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Introduction

Gels consist of three-dimensional networks that span the whole volume of a liquid medium.
The internal network structure results from permanent or transient bonds. In the first
case the gels behave as soft solids whereas in the second case, they behave as viscoelastic
fluids. Gels, because of their softness, are easy to deform hugely and eventually to fail
by mechanical means.

The main objective of this thesis is to rationalize the respective roles of capillary,
viscous and elastic forces in the dynamics and failure of gels submitted to equibiaxial or
uniaxial deformations. Equibiaxial deformations will be realized by impacting drops or
beads of gels on a solid surface and uniaxial deformation by stretching filament of gels.

The way in which a liquid drop or an elastic bead deforms during its impact on a solid
surface is a ubiquitous fascinating phenomenon of daily life. It has eluded explanation for
the past 20 years when high-speed video technology began to allow time-resolved observa-
tions [Josserand 2016]. Owing to the numerous environmental and industrial applications,
the impact of liquid drops on solid surfaces has been studied extensively since the pio-
neering work of Worthington [Worthington 1908] till now [Yarin 2006, Josserand 2016].
The impact may result in the drop spreading over the solid surface, receding, splashing,
rebounding, depending on the surface and interfacial tension, the roughness, and wetta-
bility of the solid surface, the drop size, the impact velocity, the properties of the liquid
(its density, viscosity, viscoelasticity). However, there have been fewer studies on soft
elastic beads and non-Newtonian drops and the dynamics of the impact of solid beads
and liquid drops apparently share nothing in common.

Here we investigate freely expanding sheets formed by ultra-soft spherical gel beads
with various elastic modulus, liquid droplets of varying surface tensions and zero shear
viscosities, and viscoelastic fluids (simple Maxwell fluids) of various rheological character-
istics. The sheets are produced by impacting a drop or bead on a small solid target and
on a silicon wafer covered with a thin layer of liquid nitrogen. These experimental set-ups
significantly suppress the interaction between the drop or bead and the solid surface. In
order to tentatively unify the impact dynamics of solid, liquid or viscoelastic pearls, we
will focus on two important outcomes of drop or bead impact on a solid substrate: the
maximum diameter and how long the impacting object remains in contact with the solid
during the shock.

On the other hand, fracture phenomenon in complex fluids are much less documented
than in solids but has attracted a lot of interest in the soft matter community. The be-
havior of viscoelastic samples is more complex than solid ones as one may expect viscous
dissipation to be enhanced and eventually dominate, yielding the sample to flow instead
of break. However, when submitted to deformation rates larger than the inverse of their
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slowest relaxation times, viscoelastic fluids can break as solids do, as evidenced in several
works with associative polymer networks [Ligoure 2013, Huang 2017]. From a conceptual
point of view, the extension of the theoretical models for the fracture of solids to viscoelas-
tic liquids, and the definition of brittleness and ductility of solids for viscoelastic liquids
are not trivial. Filament stretching rheometry [McKinley 2002] appears as an exquisite
tool to investigate the fracture of viscoelastic fluids, since it allows a sample to be sub-
mitted to a prescribed and constant extensional rate. Filament stretching rheometry was
successfully used to measure the tensile stress of associative polymer networks and worm-
like micelles before fracture [Rothstein 2003, Bhardwaj 2007, Tripathi 2006]. A substan-
tial improvement has been recently achieved by coupling filament stretching rheometry
to a fast imaging of the filament allowing not only to visualize but also to quantify the
crack nucleation and propagation [Huang 2016a]. We use filament stretching rheometry
coupled to fast imaging to investigate the fracture processes of self-assembled transient
networks to investigate the crucial role of non-linear viscoelasticity in the fracture of
transient networks.

The manuscript is divided into six chapters, presented as follows:

Chapter 1 is a bibliographic chapter that presents the state of the art on the top-
ics. We describe experimental techniques used to impose an external deformation. The
chapter is broadly divided into two sections: the first section details the dynamics of
freely expanding sheets produced by liquid drops, soft elastic beads and non-Newtonian
drops on impacting different kinds of surfaces. The second section aims to describe the
fracture of viscoelastic fluids especially of transient networks in different experimental
configurations, with a particular emphasis on uniaxial extensional geometry.

Chapter 2 is dedicated to the description of the different experimental systems that
are used in this work. We describe the rheological methods used to characterize the
samples and the experimental set-ups that have been developed during the course of this
thesis to study the impact dynamics of drops and beads. We finally describe the methods
used to analyze the images that are obtained from the fast camera.

