatterers. Note that the diagonal terms are all the same and that they correspond to the left-

hand side of Eq. (3.2.19). This naturally implies that for M=1 we get back to the case of a Bravais

lattice: det(T)=T11=0 is exactly Eq. (3.2.19). It is again convenient to rewrite the sums in terms

of reciprocal-lattice vectors. Following the procedure described in App. D we finally have

Tnm =
2π
A

∑

K∈RL

ei(K−q)·tnm

k2 − |K − q|2
, (3.2.31a)

Tnn =C∞ + ln
(
eγ

2

)
+

2π
A

1
k2 − q2

+

2π
A

∑

K∈RL∗

(
1

k2 − |K − q|2
+

1
K2

)
+ α. (3.2.31b)

Besides, from the latter expressions the matrix T turns out to be explicitly Hermitian.

3.3 Square lattice

As a first example of AAC we consider B scaterers arranged in a square lattice of spacing a,

for which the primitive vectors are simply a1 = a(1, 0) and a2 = a(0, 1). The reciprocal lattice and

the FBZ are consequently defined, as illustrated in Fig. 3.3.
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Figure 3.6 : For a square lattice, behavior of

f (q, E) [Eq. (3.2.22)] as a function of E for dif-

ferent values of q [namely, π
a
(0.8, 0.5), π

a
(0.9, 0.5),

and π
a
(1, 0.5), from top to bottom]. Dashed vertical

(gray) lines represent the lowest values of Efree for

the selected q. In the sketches at the right of each

panel a point indicates the corresponding q inside

the Γ−X−M−Γ symmetry path. Here ε=!2/ma2.

3.3.1 Periodic system

To study the band structure of the artificial atomic square lattice (AASL) one needs to solve

Eq. (3.2.20), where in this case C∞ ≃ 1.4265 (cf. Appendix D.1.1). It is computationally con-

venient to evaluate once for all the function f (q, E) defined in Eq. (3.2.22) and look afterwards

for solutions of Eq. (3.2.21) for a given α. In Fig. 3.6 we plot f (q, E) for different values of q

inside the FBZ. As expected, f diverges each time that E = Efree [i.e., when condition (3.2.23) is

satisfied], but when q gets closer to the boundary of the FBZ some values of Efree corresponding

to different K eventually tend to each other. A solution of Eq. (3.2.21) thus remains “trapped” in

the small corridor formed by the two divergences and it tends to E=Efree in the degeneracy limit,

independently of α.

We present in Fig. 3.7 the spectrum and density of states (DOS) of the AASL for α=−0.75.

The spectrum is evaluated along the Γ−X−M−Γ symmetry path (cf. inset). The free-MW

energy Efree is also shown and, as expected, only one solution of Eq. (3.2.21) exists between two

(eventually coinciding) free bands. An omnidirectional gap is found in the band structure and,

correspondingly, in the DOS. The numerical evaluation of the DOS can be obtained by sampling

each energy band in Ns points within the FBZ. Subsequently the formula

DOS(E) =
NE

NsδE
(3.3.1)

gives the DOS in the energy range (E, E + δE), being NE the number of sampled energies falling

in the energy interval. The DOS defined in Eq. (3.3.1) is normalized to the number of bands taken

into account. Finally we remark that the lowest, isolated band lays entirely at negative energies

for this value of α, meaning that the MW Bloch states are actually bound.
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Figure 3.7 : For the artificial atomic square lattice, the band structure (left) and density of states (right)

evaluated at α = −0.75. Left: The four lowest energy bands are evaluated along the irreducible symmetry

path Γ−X−M−Γ within the first Brilouin zone (see inset). Dashed (gray) lines correspond to the energy

spectrum of a free matter wave. Right: Density of states (DOS) obtained by evaluating the energies of the

same bands in Ns ≃6100 points sampled inside the path. For each bin of the histogram (of width δE=0.1ε,

ε=!2/ma2) the band-normalized DOS is evaluated according to Eq. (3.3.1).

A fundamental aspect of our model relies on the possibility of tuning its physical properties

by acting on α. This remarkable feature is shown in Fig. 3.8, where the spectra of the AASL are

compared for different values of α. The most evident modification concerns the lowest band, which

is isolated for α " 0.7453, so that a gap opens in the spectrum. Furthermore, the band becomes

increasingly deep and flat, leading to low group velocities for the corresponding eigenstates. For

|α|≫1, the MW and scatterers are weakly interacting and, as expected, the band structure tends to

the free-MW spectrum [dashed (grey) curves in Fig. 3.8].

3.3.2 Finite-size effects

In Sec. 3.3.1 we have considered the ideal periodic square lattice, but for both theoretical and

practical interests it is crucial to investigate the robustness of the above-reported results for realistic

finite-size systems. In this case one cannot resort to Bloch’s theorem and the use of the general

approach presented in Sec. 3.2.2 is necessary. In a typical experimental setup, atomic clouds can

be manipulated in OLs extending over ∼60 sites per dimension. This means that 2D artificial

atomic lattices with ∼ 103 trapped B scatterers are experimentally realizable. In Fig. 3.9 we thus

present the density of states on the [α, E] plane for a finite system of ∼2500 scatterers arranged in

a square lattice inside a circular region of radius R=26a. The finite-size results are compared here

with those of an ideal infinite system and the agreement is excellent.

In the evaluation of the DOS in Fig. 3.9 it is computationally convenient to fix E and, corre-

spondingly, look for the values of α satisfying conditions (3.2.13) or (3.2.14). For E<0 the N×N
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Figure 3.8 : Square lattice: band structure for different values of the interaction parameter α. Spectra are

evaluated along the same path shown in Fig. 3.7. Dashed (gray) lines correspond to the energy spectrum of

a free matter wave. Energies are normalized on ε=!2/ma2.

real symmetric matrix Mo(E) and its eigenvalues can be evaluated, thus the values of α solving

Eqs. (3.2.13) are immediately obtained. For E > 0 one can use Ẽ = E as the starting point to find

an approximate solution of the complex Eqs. (3.2.14). We write z = Ẽ + δz and we assume the

first-order expansion mo
i
(z) = mo

i
(Ẽ) + δz mo

i
′(Ẽ) to be valid. By choosing α = −Re[mo

i
(Ẽ)] each

equation reduces to i Im[mo
i
(Ẽ)]+δz mo

i
′(Ẽ)=0, from which δz can be directly derived. The energy

E and band-width Γ of the quasi-Bloch states follow from

z = E − i
!

2
Γ ≃ Ẽ − i

Im[mo
i
(Ẽ)]

mo
i
′(Ẽ)

. (3.3.2)

Note that the derivative mo
i
′(Ẽ) can be evaluated resorting to the generalized Hellmann-Feynman

theorem [124]: for the complex symmetric matrix Mo, one has dmo
i
(z)/dz = 5ui · [dMo(z)/dz]5ui,

where 5ui is the right eigenvector of eigenvalue mo
i
(z), normalized as 5ui · 5ui=1 (instead of the usual

5ui · 5u
∗
i
=1).

The first order approximation (3.3.2) is sufficient if Im[mo
i
(Ẽ)] is small [124], and this is the

case for most of the solutions we find. In particular, for quasi-Bloch states one expects a lifetime

τ=1/Γ≃R/vg, where R is the radius of the region containing the scatterers and vg the group veloc-

ity of the state. To verify this behavior we selected a small window on the [α, E] plane, studying

the distributions of τ when the system size varies. The results of this analysis are presented in

Fig. 3.10. We find that the distribution peak follows the expected behavior, confirming that the

first-order approximation is sufficient to individuate quasi-Bloch states. Nevertheless, when the

poles of G are evaluated by Eq. (3.3.2), one can eventually find some results for which the first-
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Figure 3.9 : Finite-sized square lattice: DOS per scatterer in the plane [α, E/ε] for a system of N = 2551

scatterers arranged in a square lattice inside a disk of radius R=26a. Energies are discretized with a step of

0.01ε (ε= !2/ma2). For a given E < 0 all N solutions of Eqs. (3.2.13) are selected. For E > 0 the sampled

values are used as starting points to find N complex poles of G according to Eq. (3.3.2). Only quasi-Bloch

bulk states are selected, as explained in the text. The color map is applied to log10( Np

N
ε
δα δE

), where Np is the

number of selected poles of G within a rectangular bin of area δα δE (δα = 0.02 and δE = 0.05ε). White

circles indicate the positions of band boundaries as expected from the analysis of an infinite system (Figs. 3.7

and 3.8). Analogously, the white plus symbol marks the expected contact point between the lowest and the

first excited band, corresponding to the gap closure.

order is insufficient. These solutions would present nonphysical negative values of Γ and needs

to be rejected (in the case presented in Fig. 3.9 they constituted 10.6% of positive-energy states).

Furthermore, in a finite-size system, states other than quasi-Bloch ones can appear (such as edge

states) for which the law Γ ≃ vg/R is not valid. In order to tell them apart one can look at the

density of Γ, shown in Fig. 3.11 for the same system considered in Fig. 3.9. A neat change in the

behavior is found in Γmax ∼ vg max/R, where vg max is the highest estimated group velocity in the

range of E and α considered. States with Γ > Γmax can in turn be rejected, finally, leaving only

solutions behaving as quasi-Bloch bulk states (in the case of Fig. 3.9 this led to the exclusion of an

additional 8.4% of solutions). A natural question may arise concerning the dependence of vg max

on α and E. It has been verified that by considering a cutoff depending on α and E the results are

qualitatively the same as those obtained using the aforementioned selection method.

3.3.3 Introduction and effects of disorder

A remarkable advantage of our atomic artificial lattices with respect to other one-species mod-

els is the possibility of naturally introducing disorder in the system. Loading the B-atom OL with
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Figure 3.11 : For the same finite-size square lattice consid-

ered in Fig. 3.9: normalized density of bandwidths Γ for all

positive-energy poles of the Green function (ε = !2/ma2).

The dot-dashed vertical (blue) line at Γ = Γmax marks the

change in behavior of the density ρΓ. Solutions with Γ >

Γmax have been rejected because they are incompatible with

the behavior of a quasi-Bloch bulk state. Here we found

Γmax ≃ 0.7ε/! (i.e., Γmax ≃ 2kHz for a matter wave of 87Rb

atoms in an AASL with a=500nm).
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Figure 3.12 : Disordered square lattice: normalized

negative-energy DOS at α = −0.75 for an AASL of ra-

dius R = 32a, corresponding to 3209 available lattice

sites. Different panels refer to different percentages of

randomly occupied sites: (a) 100%, (b) 95%, (c) 20%,

(d) 10%. Histograms are obtained with a bin size δE =

0.05ε in (a) and (b) and δE = 0.025ε in (c) and (d). Su-

perimposed dotted histograms in (a) and (b) represent the

DOS for an infinite periodic system. Vertical lines in (c)

and (d) indicate the energies of few-body bound states:

AB dimer [solid (black) lines], AB2 trimer with B atoms

separated by a [dashed (blue) line] and a
√

2 [dot-dashed

(red) lines]. Here ε=!2/ma2.
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nonunitary filling would result in the presence of randomly unoccupied sites constituting random

defects in the artificial crystal [129]. Our general theoretical approach, presented in Sec. 3.2.2,

can be used to investigate the effects of this kind of disorder. In particular, we show in Fig. 3.12

the negative-energy DOS of an AASL of radius R=32a at different filling factors, obtained fixing

α = −0.75. In Fig. 3.12 (a) 100% of the sites are occupied and finite-size effects can be investi-

gated by comparing the DOS with that of the periodic system (presented in Fig. 3.7). There are no

significant discrepancies between the two quantities, confirming the robustness of the results with

respect to the system size. The DOS in the presence of 5% of vacant sites [Fig. 3.12 (b)], appears

in turn to be compatible with the results for an ideal periodic system, thus proving robustness also

against a small number of vacancies. For a large number of unoccupied sites, instead, the peri-

odicity of the lattice gets lost and the MW interacts locally with few-body clusters of scatterers.

An atom A can get trapped by an isolated B scatterer, thus forming an AB dimer. Similarly, it can

form an AB2 trimer in the vicinity of a couple of B atoms, and so on so forth for larger clusters.

As shown in Fig. 3.12 (c) and 3.12 (d), this gives rise to a DOS which is more and more peaked

around the energies of few-body ABn bound states. The energies of these bound states can be

derived from Eqs. (3.2.13), where the eigenvalues of Mo can be analytically obtained for n ≤ 4.

The explicit expressions can be found in Eqs. (45) and (46) in [124], where the emergence of

disorder-localized states for low filling is investigated.

3.4 Triangular lattice

Another relevant example of atomic artificial Bravais lattice is the triangular one, whose anal-

ysis is also preliminary to the study of intriguing non-Bravais structures, such as graphene and the

kagomé lattice. In this case the primitive vectors are a1=a(
√

3, 1)
√

3/2 and a2=a(
√

3,−1)
√

3/2,

from which the real and reciprocal lattices, illustrated in Fig. 3.4, are defined.

To investigate the spectral properties of the atomic artificial triangular lattice (AATL) we need,

once again, to solve Eq. (3.2.21), now for C∞≃0.9597 (cf. Appendix D.1.1). We can thus proceed

as in Sec. 3.3.1 for the square lattice. In Fig. 3.13 we present a typical spectrum of the system,

evaluated in α = −0.6. The band structure, studied along the Γ−M−K−Γ high-symmetry path

(see inset), shows the presence of a gap, which the DOS confirms to be omnidirectional. Also

in this case we verify the existence of a single solution of Eq. (3.2.21) between two values of

Efree. The versatility of this artificial lattice emerges in Fig. 3.14, where we compare its spectra for

different values of the interaction parameter α. One finds that there exists a gap of tunable width

for α" 3.853, and again, the lowest, isolated band rapidly becomes thin and deep in energy with

decreasing α.
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Figure 3.13 : Artificial atomic triangular lattice: band structure (left) and DOS (right) for α=−0.6. Left:

Behavior of the four lowest energy bands along the Γ−M−K−Γ path (see inset at right). Dashed (gray) lines

indicate the dispersion relation for a free matter wave. Right: DOS, as defined in Eq. (3.3.1), obtained by

evaluating the energy of the bands in Ns = 7600 points sampled inside the aforementioned symmetry path.

The bin size of the histogram is δE=0.05ε (ε=!2/ma2).

For the sake of completeness we again test our results against finite-size effects. With the same

method illustrated in Sec. 3.3.2 we evaluated the DOS on the plane [α, E] for an experimental-size

system of ∼2100 scatterers arranged in a triangular lattice inside a circular region of radius R=42a.

The results, shown in Fig. 3.15, are, once again, in good agreement with predictions based on the

analysis of an ideal AATL. We also verified that, in analogy to the square-lattice case, the results

are robust if a small number of vacancies is randomly introduced in the triangular structure, while

few-body states become dominant for low fillings.

3.5 Atomic artificial graphene

Due to the fundamental role of carbon in biological systems, the investigations of physical

properties of its allotropes has always raised great interest. This is the case for graphene, which

is a flat monolayer of carbon atoms arranged in a 2D honeycomb lattice [37, 38], as represented

in Fig. 3.5 (c). The experimental isolation of graphene in 2004 [36] pushed out of the mere

academic interest the study of this intriguing material, with particular interest to the outstanding

transport properties of charge carriers. These follow from the peculiar band structure of electrons:

conduction and valence bands touch in isolated points of the k space, around which the energy-

momentum dispersion relation is conical. In such a scenario the Schrödinger’ equation fails to

describe the particles’ behavior, ruled by a Dirac-like equation for massless fermions. The group

velocity vg≃106m/s of these particles around the Dirac cone plays the role of an effective speed-

of-light of the charge carriers. This intriguing scenario allows for the investigation of quantum

electrodynamics in benchtop experiments [37].
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Figure 3.14 : Triangular lattice: comparison of the band structure for different values of the interaction

parameter α. The spectrum evaluation path is the same as for Fig. 3.13. Dashed (gray) lines correspond to

the energy spectrum of a free matter wave. Energies are normalized on ε=!2/ma2.

The interest towards these amazing properties led to the realization of several kinds of artificial

graphene: systems whose geometrical symmetries allow for the appearance of Dirac singularities

(for a recent review, see [39]). Among these we find nano-structured surfaces on which hexago-

nal patterns are impressed [130, 131] and molecular graphene, obtained by accurately depositing

molecules on a substrate [132]. Microwave analogs of graphene can also be implemented making

use of honeycomb lattices of dielectric resonators [133]. As discussed throughout Chapter 1, ultra-

cold gases in OLs revealed themselves as a powerful and versatile tool in the domain of quantum

simulation, due to the wide and precise tunability of interparticle interactions and lattice geome-

tries [20, 134]. Several theoretical approaches predict the existence of Dirac points in such kind of

systems, analyzing also their motion and merging acting on experimental parameters [135, 136].

These effects have been recently observed for a one-component ultracold Fermi gas [40]. The

emergence of non-dispersive and non-isolated flat bands for cold-atoms in honeycomb lattices

have also been predicted [137] and experimentally observed for polaritons [131].

Motivated by the increasing activity on this peculiar 2D material, it seemed natural to apply

our model to the investigation of atomic artificial graphene (AAG). The case of AAG represents

a useful benchmark for the theoretical model developed in Sec. 3.2.3.2 for non-Bravais lattices.

The honeycomb lattice, indeed, comes from the superposition of two interpenetrating triangular

lattices of primitive vectors a1 =
3a
2 (1, 1/

√
3) and a2 =

3a
2 (1,−1/

√
3) with relative displacement

t= a (1, 0), as illustrated in Fig. 3.5 (c). Each unit cell have area A= 3
√

3a2/2 and the reciprocal
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Figure 3.15 : Triangular lattice of finite size: DOS per scatterer in the plane [α, E/ε] for a system of

N = 2125 scatterers arranged in a triangular lattice inside a disk of radius R = 42a. The same method as

for Fig. 3.9 was used, but discretizing E in steps of 0.005ε (ε= !2/ma2). Positive-energy quasi-Bloch bulk

states were selected imposing Γ < Γmax ≃ 0.3ε/! (i.e., Γmax ≃ 880Hz for a matter wave of 87Rb atoms in an

AATL with a = 500nm). The color-map is applied to the quantity log10( Np

N
ε
δα δE

), where Np is the number

of selected poles of G within a rectangular bin of area δα δE (δα = 0.02 and δE = 0.025ε). White circles

indicate the expected positions of the band boundaries as evaluated for the infinite system (Figs. 3.13 and

3.14). Analogously, the white plus symbol marks the expected contact point between the lowest and the first

excited band.

primitive vectors result b1 =
2π
3a

(1,
√

3) and b2 =
2π
3a

(1,−
√

3). Since the elementary building block

is a triangular lattice, we use again C∞≃0.9597 (cf. App. D.1.1).

3.5.1 Periodic system: Dirac cones and isolated flat band

As usual, we begin by considering an ideal infinite system. For a generic two-atom non-

Bravais lattice the condition for the existence of an eigenstate is det(T) = 0 [Eq. (3.2.30)], the

matrix T being a 2×2 hermitian one. Once again, the diagonal interaction term α can be isolated

by writing T=To
+ Iα, where I is the 2×2 identity matrix and

T
o
= T(α=0) =


f (q, E) ϕ(q, E)

ϕ∗(q, E) f (q, E)

 , (3.5.1)

with f (q, E) defined as in Eq. (3.2.22) and

ϕ(q, E) =
2π
A

∑

K∈RL

ei(K−q)·t

k2 − |K − q|2
. (3.5.2)
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Inset: position of q within the Γ−M−K−Γ symmetry

path (Fig. 3.4). Bottom: Behavior of |ϕ(q, E)| for the

same q. Here ε=!2/ma2.

It follows that condition det(T)=0 is equivalent to

to
±(q, E) = f (q, E) ± |ϕ(q, E)| = −α, (3.5.3)

where to
± are the two real eigenvalues of To. It can be easily proved that when f diverges, i.e.,

when E→Efree, the absolute value of ϕ exactly cancels the divergence so that the left limit of to
+

is

finite and equal to the right limit of to
−:

lim
E→E∓free

to
±(q, E) = lim

E→Efree
f (q, E) −

π!2

mA

1
E − Efree

. (3.5.4)

A numerical example of this is given in Fig. 3.16, where the two eigenvalues to
±(q, E) and |ϕ(q, E)|

are plotted as functions of E for a fixed q. By virtue of the aforementioned properties, only

one solution of Eq. (3.5.3) exists between two solutions of the corresponding Eq. (3.2.21). This

practically means that a band of a non-Bravais lattice with M=2 is always included between two

bands of the corresponding Bravais lattice (M=1).