Chapter 3 describes the dynamics of freely expanding sheets prepared with viscous
and viscoelastic fluids. The sheets are produced by impacting on a small solid target. We
present the linear rheology of the self-transient networks. We then describe and quantify
how sheets made of viscous and viscoelastic materials expand depending in particular on
the ratio between the intrinsic relaxation time of the viscoelastic samples and the typical
experimental time. We provide a model for the dynamics of viscous sheets and show that
shear dissipation occurs on the surface of the small target. We finally discuss the results
for viscoelastic samples.

Chapter 4 focuses on the dynamics of a freely expanding sheet formed by soft elastic
beads and liquid drops. The sheets are produced by impacting on a solid substrate covered
with thin layer liquid nitrogen. We first give a brief account on the used experimental
samples and techniques. We provide qualitative and quantitative descriptions of the
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maximum expansion and dynamics of expansion of soft elastic beads and liquid drops.
We then present a universal scaling law to rationalize the maximum expansion, the contact
time and the dynamics of the sheets, which can be understood in terms of simple harmonic
motion without viscous dissipation.

Chapter 5 aims to characterize and understand the expansion of viscoelastic drops and
Newtonian drops when they impact a small solid target or a solid surface covered with
a layer of liquid nitrogen. We show that the same scaling law for maximum expansion
derived in the previous chapter is valid for viscoelastic samples in the absence of viscous
dissipation. In the case of viscous liquids and viscoelastic fluids, we introduce and measure
an effective impact velocity to quantitatively account for the maximum expansion of the
expanding sheet. We finally characterize in detail the instabilities and cracks observed in
viscoelastic sheets.

Chapter 6 is dedicated to study the uniaxial extensional deformation of reversible
double transient polymer networks. After a brief description of the experimental samples
and methods, we present the shear and extensional rheology of the polymer networks.
The modes of extensional deformation up to a maximum strain are then described. We
focus on the cracks that occur when the samples are strained at a sufficiently high strain
rate and characterize their opening profiles and propagation velocity. Finally, we discuss
the correlation between the extensional rheology and the crack opening profiles, in light
of the literature and of the specificity of our samples.

We present at the end general conclusions and perspectives of our work.





Chapter 1

Motivation and State of Art
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In this chapter, we describe some experimental techniques that have been used in the
literature to impose extensional deformations. In the first part, we focus on freely expand-
ing sheets produced by the impact of Newtonian and non-Newtonian liquid drops, and soft
elastic beads on different kinds of solid surfaces. We mainly restrict our review to the max-
imal spread factor of the sheets. In the second part, we describe different experimental
configurations used to study the behavior of complex fluids, especially transient networks,
undergoing large deformations, and focus primarily on uniaxial extensional deformations
of viscoelastic fluids.

1.1 Freely expanding sheets
In this part, we describe different experimental set-ups that have been employed to

study the impact dynamics of the sheet.

1.1.1 Impact dynamics of liquid drops

The dynamics of drop impact is a century old problem, which is still evolving in
understanding thanks to the technological advances in the high-speed video technology



6 Chapter 1. Motivation and State of Art

that allows time resolved observations [Thoroddsen 2008]. A.M. Worthington was one
of the first pioneers to study drop and solid ball impacts on deep liquid pools with his
investigations published in the book "A study of splashes" [Worthington 1908]. There
are many environmental and industrial applications including spray coating, pesticide
application, ink-jet printing, bioarray design and so on. The outcome of the impact of
a drop onto a surface can be influenced by many factors, for instance, the nature of the
surface, the size of the drop, the physical properties of the liquid (density, surface tension,
viscosity, viscoelasticity), the impact velocity and the surrounding gas. Upon hitting a
solid surface, a drop can splash, partially or fully rebound, or remain on the surface and
spread [Rioboo 2001].

The impact dynamics of Newtonian fluids on a solid substrate has been recently
reviewed by C. Josserand et al [Josserand 2016] and earlier works have also been covered
in a review by A.L. Yarin [Yarin 2006] who discusses the impact of liquid drops on solid
and liquid surfaces.