An example of a spectrum for the AAG is presented in Fig. 3.17. The band structure for

α = −0.5 is evaluated along an high-symmetry path in the k space of the honeycomb lattice, and

is presented along with the corresponding DOS, numerically determined via Eq. (3.3.1). Band

structure and DOS point out the presence of a double gap. A key feature is the existence of two

nonequivalent Dirac points, situated in K,K′= 2π
3a

(1,±1/
√

3) within the FBZ. Here the two lowest

bands touch each other, creating a cone-shaped energy-momentum dispersion. The MW obeys

there to a Dirac-like equation for relativistic massless fermions in which the role of the speed of

light is played by vg: the modulus of the group velocity of the wave along the cone. At higher

energies we find an isolated band followed by a continuum of states.
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Figure 3.17 : Honeycomb lattice: band structure (left) and DOS (right) for the AAG at α = −0.5. Left:

Behavior of the five lowest energy bands along the irreducible symmetry path in the inset (at right). Dashed

(gray) curves show the band structure for the corresponding triangular lattice. Right: DOS [defined in

Eq. (3.3.1)] obtained by sampling the band energy in Ns = 3300 points within the symmetry path. The

histogram bin size is δE=0.06ε (ε=!2/ma2).

The remarkable tunability of the AAG emerges from Fig. 3.18, in which band structures corre-

sponding to different values of α are compared. The gaps can be modulated and closed tuning the

interaction strength. The two lowest bands, supporting the Dirac cone, move to negative energies

for α " 0, making the relativistic physics played now by states bounded in the system. Further-

more, similarly to the Bravais artificial lattices, the lowest bands get flat with decreasing α. The

same two bands still touch only in the isolated points K and K′. It follows that the slope of the

Dirac-cones walls decreases, leading to a reduction of the local group velocity vg (Fig. 3.18, inset)

remarkably down to vg " 1mm/s, i.e., 10−9 the value for real graphene. It is worth stressing that

for −2 < α < −1 the third band changes concavity, becoming completely flat around E ≃ 2.924ε

(ε = !2/ma2) for α ≃ −1.631. It may be argued that, also in the case of Bravais AACs, quasiflat

bands emerge for large and negative values of α (see the lowest bands in Figs. 3.8 and 3.14), but

some important differences between these bands and the one we find for AAG. At first, graphene’s

band is topologically flat, which means that vg = 0 for every value of q. The quasiflat bands, in-

stead, keep their structure, even though they are compressed into a small range of energies (this

phenomenon is clearly shown in Fig. 3.8). Moreover, graphene’s flat band lies at positive ener-

gies, in the propagative region of the MW. Remarkably, differently from previously investigated

graphene-like systems [131, 137], here the flat band results also isolated. The interest in this kind

of flat band arises from its nondispersivity: for noninteracting A atoms (the case considered in

this work), any MW state would be stationary and localized, the group velocity on the band being

strictly zero. The effects of an eventual A−A interaction, even if extremely small, would be en-

hanced, leading to the emergence of strongly correlated phases [137, 138]. Nonisolated flat bands

have recently been observed in honeycomb lattices for polaritons [131].



80 3. Bidimensional Atomic Artificial Crystals

E
/ε

! = -2
! ≈ -1.631

(flat band)

! = -1 ! = 0 ! = 1

≈ ≈ ≈ ≈ ≈ ≈
!16.3

!16.7

! M K ! M K ! M K ! M K ! M K !

"34.4

"34.45

≈ ≈ ≈ ≈ ≈ ≈

0

0.5

1

!1.5 !1 !0.5 0 0.5 1 1.5

vg!Α"#vo

!6

!4

!2

0

2

4

6

8

Figure 3.18 : Comparison of the band structures of the atomic artificial graphene for different values of α

evaluated along the Γ−M−K−Γ symmetry path (see inset of Fig. 3.17). For α ≃ 1.63 the third, isolated

band is topologically flat. The unit of energy is ε = !2/ma2. Inset: Modulus of the group velocity vg for

an A-atoms matter wave around the Dirac’s cone as a function of α. Speeds are normalized on vo = !/ma

(≃1.5mm/s for MW of 87Rb atoms in an OL with a=500nm).

3.5.2 Distorted graphene: motion and merging of Dirac cones

Beside allowing to tune interactions, the use of cold atoms in optical lattices offers a large

experimental control on the potential landscape. The effects of a distorted honeycomb poten-

tial have been investigated, both theoretically and experimentally, for one-component artificial

graphene, i.e., in the presence of a single atomic species propagating through a periodic optical

potential. For such systems, a deformation of the OL can lead to a displacement of the Dirac

cones within the FBZ, eventually resulting in their merging and disappearance [135, 136]. Such

a phenomenon have been recently pointed out experimentally for a Fermi gas [40]. In the case of

our two-component AAG, a distorsion in the honeycomb arrangement of B scatterers is likely to

induce similar effects.

We investigated the motion and merging of Dirac points in a triangular, M = 2 non-Bravais

lattice, like those of Fig. 3.5 (c), considering different displacement vectors of the form t=β(a, 0).

Note that the case β= 1 corresponds to the undistorted AAG. For α=−0.6, we show in Fig. 3.19

the positions of the Dirac cones along the Γ−K′−M−K−Γ path, plotted taking β as parameter.

For β= 1 we find, as expected, that the Dirac points lie at K and K′. The cones depart vertically

by increasing β, i.e., by pushing horizontally apart the scatterers within the unit cell. On the
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Figure 3.19 : For the atomic artificial honeycomb lattice

[cf. Fig. 3.5 (c)] with displacement vector t = β(a, 0). We

show, as a function of the parameter β, the position of the

Dirac cones, if existing, along the Γ−K′−M−K−Γ path

(highlighted in red at left, on a schematic representation of

the first Brillouin zone). The present results have been ob-

tained for α=−0.6. Right, inset: Zoom-in around the merg-

ing region. The results show that the Dirac points meet and

cancel each other in M for β∼0.86. Bottom, circular insets:

Real-space arrangement of the scatterers in the honeycomb

lattice for the indicated values of β: 0.8, 1 (i.e., undistorted

graphene) and 1.2 from left to right.

other hand, for β < 1, the cones approach each other and merge in M for 0.856 < β < 0.857 (see

zoom-in in Fig. 3.19). The dispersion relation at the merging point shows the typical semi-Dirac

behavior: it is parabolic along the merging direction but stays linear along the perpendicular one

[136]. For smaller values of β, a gap is opened and Dirac points finally disappear. These features

stay qualitatively the same if α is set to a different value.

As a technical comment we point out that the case β=1.5 constitutes one of the few accidental

cases in which the approach presented in Sec. 3.2.3.2 to describe non-Bravais lattices fails to

describe the system. This is because, in this circumstance, the double-triangular non-Bravais

lattice actually becomes a rectangular Bravais one, so that the corresponding Eq. (3.2.20) should be

solved, instead of Eq. (3.2.30). For a Bravais lattice, the Bloch’s theorem [Eq. (3.2.18)] connects

all the amplitude coefficients Di, while in its non-Bravais version [Eq. (3.2.26)] M subsets of

coefficients Dim are left independent, being M the number of atoms in the unit cell. Such a choice

adds unphysical solutions when a Bravais lattice is treated as a non-Bravais one. To conclude

is worth noting that, for any arbitrary small deviation from the degeneracy point, the non-Bravais

approach is meaningful, since such an infinitesimal distortion is periodically repeated infinite times

in space, thus affecting the physics of the AAC.

3.5.3 Finite-size and disorder effects

A natural question concerns how and when the features of an ideal periodic AAG are modified

if both finite-size and vacancy effects are considered. In the case of finite or disordered systems,

the appropriate theoretical tools are those presented in Sec. 3.2.2, without distinction between

Bravais and non-Bravais structures. Once the set {rim} of the scatterers’ positions is assigned, the

method to find the DOS on the [α, E] plane is the same as those presented in details for the AASL

in Sec. 3.3.2.
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Figure 3.20 : Finite-sized atomic artificial graphene: DOS per scatterer in the plane [E/ε,α] for a system

of N = 2167 scatterers arranged in a honeycomb lattice inside a disk of radius R = 30a. The same method

as for Fig. 3.9 was used, but discretizing the energies with a step of 0.0025ε (ε= !2/ma2). In the positive-

energy region, we select the quasi-Bloch bulk states imposing Γ < Γmax ≃ 0.2ε/! (i.e., Γmax ≃ 500Hz for

a matter wave of 87Rb atoms in an honeycomb lattice with a = 500nm). The color map is applied to the

quantity log10( Np

N
ε
δα δE

), where Np is the number of selected poles of G within a rectangular bin of area δα δE

(δα = 0.0125 and δE = 0.0125ε). White crosses, circles, and arrows indicate, respectively, the positions of

Dirac cones, gap boundaries, and the isolated flat band as expected from the analysis of the periodic system

(Figs. 3.17 and 3.18).

In Fig. 3.20 we present the DOS as a function of E and α for a set of ∼ 2000 scatterers. The

features of the infinite system are already well reproduced, as can be inferred from a comparison

with Figs. 3.17 and 3.18. The large dark areas, in which no states are allowed, exactly correspond

to gaps in the infinite system. The expected boundaries of the gaps for α = −0.5 are marked by

white circles in Fig. 3.20. The fingerprint of the Dirac cone can be recognized in the thin dark

region separating the two lowest bands. The expected positions of the cones, as deduced from

the infinite-system results, are marked by white crosses. The existence of a flat band is confirmed

in the finite-size system, and its position is in perfect agreement with predictions from the ideal

honeycomb lattice, marked by arrows in Fig. 3.20. As a final remark we point out that, in the

weak-interaction limit |α|≫ 1, no states are allowed for E < 0 while the DOS tends to a constant

for E >0, as expected for a free MW in 2D. Another comparison between ideal and finite system

is presented in Fig. 3.21 (a). Here, we compare the negative-energy DOS of the infinite and finite

crystal calculated, in both cases, for α=−0.5. The very good agreement between the two quantities

shows, once again, the robustness of the Dirac cones with respect to finite-size effects.
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Figure 3.21 : Atomic artificial graphene: negative-

energy DOS calculated for α = −0.5 for an honeycomb

lattice with N = 3870 sites, disposed inside a circle of

radius R = 40a. Different panels refers to different per-

centages of randomly occupied sites: (a) 100%, (b) 98%,

(c) 20%, (d) 10%. Histograms are obtained for a bin size

δE = 0.06ε in (a) and (b) and δE = 0.03ε in (c) and (d),

with ε = !2/ma2. In order to facilitate the comparison,

the histograms are normalized as the corresponding DOS

of the infinite periodic system [dotted (red) histogram in

panel (a)], i.e., to ∼ 1.82. Vertical lines in (c) and (d)

show the energies of few-body bound states: AB dimer

[solid (black) line], AB2 trimer with B atoms separated by

a [dashed (blue) lines] and a
√

3 [dot-dashed (red) lines].