1.1.1a Impact of drops on solid surfaces

When a drop impacts a solid surface, the inertial forces cause the drop to expand
radially. During the expansion, the kinetic energy is partially converted into surface
energy. Once it reaches the maximum expansion the stored surface energy causes the
expanded sheet to retract back to the primal state. Two important dimensionless param-
eters are used to describe the drop impact which balance the inertia with viscous forces,
the Reynolds number, Re = vodoρ/η0 and inertia with capillary forces, the Weber number
We = ρdovo

2/γ. Here vo is the impact velocity, do is the drop diameter, ρ is the density
of the liquid, η0 is the dynamical viscosity and γ is the surface tension of the liquid. R.
Rioboo et al [Rioboo 2001] categorized the outcome of the impact of drop on various
solid surfaces into six main categories. Figure 1.1 shows the images of drop impact for
each category [Rioboo 2001].

At small impact velocity, the drop spreads on the substrate and stays, known as
deposition. The prompt splash results from a high impact velocity and gives rise to
ejection of small droplets from the rim of the sheet at the spread contact line. If the surface
tension is reduced, then the impact results in corona splash in which a thin liquid sheet
forms a bowl-like structure that subsequently ejects small droplets. During the receding
break-up stage, lamella may break up into fingers and result in ejection of secondary
droplets due to capillary instability. If the kinetic energy is not too much dissipated and
surface energy is sufficiently large, then the receded drop may result in partial or complete
rebound. The maximal extension reached by the impinging drop when it spreads on the
surface is one of the important parameters that has been examined extensively. It will
be discussed in the next section.
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Figure 1.1: Snapshots of images at different time instant for the impact of a liquid
drop on various solid substrates (a) deposition (b) prompt splash (c) corona splash (d)
receding break-up (e) partial rebound and (f) rebound [Rioboo 2001].

Maximal spread factor: When a drop impacts on a smooth solid surface, the dynam-
ics of the sheet is governed by at least three competitive forces, inertia, capillary forces,
and viscous forces [Pasandideh-Fard 1996, Aziz 2000]. The maximal extension reached by
the impinging drop when it spreads on the surface is expressed as the maximal spread fac-
tor λ = dmax/do, here dmax is the maximum diameter of the sheet and do is the initial drop
diameter. Most of the scaling laws that have been proposed concern Newtonian fluids and
distinguish two regimes: (i) a viscous regime in which λ is determined by balancing the
kinetic energy and viscous dissipation leading to λ ∼ Re1/5 [Chandra 1991, Rein 1993]
and (ii) inertial regime where λ is obtained by a balance between kinetic energy and sur-
face energy (at maximum deformation) giving λ = We1/2. There are many scaling laws
that have been proposed to explain the spreading factor inclusive of viscous dissipation.
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Table 1.1 shows commonly used scaling laws to fit the experimental data.

References Empirical model

[Scheller 1995] λ ∼ 0.61Re1/5(WeRe−2/5)
1/6

[Pasandideh-Fard 1996] λ =

√
We+ 12

3(1− cosθ) + 4(We/
√
Re)

[Roisman 2009] λ ∼ 0.87Re1/5 − 0.4Re2/5We−1/2

Table 1.1: Different scaling laws proposed in the literature to account for the maximal
spread factor [Josserand 2016]. Here Re is the Reynolds number,We is the weber number
and θ is the contact angle.

1.1.1b Impact of liquid drops on solid surfaces under minimized dissipation
conditions

Small solid target

There has been constant evolvement in the experimental set-ups to limit the effect
of viscous dissipation. M. Vignes-Adler et al [Rozhkov 2002, Rozhkov 2004] studied the
impact of drops on small cylindrical targets of diameter comparable to the size of the
droplets. Using this experimental set-up, the spreading sheet is freed from shear dissipa-
tion when it leaves the target. When the drop hits the target, it radially expands freely
in air and retracts back under the action of surface tension. We note that this configu-
ration is the discrete version of the Savart experiment, where a liquid jet hits normally
a flat solid disk, resulting in a stationary planar liquid sheet [Savart 1833]. Figure 1.2a
schematically shows the expanded sheet produced by the impact of a drop on a solid
target and time series of the expansion and retraction of the sheet is shown in Figure
1.2b. Interestingly, the ejection angle of the sheet can be controlled by incorporating a
coaxial cylinder [Villermaux 2011]. Recently, C. Vernay et al [Vernay 2015c] proposed a
simple experimental technique to access the thickness field of the expanding sheet thanks
to time and space-resolved measurement of the absorbance of the sheet.

Superhydrophobic surfaces

Another way to reduce the dissipation due to the interaction of the liquid drop with
the solid surface is to use super-hydrophobic surfaces (SHS). In this case, the contact
between the liquid drop and the solid substrate is only partial due to the presence of
air pockets that prevent full surface wetting and eliminate the contact angle hysteresis.
Hysteresis occurs due to the surface defects that cause energy loss. SHS have been used in
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a. b. 