In the field of graphene simulation, a large interest is raised by the realization of disorder and

the analysis of its effects [39, 133]. Our scheme for the realization of AAG naturally allows to

introduce disorder in the form of randomly distributed empty sites, with the non-unitary filling

technique already mentioned in Sec. 3.3.3. In Fig. 3.21 we present the DOS, at negative energies,

for different filling factors of an OL of ∼ 4000 sites, fixed α=−0.5. The case of a fully occupied

honeycomb lattice, shown in Fig. 3.21 (a), has been already discussed above. Fig. 3.21 (b) shows

the combined effect of a lattice of finite size and of 2% unoccupied sites. The behavior is qual-

itatively the same as in panel Fig. 3.21 (a), while the central minimum is higher but still clearly

visible. It starts disappearing when the fraction of empty sites is further increased. When the

filling factor drastically decreases to 20%-10% [Fig. 3.21 (c) and (d)], the systems becomes more

and more disordered [124], and few-body effects start playing a crucial role, giving rise to strong

peaks in the DOS around the energies of AB dimers and AB2 trimers. This behavior is analogous

to those observed in the case of a square lattice, discussed in Sec. 3.3.3. The close analogy with

the case of the low-filling AASL is not surprising: when only few lattice sites are occupied the

AAC appears as a sparse distribution of scatterers, independently of the geometry of the generating

OL. In conclusion, it is worth stressing that, with respect to one-species realizations of artificial

graphene with cold atoms, our model allows to introduce randomness and defects without altering

the optical potential. The possibility of having an imperfect filling due to a fraction of empty sites

makes our model considerably richer toward the realization of quantum simulators of disordered

graphene with cold atoms.
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Figure 3.22 : Kagomé lattice: comparison of the band structures of the artificial lattice for different values

of α evaluated along the Γ−M−K−Γ symmetry path within the FBZ (see inset). The two lowest bands touch

in q=K,K′, forming a Dirac cone. For α≃−1.98 the fourth, isolated band is topologically flat. For α<−1

the three lowest bands lie entirely at E<6.5ε (ε=!2/ma2) and are not shown in the plot. Dashed (gray) lines

correspond to the energy spectrum of a free matter wave.

3.6 Kagomé lattice

We conclude our overview of AAC giving an example of an M = 3 non-Bravais crystal:

the kagomé lattice. This choice is motivated by the increasing interest in this peculiar struc-

ture in which several phenomena of geometric frustration have been predicted [139, 140]. As for

graphene, the kagomé lattice is based on the triangular lattice, but now with three atoms per unit

cell forming an equilateral triangle, as depicted in Fig. 3.5 (d).

When studying a periodic system, the condition det(T) = 0 [Eq. (3.2.30)] now translates into

looking for solutions of to
i
(q, E) = −α, with i = 1, 2, 3 and to

i
being the three eigenvalues of the

matrix To, defined in Eq. (3.5.1). Typical spectra for different values of α are presented in Fig. 3.22.

The two lowest bands again present two Dirac cones for q=K,K′, but, differently from the case

of graphene, in the artificial kagomé lattice the third band moves together with the lowest two.

The fourth band is flat and isolated for α≃−2. We note, again, that for |α|≫1 the band structure

approaches that of the free MW, as expected the A−B interaction being weak in this limit.

The persistence of the spectral features in systems of experimental size have also been investi-

gated. The density of solutions of Eqs. (3.2.13) and (3.2.14) for a system with ∼2000 B scatterers

is shown in Fig. 3.23. The agreement with the predictions for an infinite system is extremely good,

demonstrating, once again, the robustness of our results against finite-size effects.
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Figure 3.23 : Finite-sized kagomé lattice: DOS per scatterer in the plane [α, E/ε] for a system of N=2083

scatterers arranged in a kagomé lattice inside a disk of radius R=24a. Results were obtained with the same

method as described for Fig. 3.9, discretizing the energies with a step of 0.005ε (ε=!2/ma2). Quasi-Bloch

bulk states were selected choosing Γmax ≃ 0.5ε/! (i.e., Γmax ≃ 1460Hz for a matter wave of 87Rb atoms for

a = 500nm). The color-map is applied to the quantity log10( Np

N
ε
δα δE

), where Np is the number of selected

poles of G within a rectangular bin of area δα δE (δα = 0.02 and δE = 0.025ε). White crosses, circles,

and arrows indicate, respectively, the positions of Dirac cones, gap boundaries, and the isolated flat band as

expected from the analysis of the periodic system (Fig. 3.22).

3.7 Conclusions

We devoted this chapter to the introduction of a new model for the realization of 2D arbitrary

atomic artificial crystals (AAC). The system, that is realizable with present experimental tech-

niques, is based on the use of two independently trapped atomic species, one of which forms a 2D

structure of point-like scatterers permeated by a matter wave of atoms of the second species (cf.

Fig. 3.1). This system revealed itself to be promising as a quantum simulator of bi-dimensional

condensed-matter systems. The fundamental difference with respect to preexinting one-species

models is that the periodic (or quasi-periodic) potential felt by the matter wave is generated by

atoms, and not by an underlying optical potential.

We have discussed how the interplay between scattering length and trappings allows for a

wide tuning of the inter-species interaction: a key parameter through which the system features

can be manipulated. A general theory for finite [Eq. (3.2.10)] and infinite periodic [Eqs. (3.2.21)

and (3.2.30)] systems has been presented, specifying some illustrative examples for both Bra-

vais and non-Bravais lattices. We proved the emergence of single (Figs. 3.7 and 3.13) and mul-

tiple (Fig. 3.17) gaps, together with the eventual presence of isolated nondispersive flat bands
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(Figs. 3.18 and 3.22). Furthermore, we have pointed out the appearance of Dirac points in atomic

artificial graphene and kagomé lattices, investigating the effects of a lattice distortion on their posi-

tion and existence (Fig. 3.19). The robustness of our results for experimentally realizable systems

has been tested against both finite size (Figs. 3.9, 3.15, 3.20, and 3.23) and disorder (Figs. 3.12

and 3.21).

The adaptability of our model makes it suitable for a number of future developments, such as

the extension of the theoretical formalism to 1D and 3D artificial crystals. New perspectives can be

opened considering also p-wave A−B interaction or A−A interactions. The latter, together with the

occurrence of flat bands, would make AACs convenient simulators of 2D strongly correlated sys-

tems, in which nontrivial effects due to geometrical frustration may arise. Furthermore, it would

be interesting to investigate the dynamics of the B atoms when their tunneling is no more pre-

vented. In this case, the presence of the free species is expected to mediate an effective interaction

between the lattice-sensitive atoms [141, 142].
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In this Thesis we theoretically investigated two systems in which matter waves of cold atoms

propagates in reduced dimensions.

In Chap. 1 we proposed a short and non-comprehensive review on the physics of cold atoms

in optical lattices. We began by analyzing the elementary two-body scattering between ultracold

particles, examining some mechanisms which allow to tune the interparticle contact interaction

via external magnetic fields (Feshbach resonances in Sec. 1.2.2) or by modifying the trapping

potentials (confinement and mixed-dimensional resonances in Secs. 1.4.2 and 1.4.3). We also

commented, in Sec. 1.5, upon the main features of the dipole-dipole interaction, which allow

for the implementation of more general Hamiltonians than those relying on the use of contact

interaction only. In Sec. 1.3 we reviewed the behavior of matter waves in optical lattices. We

briefly described the Bose-Hubbard and extended Bose-Hubbard model, which respectively de-

scribe contact-interacting and long-range-interacting bosons in an optical lattice. We discussed

the different quantum phases emerging in these models, stressing the fundamental importance of

the mapping between physical quantities and model parameters.

In Chap. 2 we investigated the behavior of a gas of dipolar bosons in a quasi-one-dimensional

optical lattice. In Sec. 2.2, we studied the two-body scattering between cold dipoles tightly con-

fined along a tube, i.e. in a quasi-1D geometry. The three-dimensional (3D) system can be mapped

into an equivalent 1D one along the tube direction. In this system, the trapping in the transverse

directions and the dipole-dipole interaction are taken into account by an effective quasi-1D interac-

tion, whose scattering properties have been numerically investigated in Sec. 2.2.1. The outcomes

of this analysis are supported by the results presented in Sec. 2.2.2, where we introduce and study

an analytically-solvable toy-model for the quasi-1D dipole-dipole interaction. The main result is

the emergence of a single dipolar-induced resonance (DIR) in the scattering amplitude for dipoles

polarized perpendicularly to the tube direction [34]. In this configuration two “classical” dipoles

would simply repel each other, but in the quantum case the interplay of transverse trapping and

interaction anisotropy results in the existence of a dipolar bound state, whose entrance is marked

by the DIR.

87



88 Conclusions

After studying the general features of the dipole-dipole interaction in the quasi-1D geometry,

we made a step toward the optical lattice case by studying its elementary constituent: a single

lattice site loaded with two dipoles. Each site is a potential well which, for a deep lattice, can be

approximated by a highly elongated cigar-shaped harmonic trap. In Sec. 2.2.3, by diagonalizing

the two-body Hamiltonian on a two-channel basis, we numerically solved the relative-motion

Schrödinger equation for two dipoles confined in the cigar. In this approach, the two channels

correspond to a bi-atomic state and a two-body dipolar bound state. We showed that the ground-

state energy has a non-monotonic behavior: it grows for weak dipole moments and bends down

for stronger interactions [35]. Eventually, the ground state corresponds to a dipolar dimer whose

energy goes below the zero-point of the trapping potential.

When dipoles are allowed to tunnel between adjacent sites, the channels of the single-site

model becomes bands of the lattice. To describe this system we introduced in Sec. 2.3 a novel

atom-dimer extended Bose-Hubbard model [35]. The corresponding T = 0 phase diagram has

been investigated by exact diagonalization of the model Hamiltonian on the configurations basis

for atoms and dimers in the lattice. As a function of the dipolar strength and of the lattice depth,

four phases appear: superfluid, Mott insulator (MI), mass density wave (MDW) and collapse. In

particular, in contrast with preexisting models, we predict MI and MDW phases to occur in limited

domains. Finally, in Sec. 2.3.3, we interpreted these results in terms of an effective single-band

model, describing usefulness and limitations of this approach.