Figure 1.2: (a) Scheme of small solid target experimental set-up. (b) Time series of the
formation of the sheet. Time interval between images is 1 ms. The scale bar is set by the
black solid disc of 4 mm [Rozhkov 2004].

many experiments to study the impact of drops [Richard 2002, Okumura 2003, Luu 2009,
An 2012, Luu 2013]. For instance D. Richard et al [Richard 2000] used SHS with a con-
tact angle of 170◦ to study the drop impact. They found a coefficient of restitution close
to 0.9 for rebounding liquid drops. However, A.L. Biance et al [Biance 2006] showed that
even with high contact angles (typically 160◦), adhesion occurs at low velocities which
induce energy loss. Impact velocity can set the criteria for the super-hydrophobicity: the
smaller is the velocity at which rebound occurs the more efficient would be SHS.

Superheated surfaces

Rebound of liquid drops is facilitated even by elevating the temperature (T ) of the
substrate i.e. above the Leidenfrost temperature. In Leidenfrost condition, the drop hov-
ers on the surface due to the formation of gaseous vapor cushion from the droplet that
thermally insulates the drop [Chandra 1991, Rein 2002]. A systematic study has been
performed by T. Tran et al and V. Bertola [Tran 2012, Bertola 2015] where the authors
investigated the (We, T ) phase space to study the outcome of drop impact. They showed
that there is a gentle film boiling regime where the expanded sheet is supported by a
thick vapor layer to prevent any contact between the liquid lamella and the solid surface.
T. Tran et al also provided the measurement for the thickness of this vapor layer in the
gentle film boiling regime and found that it is one order of magnitude thinner than the
thickness of the vapor layer in static regime [Biance 2003]. More recently, H. Lastakowski
et al [Lastakowski 2014] performed experiments in the scenario of zero viscous coupling
thanks to the formation of a vapor layer between the liquid and solid surface and mea-
sured the flow field and local thickness profiles of an expanding sheet.
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Sublimating surfaces

C. Antonini et al [Antonini 2013] compared the outcome of drop impact on three
different repellent solid surfaces a). very hot plate (Leidenfrost effect) b). SHS and c).
sublimating surface as shown in Figure 1.3 (left). They showed that nonwetting and slip
condition can also be achieved in the case of very cold substrates such as dry ice (solid
carbon dioxide). Similarly to the Leidenfrost effect when the drop at ambient temper-
ature impacts dry ice, a vapor layer of carbon dioxide forms in between the drop film
and the substrate that thermally insulates the droplet and also inhibits the interaction
between the substrate and the droplet. The authors also measured the rebound time
and maximal spread factor for three types of modified surfaces (SHS, superheated and
sublimating surfaces) which will be discussed in later sections.

Figure 1.3: Scheme to show the drop interaction with different repellent solid sur-
faces (left). Dynamics of the sheet on three different substrates as mentioned (right)
[Antonini 2013].

Maximal spread factor: In the case of a SHS where the shear dissipation is ex-
pected to be negligible and at high We for which no splash is present, C. Clanet et al
[Clanet 2004] developed a model to predict the maximal spread factor λ. They use mass
conservation based on the pancake thickness which is governed by the capillary wave
created by the impact. This model yields λ ∼ We1/4 instead of We1/2 scaling obtained
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from classical arguments based on energy conservation. This scaling has been success-
fully adopted to interpret experimental studies [Biance 2006, Tsai 2011, Guémas 2012].
However, C. Josserand et al [Josserand 2016] claimed that the correction due to initial
radius of the drop should be considered at low We. C. Antonini et al [Antonini 2013]
on the other hand compared the impact of liquid drop for three different surfaces a) a
very hot plate (Leidenfrost effect) b). a SHS and c). a sublimating surface. The authors
found that λ ∼ We0.4, an exponent close to 1/2, which can be explained by considering
a simple balance between kinetic energy and surface energy (Figure 1.4). This is also
shown by T. Tran et al [Tran 2012] for the case of drop impact on superheated surfaces.
The authors claimed that this could be due to the vapor layer that is shooting radially
outwards and might give an extra driving force for liquid spread.

λ 

Figure 1.4: Maximal spread factor as a function of We and the experimental fit of the
data yields dmax/do = We0.4 adapted from [Antonini 2013].