In Chap. 3 we proposed a new scheme for the realization of bidimensional atomic artificial

crystals (AACs) of arbitrary geometry [42]. The model is based on the use of two independently

trapped atomic species: the first one, subject to a strong in-plane confinement, constitutes a 2D

matter wave which interacts only with atoms of the second species, deeply trapped around the

nodes of a 2D optical lattice. This configuration can be obtained with present experimental tech-

niques employing species selective optical lattices and, with respect to preexisting one-species

models, it is easy allows to introduce disorder. The latter, in the form of randomly distributed

empty sites, naturally appears if the lattice is loaded with filling factor lower than one.

In Sec. 3.2 we presented the theoretical tools for a completely general model. We briefly

discussed the scattering between a matter wave atom and a trapped one in Sec. 3.2.1. This amounts

to a 0D-2D mixed-dimensional process, whose effective scattering amplitude can be tuned via

the free-free scattering length or modifying the trapping potentials [45]. Then, we derive the

criterion for the existence of eigenstates of the matter-wave Hamiltonian in the presence of an

arbitrary distribution of a finite number of scatterers (Sec. 3.2.2) as well as for infinite periodic

systems (Sec. 3.2.3).
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Finally, we applied this formalism to the exemplary cases of the atomic artificial square lattice

(Sec. 3.3), triangular lattice (Sec. 3.4), graphene (Sec. 3.5) and kagomé lattice (Sec. 3.6). For

all these cases, we presented the band structure of the ideal system, pointing out the appearance

of single and multiple gaps, whose amplitude can be tuned acting on the interspecies interaction

strength. Similarly, in the non-Bravais crystals (i.e., graphene and kagomé lattice) Dirac cones

appear. Their position is shown to depend on the lattice distortion, which can induce them to

merge and disappear [41]. In the same crystals there emerge isolated and non-dispersive flat bands,

on which every state of the matter wave would be stationary and localized. All these features,

obtained for ideal systems, have been tested against finite-size and disorder effects, pointing out

the robustness and experimental observability of our predictions.

To conclude, we want to highlight some possible outlooks for the results presented in this

Thesis. The increasing attention towards dipolar gases makes the analysis of the dipole-dipole

scattering at the two-body level of crucial importance. For this reason, it would be interesting, first

of all, to extend the analysis of Chap. 2 to simulate real experimental situations. This can be done

by considering the joint effect of dipolar and contact interaction on the DIR and, consequently, on

the many-body physics in the lattice. Also the case of attractive bosonic dipoles would for sure

deserve some special attention. Moreover, there is a whole range of problems where the DIR is

expected to arise and show important effects, but has not been accounted for up to now, among

which dipolar gases confined in 2D geometries, disordered systems, and dipolar Fermi mixtures

in reduced dimensions. Concerning the AACs introduced in Chap. 3, the general character of the

model makes it suitable for several developments, starting from the extension of the theoretical

formalism to 1D and 3D crystals. One may investigate the effect of a p-wave interspecies inter-

action or include intraspecies interactions in the matter wave. The latter would qualify AACs as

convenient simulators for strongly correlated systems. In particular, in combination with the oc-

currence of flat bands, one may expect nontrivial effects of geometrical frustration. Finally, one

may imagine to relax the deep-trapping approximation for the scatterers. In this scenario, the free

atoms can mediate an effective interaction and affect the phase diagram of the lattice-sensitive

species as a function of their density.



90 Conclusions



APPENDIX A

Quasi-1D Effective DDI

In this appendix we sketch one possible way of obtaining the quasi-1D dipole-dipole inter-

action (DDI) V1D
dd , complete of its contact term and the angle-dependent prefactor, as reported in

Eq. (2.2.3) and widely used in Chap. 2.

A.1 Fourier transform of the DDI

As a preliminary calculation, we sketch the derivation of the Fourier transform (FT) of the

dipole-dipole potential for polarized particles, following [143]. For two dipoles of mass m and

relative position r, the 3D dipolar potential takes the form [Eq. (1.5.2)]

Vdd(r) =
!

2r∗

m

1 − 3 cos2 θ

r3
, (A.1.1)

where r∗ is the dipolar length [Eq. (1.5.3)] and θ the angle between r and the polarization direction

ê, as sketched in Fig. 1.15. The FT Ṽdd(k) is defined by the relations

Ṽdd(k) =
∫

d3r Vdd(r) e−ik·r, (A.1.2)

Vdd(r) =
∫

d3r

(2π)3
Ṽdd(k) eik·r. (A.1.3)

We perform the integration using spherical coordinates, in which the direction of k fixes the polar

axis. Hence, we orient the frame so that ê lies on the xz plane, forming an angle α with k (i.e.,

with the polar axis). A sketch of this frame of reference is given in Fig. A.1. We stress that the
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Figure A.1 : Sketch of the useful ref-

erence frame for the evaluation of the

dipole-dipole interaction Fourier trans-

form Ṽdd(k). The polarization vector ê

lies on the xz plane and the z axis is

aligned with the vector k.

angle ϑ of this frame of reference is not the angle θ appearing in Eq. (A.1.1). Indeed, in this frame

we have

r = {r sinϑ cosϕ; r sinϑ sinϕ; r cosϕ} and ê = {sinα; 0; cosα}, (A.1.4)

from which it follows

cos θ =
r · ê

r
= sinα sinϑ cosϕ + cosα cosϑ. (A.1.5)

The calculation of the integral (A.1.2) follows straightforwardly:

Ṽdd(k) =
!

2r∗

m

∫ ∞

0
dr

∫ π

0
dϑ

∫ 2π

0
dϕ

sinϑ
r

e−ikr cosϑ
[
1 − 3 (sinα sinϑ cosϕ + cosα cosϑ)2

]

= π
!

2r∗

m

(
3 cos2 α − 1

) ∫ ∞

0
dr

∫ π

0
dϑ

∫ 2π

0
dϕ

sinϑ
r

e−ikr cosϑ
(
1 − 3 cos2 ϑ

)

= · · · =
4π
3
!

2r∗

m

(
3 cos2 α − 1

)
. (A.1.6)

A.2 Effective 1D DDI

Now, we can derive the effective DDI for two particles trapped along a quasi-1D tube, as

represented in Fig. 2.2. It is convenient to change frame of reference with respect to the one

adopted in the previous section. As depicted in Fig. A.2, the tube axis coincides with the x axis,

and on the transverse direction we adopt the polar coordinates {ρ, φ}. In particular we arrange the

frame so that the polarization vector ê lies on the xz plane. The transverse potential is assumed

to be harmonic, with frequency ω⊥ and associated length l⊥ = (!/mω⊥)1/2, the corresponding

transverse ground state is

ψ⊥(ρ) =
1
√
πl⊥

e−ρ
2/2l2⊥ . (A.2.1)
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Figure A.2 : Sketch of the useful refer-

ence frame for the evaluation of the quasi-

1D dipole-dipole interaction V1D
dd (x). The

polarization vector ê lies on the xz plane

and the x axis is aligned with the quasi-

1D tube.

The effective quasi-1D DDI is obtained integrating out the transverse degrees of freedom of the

two dipoles:

V1D
dd (x1 − x2) =

∫ ∫
d2
ρ1 d2
ρ2 ψ

2
⊥(ρ1)ψ2

⊥(ρ2) Vdd(r1 − r2). (A.2.2)

By introducing the center-of-mass and relative-motion coordinates

r = ρ + î x = r1 − r2, (A.2.3)

R = P + î X = (r1 + r2)/2, (A.2.4)

where î is the x axis orientation vector, Eq. (A.2.2) becomes

V1D
dd (x) =

1

π2l4⊥

∫
d2P e−2P2/l2⊥

∫
d2
ρ e−ρ

2/2l2⊥ Vdd(ρ + î x)

=

1
(2π)4

1

l2⊥

∫
d2
ρ e−ρ

2/2l2⊥

∫
d3kṼdd(k) eikx x eikρ·ρ. (A.2.5)

In the last step we wrote the DDI in terms of its FT, according to Eq. (A.1.3). Writing explicitly

Ṽdd(k) [Eq. (A.1.6)], the integration in d2
ρ can be easily performed, leading to

V1D
dd (x) =

1
6π2

!
2r∗

m

∫
d3k (3 cos2 α − 1) eikx x e−k2

ρl
2
⊥/2. (A.2.6)

To perform the integral over k, we consider that, in our frame of reference,

ê = {cos θ; sin θ; 0}, and k = {kx; kρ cos φ; kρ sin φ}. (A.2.7)

We thus have

cosα =
k · ê

k
=

kx cos θ + kρ sin θ cos φ

(k2
x + k2

ρ)1/2
. (A.2.8)

In integrating Eq. (A.2.6), one thus needs
∫ 2π

0
dφ
[
3(kx cos θ + kρ sin θ cos φ)2 − (k2

x + k2
ρ)
]
= π(1 − 3 cos2 θ)(k2

ρ − 2k2
x), (A.2.9)
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and ∫ ∞

0
dKρ kρ

k2
ρ − 2k2

x

k2
ρ + k2

x

e−k2
ρl

2
⊥/2 =

1

l2⊥
−

3
2

k2
x Γ0

[
k2

xl2⊥
2

]
ek2

x l2⊥/2, (A.2.10)

where we introduced the incomplete Gamma function

Γ0[z] =
∫ ∞

0
dτ

e−(z+τ)

z + τ
for Re[z] > 0. (A.2.11)

Making use of the dimensionless quantities

K = kx l⊥/
√

2 and ξ = x/l⊥, (A.2.12)

one finds the intermediate result

V1D
dd (x) = !ω⊥

r∗

l⊥
(1 − 3 cos2 θ)

√
2

6π

∫
+∞

−∞
dK
(
1 − 3K2

Γ0[K2]eK2)
ei
√

2Kξ. (A.2.13)

To perform the last integral, we observe that

lim
K→∞

(
1 − 3K2

Γ0[K2]eK2)
= 2. (A.2.14)

It appears convenient to recast the integral in Eq. (A.2.13) as
∫
+∞

−∞
dK
[
3
(
1 − K2

Γ0[K2]eK2)
− 2
]

ei
√

2Kξ. (A.2.15)

One finds easily that

− 2
∫
+∞

−∞
dK ei

√
2Kξ
= −π

√
2 δ(ξ). (A.2.16)

The first term needs, instead, some manipulation to be integrated:

3
∫
+∞

−∞
dK
(
1 − K2

Γ0[K2]eK2)
ei
√

2Kξ
=

= 3
∫
+∞

−∞
dK ei

√
2Kξ

∫ ∞

0
dτ

(
1 − K2

τ + K2

)
e−τ

= 3π
∫ ∞

0
dτ
√
τ e−τ−

√
2τξ2

=

3π
2

[√
π (1 + ξ2) exp

[
ξ2

2

]
erfc
[
|ξ|
√

2

]
−
√

2 |ξ|
]
. (A.2.17)

Finally, when Eqs. (A.2.16) and (A.2.17) are used to solve the integral in Eq. (A.2.13), the quasi-

1D effective DDI results

V1D
dd (x) = !ω⊥

r∗

l⊥
(1 − 3 cos2 θ)

{√
π

8

(
1 +

x2

l2⊥

)
exp
[

x2

2l2⊥

]
erfc
[
|x|
√

2l⊥

]
− |x|

2l⊥
− 2

3
δ

(
x

l⊥

)}
. (A.2.18)



APPENDIX B

Limitations of Finite-Basis Approaches

In Sec. 2.2.3 we discussed the emergence of a dipolar-induced resonance in a highly elongated

harmonic trap. In this context, we diagonalized the relative-motion Hamiltonian on a finite basis,

showing that, to properly describe the emergence of the resonance, one needs to include a bound

state wavefunction in the basis. In this appendix we get back on the limitations of a finite-basis

approach in the presence of bound states. More specifically, we consider the analytically solvable

problem of two contact-interacting particles in 1D. In this case, the exact solution [106] can be

directly compared with the finite-basis results.

B.1 Two contact-interacting particles in 1D

Let us consider two cold atoms in a strictly 1D space, subject to a harmonic confinement of

frequency ω0. The non-interacting Hamiltonian of such system is

H0 = −
!

2

2m1

∂2

∂x2
1

+

1
2

m1ω
2
0x2

1 −
!

2

2m2

∂2

∂x2
2

+

1
2

m2ω
2
0x2

2

= − !
2

2M

∂2

∂X2
+

1
2

Mω2
0X2 − !

2

2µ
∂2

∂x2
+

1
2
µω2

0x2, (B.1.1)

where we introduced the center-of-mass and relative-motion coordinates X and x, the total mass

M=m1+m2, and the reduced mass µ=m1m2/(m1+m2). The center-of-mass problem is unaffected

by the interatomic interaction, hence we focus on the relative-motion Hamiltonian, which, in the

presence of a contact pseudopotential [Eq. (1.4.12)], reads

Hrel = −
!

2

2µ
∂2

∂x2
+

1
2
µω2

0x2 −
!

2

µ

1
a1D
δ(x). (B.1.2)

95



96 Appendix B. Limitations of Finite-Basis Approaches

It is convenient to rewrite the previous expression in terms of dimensionless quantities. Introducing

the unit of energy !ω0 and the unit of length l0= (!/µω0)1/2, the adimensional Hamiltonian to solve

is

H̃rel = H̃ho −
1
α
δ(ξ) = −1

2
∂2

∂ξ2
+

1
2
ξ2 − 1

α
δ(ξ), (B.1.3)

being ξ= x/l0 and α=a1D/l0. The eigenfunctions of the harmonic oscillator Hamiltonian H̃ho are

the well known wave functions

φn(ξ) =
1
π1/4

1
√

2nn!
Hn(ξ) e−ξ

2/2 n = 0, 1, 2, · · · , (B.1.4)

with the corresponding eigenvalues εn=n + 1/2 and where Hn are Hermite polynomials.

B.1.1 Analytic solution

The eigenenergies of H̃rel [Eq. (B.1.3)] can be determined analytically, as described in [106]

(also for 2D and 3D systems). Here, we sketch the main steps of the calculation. The relative-

motion Schrödinger equation is

H̃relΨ(ξ) = εΨ(ξ). (B.1.5)

It is natural to project the wave function Ψ(ξ) on the complete basis {φn(ξ)} of harmonic-oscillator

eigenfunctions:

Ψ(ξ) =
∞∑

n=0

cn φn(ξ). (B.1.6)

By inserting Eq. (B.1.6) into Eq. (B.1.5), one obtains
∞∑

n=0

cn (εn − ε) φn(ξ) =
1
α

∞∑

n=0

cn δ(ξ) φn(ξ). (B.1.7)

Projecting the previous equation on φm(ξ), after some manipulation, we have

cm =
φm(0)
εm − ε

1
α

∞∑

n=0

cn φn(0). (B.1.8)

Eq. (B.1.8) suggests to introduce the Ansatz cn=Aφn(0)/(εm − ε), whereA is a constant fixed by

the normalization of Ψ(ξ). This Ansatz allows to reduce Eq. (B.1.8) to

α =

∞∑

n=0

φ2
n(0)
εn − ε

. (B.1.9)

The infinite sum appearing in Eq. (B.1.9) can be solved analytically, leading to the implicit

relation between α and ε:
1
α
= 2
Γ

[
3
4 −

ε
2

]

Γ

[
1
4 −

ε
2

] . (B.1.10)
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Figure B.1 : Left: Analytic results for the eigenvalues of Hrel [Eq. (B.1.2)] for even [solid (blue) curves]

and odd [dashed (red) lines] solutions of the Scrödinger equation (B.1.5), obtained from Eq. (B.1.10). The

dot-dashed (green) curve indicates the energy of the contact-potential bound state Eδ (see text). Right:

Ground-state energy of Hrel [Eq. (B.1.2)] evaluated for different sizes of the diagonalization basis (solid

curves). For finite-sized basis we used Eq. (B.1.13) with N = 10 (green), 20 (yellow), and 50 (purple). The

N=∞ result (blue) is the analytic solution given in Eq. (B.1.10). Dashed (red) and dot-dashed (green) lines

represent the same quantities that in the left panel.

Relation (B.1.10) is shown in Fig. B.1 (left). Odd eigenstates are unaffected by the contact po-

tential, since the corresponding wavefunctions vanish at ξ = 0. For even eigenstates, the non-

interacting limit is reached for a1D → ∞, indeed, in this case, the 1D coupling constant of the

contact interaction g1D = −!2/µa1D→ 0. In the strong-interaction regime |a1D|→ 0, the particles

become impenetrable and the eigenenergies tend to the values of odd eigenfunctions (a mechanism

discussed in Sec. 2.2.2 in the context of the generalized toy model for the effective quasi-1D DDI).

An exception is represented by the system ground state. Its energy, indeed, goes below the

zero-point energy of the harmonic-potential, marking the formation of a two-body bound state.

For a1D≪ l0 (i.e., 1/α≫1) the lowest eigenenergy tends to Eδ=−!2/2µa2
1D, that is the energy of

the contact-potential bound state

φδ(x) =
1
√

a1D
e−|x|/a1D , (B.1.11)

solution of the eigenvalue equation

−
[
!

2

2µ
∂2

∂x2
+

!
2

µ

1
a1D
δ(x)
]
φδ(x) = Eδ φδ(x). (B.1.12)
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B.1.2 Finite-basis approach

In the fortunate case of Hrel [Eq. (B.1.2)], the condition for the eigenenergies of the sys-

tem (B.1.9) can be evaluated analytically. In the implicit Eq. (B.1.10) all the harmonic-oscillator

eigenstates are taken into account. In other circumstances, instead, one needs a numerical ap-

proach and, consequently, a finite-sized basis (cf. the quasi-1D efective DDI treated in Sec. 2.2.3).

The present case of two contact-interacting particles, for which the analytic solution is known,

allows to directly confront the finite-basis result with the exact one.

Using a finite set of harmonic-oscillator eigenstates to diagonalizeHrel is equivalent to truncate

the sum in Eq. (B.1.9) to a finite value n=N:

α =

N∑

n=0

φ2
n(0)
εn − ε

. (B.1.13)

The behavior of E(a1D) for the system ground state and the first excited state is presented in

Fig. B.1 (right), comparing the results obtained for different values of N. The excited state energy

rapidly converges to the exact result. The ground state energy goes below !ω0/2 and decreases,

but, differently from the excited state, the behavior does not converge to the exact solution. In

particular the energy decreases linearly in 1/α instead of acquiring the correct quadratic character.

The origin of this discrepancy is in the shape of the ground-state wave function. The latter, for

1/α≫1, tends to φδ(x) [Eq. (B.1.12)], whose cusp in x=0 cannot be reproduced by any finite set

of φn(x) [Eq. (B.1.4)], that are all smooth in zero.



APPENDIX C

The 0D-2D Scattering

In Sec. 3.2.1 we discussed the fundamental role of the 0D-2D scattering process in atomic

artificial crystals. In this appendix we investigate a simple situation in which the dependence

of the 2D effective scattering length aeff
2D on the system parameters can be easily evaluated. We

consider the situation depicted in Fig. C.1, in which an atom A, harmonically trapped on a plane,

impinges on an atom B, kept in a 3D isotropic trap. We assume the trapping frequency ωA of

the atom A to be much smaller than ω0, that is the trapping frequency for the B atom. The A−B

interaction in free space is modeled by the 3D contact pseudopotential (1.2.6), whose strength

depends on the s-wave scattering length a3D.

This complex 3D system, involving different trapping frequencies and a contact interaction,

can be mapped into an equivalent 2D system, in which the B scatterer is fixed (meff
B
→∞). The A−B

interaction is now described by a 2D contact pseudopotential [cf. Eq. (1.4.7)], whose strength de-

!

Figure C.1 : Representation of a system in which a mixed-dimension 0D-2D scattering process takes place.

The atom A is harmonically confined on a plane with trapping frequency ωA, defining lA= (!/mAωA)1/2. The

atom B is tightly trapped in an isotropic 3D trap of frequency ω0, with lA≫ l0= (!/mBω0)1/2.
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! ! ! !

!

!

!

! ! ! !

!

!

!

!
"

!
#

Figure C.2 : Left: Effective 3D scattering length aeff
3D for the 0D-3D scattering process as a function of the

free-free scattering length a3D and the trap length scale l0. Results have been obtained following [16] for a

masses ratio mB/mA = 0.15, corresponding to a 0D-trapped 6Li atom and and a 2D-trapped 40K one. Right:

Effective 2D interaction strength 1/ ln
(
aeff

2D/lA

)
for the 0D-2D scattering process in the system represented

in Fig. C.1. We consider the same atomic species of the left panel and a frequencies ratio ω0/ωA=10.

pends on an effective 2D scattering length aeff
2D determined by the real system parameters, namely,

mA/mB, ω0, ωA, and a3D. In the geometry described in Fig. C.1, one can evaluate aeff
2D by com-

bining the results of [16] on the 0D-3D scattering (cf. Sec. 1.4.3) with those on the quasi-2D

scattering process of [15, 75] (cf. Sec. 1.4.2).