Contact time: Another interesting parameter to measure in the impact dynamics of
a drop is rebound time also known as contact time τc. D. Richard et al [Richard 2002]
studied the impact of a water drop on a SHS and showed that the contact time increases
linearly with the drop size but stays constant for impact velocity varying between 20 cm/s
and 230 cm/s. τc follows a simple scaling law obtained by balancing inertia and capil-
larity: τ ∼ (ρdo

3/8γ)
1/2, also observed earlier by L.H.J. Wachters et al [Wachters 1966].

However, the contact time increases at small velocities [Okumura 2003]. A similar scaling
for τc has also been observed by C. Antonini et al [Antonini 2013] for the impact of water
drop on the three types of repellent surfaces (SHS, superheated and sublimating surface).
Interestingly, J.C. Bird et al [Bird 2013] showed that this contact time can be reduced
by using macro textured surfaces.
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1.1.2 Impact of soft elastic beads

Since the pioneering work by H. Hertz [Hertz 1881], the impact of elastic solid beads
on solid surfaces has attracted less attention than the impact of liquid drops. Y. Tanaka
et al [Tanaka 2003, Tanaka 2005] impacted soft spherical gel balls of centimeter size with
Young’s modulus on the order of 104 Pa on an aluminum plate in non-stick conditions.
Figure 1.5 shows snapshots at maximum deformation for beads with different elastic
moduli and at different impact velocities. They observed three different regimes of impact
depending on the elasticity and the impact velocity: (i) a hertz regime for small impact
velocity (ii) a quasi-ellipsoidal regime for intermediate velocities and (iii) a pancake regime
for high velocities. The authors measured the rebound time and maximal spread factor for
different impact velocities and showed that the dynamics of spreading solely depends on
a balance between the inertia and bulk elastic forces, characterized by the Mach number
M . They gave a simple scaling theory to predict the λ. They showed that for large
velocities λ ∼M and for small velocities λ ∼M8/5. Here M is the Mach number defined
as M = vo/US, with vo is the impact velocity, US =

√
G0/ρ the velocity of transverse

sound waves (G0 the shear plateau modulus and ρ the density). Y. Tanaka [Tanaka 2005]
also proposed a model that assumes a uniform deformation to explain the value of the
contact time by incorporating different fitting parameters.

a. b. c. 

Figure 1.5: Maximum deformation of gel ball for different impact velocities vo and
elastic modulus G0 (a) G0 = 27 kPa, vo . 0.4 m/s (b)G0 = 12 kPa, vo = 2 m/s and (c)
G0 = 12 kPa, vo = 7 m/s [Tanaka 2003].

1.1.3 Impact of non-Newtonian drops

The impact of drops of non-Newtonian liquids has also been less explored. S. Chen et
al [Chen 2016] studied drops of yield stress fluids (Carbopol) on a superheated surface and
found a scaling law, λ ∼ We0.3, close to the one predicted by C. Clanet et al [Clanet 2004].
Yield-stress fluids have also been studied by L.H. Luu [Luu 2009, Luu 2013]. The authors
investigated the impact of Carbopol drops on smooth glass surfaces and rough hydropho-
bic surfaces. They found that for smooth glass substrate λ ∼M1/3 and for a small solid
target (perfect slip condition) λ ∼ M . Similar experiments have been performed by M.
Guémas et al [Guémas 2012] for two systems: Carbopol and cornstarch. They found the
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same scaling as the one of [Luu 2013] for Carbopol impacting smooth partially wetting
surfaces. By contrast for cornstarch drops impacting SHS, the maximal spread factor
followed the same scaling law as the one found for Newtonian fluids [Clanet 2004].

1.1.4 Objectives : Part I

We have seen that different experimental configurations have been used so far to
study the impact of liquid drops, elastic beads, and viscoelastic drops, yet the field is
not exhaustive. In this work, we will investigate the dynamics of freely expanding sheets
prepared with (i) Newtonian fluids whose viscosity can be varied over a large range, (ii)
self-assembled transient networks that behave as pure Maxwell fluids whose characteristic
elastic modulus and relaxation time can be finely tuned allowing one to independently
study the role of viscosity and elasticity in the impact dynamics of viscoelastic sheets, and
(iii) permanent crosslinked polyacrylamide elastic gel beads. The sheets are produced by
impacting a drop or bead on a small solid target of size comparable to that of a drop and on
a solid surface covered with liquid nitrogen which can be considered as a repulsive surface.
These experimental conditions provide us different ways to explore diverse behavior of
viscous fluids, viscoelastic fluids, and elastic gels.

1.2 Fracture in viscoelastic fluids
The ability of viscoelastic materials to fracture is less documented than for solid

materials. The behavior of viscoelastic samples is more complex as one may expect
viscous dissipation to be enhanced and eventually dominate, thereby causing the sample
to flow instead of break. However, when submitted to deformation rates larger than the
inverse of their slowest relaxation times, viscoelastic fluids can break as solids. Moreover,
from an experimental point of view, because viscoelastic samples flow, standard tools to
investigate the fracture of solids cannot generally be used. Novel geometries have therefore
been considered to investigate fracture processes in viscoelastic fluids, using a shear cell,
a Hele-Shaw cell, extensional flow experimental configurations. A comprehensive review
on fractures in transient networks (viscoelastic system) is provided by C. Ligoure et al
[Ligoure 2013].

1.2.1 Fractures in shear cells

We consider here a transient network, with a characteristic relaxation time τ , sub-
jected to a constant shear rate γ̇. As γ̇ is applied to the sample, the shear stress first
increases linearly with γ̇ but above a critical shear rate γ̇ ∼ τ−1, the flow curve is
found to exhibit a sudden stochastic drop (Figure 1.6a [Tabuteau 2009]). F. Molino et al
[Molino 1999] were the first to propose that the sudden drop in the shear stress may be
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linked to fracture propagation in transient networks. J.F. Berret et al [Berret 2001] gave
an experimental evidence of shear-induced fractures in polymeric networks thanks to a
flow visualization technique using a plate-plate transparent shearing cell. They showed
that, for a low deformation field, the velocity field decreases linearly from the rotating
wall to the stationary one. The flow becomes inhomogeneous above a certain shear rate
that marks the onset of fracture. Similar results have been shown by P.J. Skrzeszewska
et al [Skrzeszewska 2010] by using particle image velocimetry. The authors also observed
that the shape of the crack is irregular and the width of the fracture zone increases with
increasing the shear rate. The fracture zone can occur anywhere in the gap and is different
for every experiment. H. Tabuteau et al [Tabuteau 2009] made a direct optical obser-
vation of the shear-induced fractures in transient networks comprising of microemulsion
bridged by telechelic polymers. Figure 1.6b shows the growth of a crack tilted at 45◦

from the shear plane. The authors observed that at a critical shear rate normal stress
difference σN is larger than σ indicating tensile stress may trigger the crack rather than
shear stress.

a. b. 

Figure 1.6: (a) Shear stress (σ) and first normal stress difference σN as a function of
the shear rate γ̇ for a transient network (with a shear modulus G0 = 1210 Pa and τ = 0.8

s). (b) Growth of a crack in a shear cell at a shear rate γ̇ = 0.9 s−1. [Tabuteau 2009].

P.J. Skrzeszewska et al [Skrzeszewska 2010] showed another approach to observe frac-
ture process by performing creep experiment where a constant stress is applied and the
time evolution of resulting deformation is measured. They found that fracture occurs
immediately when the applied stress is above a critical stress σ ∼ G0. For stresses below
the critical stress, the fracture is delayed and this delay time is not well defined but
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varies from one experiment to another demonstrating the stochastic nature of fracture
phenomenon.

1.2.2 Fracture in Hele-Shaw cells

Saffman-Taylor instabilities arise when a low viscous fluid pushes a more viscous fluid
that is confined between two closely spaced parallel plates (Hele-Shaw cell) [Saffman 1958].
The interface between the two fluids develops a hydrodynamic instability, called a vis-
cous fingering instability. More complex behavior may occur when one or the two fluids
are non-Newtonian liquids. For instance, fracture-like pattern instabilities can be ob-
served in circular Hele-Shaw cells when a fluid is injected into a thin cell containing a
transient gel. H. Zhao et al [Zhao 1993] showed the fingering to fracturing transition in
associative polymers using Hele-Shaw cell at different injection rates (Figure 1.7a). The
authors observed that there exists a critical injection rate above which fracture instabili-
ties are observed and below which viscous fingers are observed. Dynamic fracture-like flow
instabilities of associating polymeric solutions have also been studied using rectangular
Hele-Shaw cell by measuring the crack tip velocity [Ignes-Mullol 1995] and correlating the
tip velocity to the pressure gradient [Vlad 1999]. S. Mora et al [Mora 2010a, Mora 2012]
revisited theoretically and experimentally the Saffman-Taylor instability for a model of
viscoelastic fluids i.e. upper-convected Maxwell model. The authors showed that the
fracture-like patterns results from the elasticity of the complex fluid and take place in the
linear regime. Recently, G. Foyart et al [Foyart 2013] studied the morphology and veloc-
ity flow field in the vicinity of the interface of a finger instability and of a crack tip using
image correlation velocimetry (Figure 1.7b) in a radial Hele-Shaw cell for transient gels
and provided quantitative arguments to discriminate a finger from a crack. In another
study [Foyart 2016] they investigated fracture process in double transient networks and
quantified the rearrangement process zone around the crack tips thanks to birefringence
measurements.