The assumption ωA≪ω0, allows to neglect the harmonic confinement of frequency ωA when

A is close to B. Hence, one can model the A−B scattering through an effective contact inter-

action, ruled by the scattering length aeff
3D(a3D,ω0,mA/mB) derived in [16] and represented in

Fig. C.2 (left). Then, the in-plane confinement reduces this effective 3D system into a quasi-

2D one, whose scattering amplitude aeff
2D, derived in [15, 75], has been presented in Eq. (1.4.18).

Finally, the combined expression is

1

geff
2D

∝ ln


aeff

2D

lA

 = β −
√
πmBω0

2 mAωA

l0

aeff
3D

, (C.0.1)

with the introduction of the numerical factor β ≃ 0.733. The behavior of geff
2D for a given masses

ratio of the two atomic species is presented in Fig. C.2 (right). Similarly to the 0D-3D case, the

0D-2D scattering presents an infinite series of mixed-dimension resonances. The effective 2D

interaction is, thus, experimentally tunable adjusting the free-space scattering length a3D or the

trapping frequencies.



APPENDIX D

Real-to-Reciprocal Space Change

In Sec. 3.2.3 we derived a general formalism to investigate the properties of a 2D matter wave

propagating through an infinite, periodic structure of scatterers. In this context we transformed the

sums over real-lattice vectors [Eqs. (3.2.19), (3.2.29a), and (3.2.29b)], in sums over reciprocal-

lattice vectors [Eqs. (3.2.20), (3.2.31a), and (3.2.31b)]. The latter are easier to implement numeri-

cally and rapidly converge.

In this appendix we present in detail the delicate procedure allowing for this transformation.

In particular we point out the emergence of a lattice-geometry dependent coefficient, whose value

is determined for some relevant case.

D.1 Bravais or diagonal terms

We start by manipulating the left-hand side of Eq. (3.2.19) or, equivalently, a diagonal element

of the matrix T defined in Eq. (3.2.29b). In particular we focus on the sum, rewriting g0(R),

introduced in Eq. (3.2.4), as

g0(R) =
∫

d2p

(2π)2
g̃0(p) eip·R (D.1.1)

in terms of its Fourier transform

g̃0(p) =
2m

!2

(
P

1
k2 − p2

− i
π

2k
δ(k − p)

)
, (D.1.2)

where P denotes Cauchy’s principal value. Once sum and integral are exchanged, we obtain

∑

R∈L∗
g0(R) eiq·R

=

∫
d2p

(2π)2
g̃0(p)


∑

R∈L
ei(p+q)·R − 1

 , (D.1.3)
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where, by adding and subtracting the R=0 term, we now have a sum running over the entire set L

of real-lattice vectors. For such a summation Poisson’s identity holds, stating that

∑

R∈L
F(R) =

1
A

∑

K∈RL

F̃(K), (D.1.4)

where A is the unit cell area in real space. In the case of interest F̃(K)= (2π)2δ(2)(p + q − K) is

the Fourier transform of F(R)= exp[i(p + q) ·R]. By integrating out terms involving δ-functions,

we obtain

∑

R∈L∗

π!2

m
g0(R) eiq·R

=

2π
A

∑

K∈RL

1
k2 − |K − q|2

+ i
π

2
− P
∫

d2p

2π
1

k2 − p2
. (D.1.5)

It remains to evaluate the principal-valued integral. For an arbitrary choice of ρ such that

0<ρ<k, we have

P

∫
d2p

2π
1

k2 − p2
= P

∫

p>ρ

d2p

2π
1

k2 − p2
−

1
2

ln
(
1 −
ρ2

k2

)
, (D.1.6)

and the Bravais-element Tnn becomes

Tnn = ln
(
eγ

2
kaeff

2D

)
+

1
2

ln
(
1 − ρ

2

k2

)
+

2π
A

1
k2 − q2

+

2π
A

∑

K∈RL∗

1
k2 − |K − q|2

− P
∫

p>ρ

d2p

2π
1

k2 − p2
. (D.1.7)

We now need to introduce two auxiliary quantities,

Sρ,uv =
2π
A

∑

K∈RL∗\uv

1
k2 − |K − q|2

− P
∫

p>ρ\uv

d2p

2π
1

k2 − p2
(D.1.8)

and

S ρ,uv =
2π
A

∑

K∈RL∗\uv

1
K2
−
∫

p>ρ\uv

d2p

2π
1
p2
, (D.1.9)

where an arbitrary ultraviolet cutoff (uv) is added in the domains of sum and integration. Note

that the second line of Eq. (D.1.7) is exactly Sρ,∞, which is Sρ,uv in the limit of a cutoff boundary

pushed to infinity. From definitions (D.1.8) and (D.1.9) it follows that

Sρ,uv + S ρ,uv −−−−−→
uv→∞

−
1
2

ln
(

k2

ρ2
− 1
)
+

2π
A

∑

K∈RL∗

(
1

k2 − |K − q|2
+

1
K2

)
. (D.1.10)

We thus add and subtract S ρ,∞ to Eq. (D.1.7), and after some algebraic manipulation we obtain

Tnn = ln(ρa) − S ρ,∞ + ln
(
eγ

2

)
+

2π
A

1
k2 − q2

2π
A

∑

K∈RL∗

(
1

k2 − |K − q|2
+

1
K2

)
+ α, (D.1.11)
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Figure D.1 : Density plots of 1/p2. Left: For the square lattice of Fig. 3.3. The (green) boundaries p2
=ρ2

and |px|, |py|= 2π(N + 1/2)/a delimit the integration domain of Eq. (D.1.14) (here, ρ= 3/a and N = 2). The

points belong to the reciprocal lattice set RL. The larger (green) ones are those accounted by the sum in

Eq. (D.1.15). Right: Same as left, but for the triangular lattice of Fig. 3.4. The (green) boundaries p2
= ρ2

and
√

3|py|= 4π(N + 1/2) − 3|px| delimit the integration domain of Eq. (D.1.16) (here, ρ= 3/a and N = 2).

The larger (green) points are those on which runs the sum in Eq. (D.1.18).

where we introduced the parameter α = ln(aeff
2D/a) and the arbitrary unit of length a. From

Eq. (D.1.11), it finally follows the definition of

C∞ = lim
uv→∞

Cρ,uv, (D.1.12)

with

Cρ,uv = ln(ρa) − S ρ,uv = ln(ρa) +
∫

p>ρ\uv

d2p

2π
1
p2
−

2π
A

∑

K∈RL∗\uv

1
K2
. (D.1.13)

D.1.1 Evaluation of the geometrical coefficient

When the cutoff boundary tends to infinity, the coefficient Cρ,uv defined in Eq. (D.1.13) nu-

merically converges to a ρ-independent quantity determined only by the geometrical properties of

the considered Bravais lattice. Here, we present this convergent behavior for the exemplary cases

of a square and a triangular lattice.

In the case of a square lattice (cf. Fig. 3.3), it is convenient to define the ultraviolet cutoff by

excluding values of p for which |px|, |py|> 2π(N + 1/2)/a, where N is an arbitrary integer larger

than one. This means that the integral in Eq. (D.1.13) has to be performed over a pierced square

of side 4π(N + 1/2)/a and hole radius ρ, as represented in Fig. D.1 (left). Similarly, the sum will

count only the points of the set RL falling in the same area. In this case the integral has an analytic

solution: ∫

p>ρ\uv

d2p

2π
1
p2
= ln
[
4π
ρa

(N + 1/2)
]
−

2C
π
, (D.1.14)
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Figure D.2 : Left: For the square lattice. Numerical values of CSL
N

[Eq. (D.1.15)] as a function of N. The

solid (blue) line fits the large-N behavior and converges to CSL
∞ ≃ 1.4265. Right: Same as left, but for the

triangular lattice coefficient CTL
N [Eq. (D.1.18)]. The large-N behavior converges here to CTL

∞ ≃0.9597.

where C ≃ 0.915966 is the Catalan’s constant. By using the previous result in Eq. (D.1.13) and

after some algebraic manipulations, one finds

CSL
N = ln(4π) −

2C
π
+ ln(N + 1/2) −

2
π

N∑

n=1

N∑

m=0

1
n2
+ m2

, (D.1.15)

which shows explicitly that the geometrical coefficient does not depend on the arbitrary parameters

a and ρ.

The convergence of CSL
N

to CSL
∞ for N→∞ is shown in Fig. D.2 (left). The limit is extrapolated

by fitting numerical data (circles in figure) from the interval [Nmax − 30,Nmax] with the expression

A + B/Nλ, then increasing Nmax until A varies less than the required accuracy. With this method

we obtained CSL
∞ ≃1.42646444 with the precision of 10−8 (Nmax=118, B≃−0.063, λ=≃1.985).

In the case of the triangular lattice (cf. Fig. 3.4), we perform the same analysis. The convenient

uv cutoff is now defined by
√

3|py|<4π(N + 1/2) − 3|px|. The integral in Eq. (D.1.13) has now to

be performed over the pierced rhombus depicted in Fig. D.1 (right). Once again an analytic result

exists: ∫

p>ρ\uv

d2p

2π
1
p2
= ln
[

1
ρa

(N + 1/2)
]
− B. (D.1.16)

The numeric constant B is defined by

B= ln
(

4π
√

3

)
−

1
π

Im
[
Li2
(
e2iπ/3

)
− Li2

(
e5iπ/3

)]
≃ 1.443275, (D.1.17)

where Li2(z) is the polylogarithm function. Consequently, the simplified expression for the triangular-

lattice coefficient CTL
N

is

CTL
N = B + ln(N + 1/2) −

√
3

2π

N∑

n=1

N∑

m=−N

1 + δm0

n2
+ m2 − nm

, (D.1.18)
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where δm0 is a Kronecker delta. Fig. D.2 (right) shows the convergent behavior of CTL
N

as a function

of N. The geometrical coefficient CTL
∞ can be extrapolated with the same method described for the

square lattice. In this case we obtained CSL
∞ ≃0.95966334 with the precision of 10−8 (Nmax=104,

B≃−0.066, λ=≃1.983).