1.2.3 Fractures in extensional geometry

By pulling a viscoelastic fluid column sufficiently rapidly, one can observe fracture in
the filament depending on the time scale of observation. Fracture in polymeric liquids
has been recently reviewed by Q. Huang [Huang 2017].

A. Tripathi et al [Tripathi 2006] studied non-linear rheology of associative polymers
using a filament stretching rheometer. A sample of initial length Lo is filled in the gap
between two circular plates. The end plates then can move apart to a final separation
with an exponentially increasing profile given as L(t) = Loexp(ε̇t). Here, ε̇ is the strain
rate. The author measured the evolution of tensile force and mid-filament diameter at
the same time. They observed for low concentration of polymer and at high strain rates ε̇
that rupture of the filament occurred and followed by an oscillatory damping elastic recoil
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a. b. 

Figure 1.7: Images showing the transition from finger to fracture-like pattern in self-
assembled networks confined in Hele-Shaw cells. (a) Images of the instabilities developed
when dyed water is pushed in the viscoelastic gel at different injection rates [Zhao 1993].
(b) Fingering (low injection rate (i)) to fracture transition (high injection rate (ii)) for
a transient gel and zoomed image of the oil/gel interface for (iii) low injection rate (iv)
high injection rate and (v) a jump from low to high rate is performed (v). The arrows in
(iii) and (iv) show the displacement field in the gel, as determined by image correlation
velocimetry. The scale bars are 6 mm [Foyart 2013].

of the two pieces of the samples (as shown in Figure 1.8). For low strain rates, the fila-
ment did not rupture, but instead, it pinched off through viscocapillary or elastocapillary
thinning after a considerable necking of the filament. Rupture of filaments of viscoelastic
fluids has been observed by different authors [Rothstein 2003, Bhardwaj 2007].

Figure 1.8: Time series of the rupture of a filament of gel stretched at a strain rate
ε̇ = 3 s−1 [Tripathi 2006].

The propagation of a crack in a millimeter filament occurs very rapidly and thus need
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a. b. 

c. 

Figure 1.9: (a) Sequence of images of the fall of a drop under gravity of a transient
network, (b) Zoomed images of the fracture that propagates across the sample, and (c)
Typical parabolic profile of the crack tip corresponding to images in (b). The black solid
line is a parabolic fit [Tabuteau 2009].

fast imaging to obtain time-resolved observations. With the advancement in high-speed
video technology, it is now easier to image the propagation of cracks in a filament. H.
Tabuteau [Tabuteau 2009, Tabuteau 2011] observed fracture in viscoelastic fluids using
very simple experimental configuration: a so-called pendant drop experiment. A millime-
ter size drop falls under its own weight forming a filament behind until a crack nucleates
in the filament that propagates perpendicular to it (Figure 1.9). The authors showed that
the fracture is purely elastic and reversible without any significant interfacial and bulk
viscous dissipation. However, they showed hyperelastic corrections have to be taken into
account for quantitative analysis of the crack profiles owing to the low elastic modulus of
the complex fluids under consideration.

In a controlled filament stretching configuration, Q. Huang et al [Huang 2016b] cou-
pled high-speed videography with an extensional rheometer. They performed a uniaxial
extension of polymeric liquid filaments. They observed multiple cracks that occur by an
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edge fracture that propagates perpendicular to the axes of filament thus breaking the
axis symmetry as shown in Figure 1.10. They showed that the fracture profile close to
the crack tip has a parabolic shape with a width z that scales as x1/2 (where x is the
distance from the crack tip) as expected for an elastic material, and further away the
profile is fitted by z ∼ x3/2 in agreement with viscoelastic trumpet model of de Gennes
[De Gennes 1996, Saulnier 2004]. Similarly, in an another recent experiment A. Shabbir
et al [Shabbir 2016] showed a fully elastic crack propagation in an associative polymer
filament demonstrated by a parabolic profile throughout the crack.