D.2 Off-diagonal terms

In conclusion, let us consider the transformation of the off-diagonal element of T, introduced

in Eq.(3.2.29a). The space change follows straightforwardly by applying the same techniques used

for the diagonal element in Sec. D.1. We write again g0(R) in terms of its Fourier transform g̃0(p),

obtaining

∑

R∈L
g0(R + tnm) eiq·R

=

∫
d2p

(2π)2
g̃0(p) eip·tnm

∑

R∈L
ei(p+q)·R

=

1
A

∑

K∈RL

g̃0(K − q) ei(K−q)·tnm , (D.2.1)

where, in the last step, we made use of Poisson’s identity as introduced in Eq. (D.1.4). Finally

Eq. (3.2.31a) directly follows from Eq. (D.2.1) by writing explicitly g̃0(K − q).
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[97] A. Maluckov, G. Gligorić G., L. Hadz̆ievski, B. A. Malomed, and T. Pfau, Stable Periodic Density

Waves in Dipolar Bose-Einstein Condensates Trapped in Optical Lattices, Phys. Rev. Lett. 108,

140402 (2012).

[98] M. Marinescu and L. You, Controlling Atom-Atom Interaction at Ultralow Temperatures by dc Elec-

tric Fields, Phys. Rev. Lett. 81, 4596 (1998).

[99] P. Giannakeas, V. S. Melezhik, and P. Schmelcher, Dipolar Confinement-Induced Resonances of

Ultracold Gases in Waveguides, Phys. Rev. Lett. 111, 183201 (2013).

[100] F. Deuretzbacher, J. C. Cremon, and S. M. Reimann, Ground-state properties of few dipolar bosons

in a quasi-one-dimensional harmonic trap, Phys. Rev. A 81, 063616 (2010), 87, 039903(E) (2013).

[101] B. E. Granger and D. Blume, Tuning the Interactions of Spin-Polarized Fermions Using Quasi-One-

Dimensional Confinement, Phys. Rev. Lett. 92, 133202 (2004).

[102] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Regimes of Quantum Degeneracy in Trapped

1D Gases, Phys. Rev. Lett. 85, 3745 (2000).

[103] M. Girardeau, Relationship between Systems of Impenetrable Bosons and Fermions in One Dimen-

sion, J. Math. Phys. 1, 516 (1960).

[104] G. E. Astrakharchik, D. Blume, S. Giorgini, and B. E. Granger, Quasi-One-Dimensional Bose Gases

with a Large Scattering Length, Phys. Rev. Lett. 92, 030402 (2004).

[105] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Beyond the Tonks-Girardeau Gas:

Strongly Correlated Regime in Quasi-One-Dimensional Bose Gases, Phys. Rev. Lett. 95, 190407

(2005).

[106] T. Busch, B.-G. Englert, K. Rzazewski, and M. Wilkens, Two Cold Atoms in a Harmonic Trap,

Found. Phys. 28, 549 (1998).

[107] J. Hecker-Denschlag, J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmer-

son, S. L. Rolston, and W. D. Phillips, A Bose-Einstein condensate in an optical lattice, J. Phys. B:

At. Mol. Opt. Phys. 35, 3095 (2002).



114 BIBLIOGRAPHY

[108] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, and I. Bloch, Interference pattern and

visibility of a Mott insulator, Phys. Rev. A 72, 053606 (2005), we point out a typo in the formula for

t/Er in footnote 2, where the factor (a/λL) should not be present.

[109] F. J. Burnell, M. M. Parish, N. R. Cooper, and S. L. Sondhi, Devil’s staircases and supersolids in a

one-dimensional dipolar Bose gas, Phys. Rev. B 80, 174519 (2009).

[110] M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauss, C. Gross, L. Mazza, M. C. Bañuls,

L. Pollet, I. Bloch, and et al., Observation of Correlated Particle-Hole Pairs and String Order in

Low-Dimensional Mott Insulators, Science 334, 200 (2011).

[111] G. Astrakharchik, G. Morigi, G. De Chiara, and J. Boronat, Ground state of low-dimensional dipolar

gases: Linear and zigzag chains, Phys. Rev. A 78, 063622 (2008).

[112] S. Greschner, L. Santos, and T. Vekua, Ultracold bosons in zig-zag optical lattices, Phys. Rev. A 87,

033609 (2013).

[113] S. Gammelmark and N. T. Zinner, Dipoles on a two-leg ladder, Phys. Rev. B 88, 245135 (2013).

[114] X. Deng, R. Citro, E. Orignac, A. Minguzzi, and L. Santos, Polar bosons in one-dimensional disor-

dered optical lattices, Phys. Rev. B 87, 195101 (2013).

[115] M. Larcher, C. Menotti, B. Tanatar, and P. Vignolo, Metal-insulator transition induced by random

dipoles, Phys. Rev. A 88, 013632 (2013).

[116] F. Deuretzbacher, G. M. Bruun, C. J. Pethick, M. Jona-Lasinio, S. M. Reimann, and L. Santos,

Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi

mappings for generalized contact interactions, Phys. Rev. A 88, 033611 (2013).

[117] S. Ejima and S. Nishimoto, Phase Diagram of the One-Dimensional Half-Filled Extended Hubbard

Model, Phys. Rev. Lett. 99, 216403 (2007).

[118] M. Nakamura, Tricritical behavior in the extended Hubbard chains, Phys. Rev. B 61, 16377 (2000).

[119] S. G. Bhongale, L. Mathey, S.-W. Tsai, C. W. Clark, and E. Zhao, Bond Order Solid of Two-

Dimensional Dipolar Fermions, Phys. Rev. Lett. 108, 145301 (2012).

[120] M. D. Dio, L. Barbiero, A. Recati, and M. Dalmonte, Spontaneous Peierls dimerization and emergent

bond order in one-dimensional dipolar gases, arXiv:1304.5200 .

[121] P. Vignolo, A. Z., and M. P. Tosi, The transmittivity of a Bose-Einstein condensate on a lattice:

interference from period doubling and the effect of disorder, J. Phys. B: At. Mol. Opt. Phys. 36, 4535

(2003).

[122] U. Gavish and Y. Castin, Matter-Wave Localization in Disordered Cold Atom Lattices, Phys. Rev.

Lett. 95, 020401 (2005).



BIBLIOGRAPHY 115

[123] J.-F. Schaff, Z. Akdeniz, and P. Vignolo, Localization-delocalization transition in the random dimer

model, Phys. Rev. A 81, 041604 (2010).

[124] M. Antezza, Y. Castin, and D. A. W. Hutchinson, Quantitative study of two- and three-dimensional

strong localization of matter waves by atomic scatterers, Phys. Rev. A 82, 043602 (2010), we point

out a misprint in Eq. (47), where the factor 8 is missing in front of δ2.

[125] Z.-Y. Shi, R. Qi, and H. Zhai, s-wave-scattering resonances induced by dipolar interactions of polar

molecules, Phys. Rev. A 85, 020702(R) (2012).

[126] I. Carusotto, M. Antezza, F. Bariani, S. De Liberato, and C. Ciuti, Optical properties of atomic Mott

insulators: From slow light to dynamical Casimir effects, Phys. Rev. A 77, 063621 (2008).

[127] M. Antezza and Y. Castin, Spectrum of Light in a Quantum Fluctuating Periodic Structure, Phys.

Rev. Lett. 103, 123903 (2009).

[128] M. Antezza and Y. Castin, Fano-Hopfield model and photonic band gaps for an arbitrary atomic

lattice, Phys. Rev. A 80, 013816 (2009).

[129] M. Antezza and Y. Castin, Photonic band gap in an imperfect atomic diamond lattice: Penetration

depth and effects of finite size and vacancies, Phys. Rev. A 88, 033844 (2013).

[130] A. Singha, M. Gibertini, B. Karmakar, S. Yuan, M. Polini, G. Vignale, M. I. Katsnelson, A. Pinczuk,

L. N. Pfeiffer, K. W. West, and et al., Two-Dimensional Mott-Hubbard Electrons in an Artificial

Honeycomb Lattice, Science 332, 1176 (2011).

[131] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov, G. Malpuech, E. Galopin,

A. Lemaître, J. Bloch, and A. Amo, Direct Observation of Dirac Cones and a Flatband in a Honey-

comb Lattice for Polaritons, Phys. Rev. Lett. 112, 116402 (2014).

[132] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C. Manoharan, Designer Dirac fermions and

topological phases in molecular graphene, Nature 483, 306 (2012).

[133] M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne, Topological Transition of Dirac Points in

a Microwave Experiment, Phys. Rev. Lett. 110, 033902 (2013).

[134] S.-L. Zhu, B. Wang, and L.-M. Duan, Simulation and Detection of Dirac Fermions with Cold Atoms

in an Optical Lattice, Phys. Rev. Lett. 98, 260402 (2007).

[135] P. Dietl, F. Piéchon, and G. Montambaux, New Magnetic Field Dependence of Landau Levels in a

Graphenelike Structure, Phys. Rev. Lett. 100, 236405 (2008).

[136] L.-K. Lim, J.-N. Fuchs, and G. Montambaux, Bloch-Zener Oscillations across a Merging Transition

of Dirac Points, Phys. Rev. Lett. 108, 175303 (2012).

[137] C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Flat Bands and Wigner Crystallization in the

Honeycomb Optical Lattice, Phys. Rev. Lett. 99, 070401 (2007).



116 BIBLIOGRAPHY

[138] C. Wu and S. Das Sarma, px,y-orbital counterpart of graphene: Cold atoms in the honeycomb optical

lattice, Phys. Rev. B 77, 235107 (2008).

[139] L. Santos, M. A. Baranov, J. I. Cirac, H.-U. Everts, H. Fehrmann, and M. Lewenstein, Atomic Quan-

tum Gases in Kagomé Lattices, Phys. Rev. Lett. 93, 030601 (2004).

[140] G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Ultracold

Atoms in a Tunable Optical Kagome Lattice, Phys. Rev. Lett. 108, 045305 (2012).

[141] D. S. Petrov, G. E. Astrakharchik, D. J. Papoular, C. Salomon, and G. V. Shlyapnikov, Crystalline

Phase of Strongly Interacting Fermi Mixtures, Phys. Rev. Lett. 99, 130407 (2007).

[142] Z. Lan and C. Lobo, Optical lattices with large scattering length: Using few-body physics to simulate

an electron-phonon system, Phys. Rev. A 90, 033627 (2014).

[143] K. Góral and L. Santos, Ground state and elementary excitations of single and binary Bose-Einstein

condensates of trapped dipolar gases, Phys. Rev. A 66, 023613 (2002).