Figure 1.10: Time series of images of cracks propagating in a filament undergoing a
uniaxial extensional flow [Huang 2016b].

1.2.4 Objectives : Part II

With the coupling of a fast camera and an extensional rheometer, we will study the
extensional rheology and the rupture of double transient networks undergoing uniaxial
stretching. Our aim is to investigate the role of the sample structure on the process at
play.
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This chapter focuses on the experimental samples used. Methods and set-ups employed
to characterize the samples.

2.1 Experimental systems
Note: Appendix A contains the information for all the chemical constituents used for

the preparation of all samples.

2.1.1 Self-assembled transient networks

Complex materials that can spontaneously form three-dimensional networks in a sol-
vent and are able to transiently transmit elastic forces over macroscopic distance are
known as self-assembled transient networks. These networks consist of reversibly cross-
linked polymers. They exhibit simple rheological properties and are even able to fracture
[Ligoure 2013]. We have worked with two classes of self-assembled transient network:
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surfactant micelles and surfactant-stabilized oil droplets (microemulsions) suspended in
water and reversibly linked by home-synthesized triblock telechelic polymers.

A telechelic polymer has a poly(ethylene oxide)(PEO) hydrophillic backbone with
hydrophobic aliphatic chains grafted at both ends, CnH2n+1, where n = 12, 18 or 23.
The weight of the PEO block is 10, 000 gmol−1 or 35, 000 gmol−1. Using NMR, the
degree of substitution of hydroxyl group can be determined [Hartmann 1999], which is
greater than 98%. When a telechelic polymer is dispersed in water, telechelic chains
self-assemble and form flower-like micelles with the hydrophobic stickers gather together
forming a hydrophobic core. When a telechelic polymer is added to surfactant micelles, it
either decorates the micelles forming a loop or links two distinct micelles forming a bridge
as shown in Figure 2.1. Similarly, this also holds for surfactant stabilized oil-droplets in
water (microemulsions).

Figure 2.1: Schematic to show how telechelic polymer (hydrophilic chain in green and
hydrophobics stickers in orange) cross-links the two distinct micelles or decorate the
micelles by forming a loop.

2.1.1a Bridged microemulsion

Microemulsions are thermodynamically stable, transparent and homogeneous disper-
sions of oil droplets in water. We have used the same system of microemulsions as
investigated in [Filali 1999, Molino 1999], shown in Figure 2.2. Decane is used to swell
the droplets in brine (0.2 MNaCl) and surfactant cetylpyridinium chloride (CpCl) and co-
surfactant n-octanol are used for the stabilization of the droplets by forming a surfactant
film around the oil droplet. The radius of the droplet is equal to the spontaneous radius of
curvature of the surfactant film. This radius can be adjusted according to two parameters:

Ω =
mcosurfactant

msurfactant
and Γ =

moil

mcosurfactant +msurfactant

mcosurfactant, msurfactant and moil are the mass of cosurfactant, surfactant and oil respec-
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tively. In our experiments, Ω = 0.25 and Γ = 0.56 yielding stable microemulsions of
radius 6 nm [Filali 2001].

a. b. 

(i) 

(ii) 

Figure 2.2: (a) A schematic of oil in water microemulsions bridged by telechelic poly-
mers. (b) Phase diagram of microemulsion comprising telechelic polymer (i) C12 (ii) C18,
adapted from [Filali 2001].

To bridge the microemulsions, we have used telechelic polymers, with aliphatic chain
length C12 and C18. We can tune the mass fraction of the microemulsion, φ and the
average number of stickers per oil-droplet, r. The parameters φ and r are defined as:

φ =
mhydrophobic +moil

mtotal
and r =

number of polymer stickers
number of oil droplets

Here, mhydrophobic is the mass of the hydrophobic part of surfactant, cosurfactant and
telechelic polymer and moil is the mass of oil. For large range of φ and r, bridged
microemulsions are monophasic, but this monophasic range can be divided into two sub-
range depending on φ and r values. Figure 2.2b shows the phase diagram of microemul-
sions on addition of telechelic polymer as a function of φ the hydrophobic cores volume
fraction and r the number of stickers per droplet. Sol phase exists for the low φ and r
values and in this phase the samples flows easily. At high φ and r values, transient net-
work forms and the samples in this phase are viscoelastic. The two phases are separated
by the percolation line [Michel 2000, Filali 2001].
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Sample preparation: We have fixed the average number of telechelic stickers per
oil droplet, r = 4 and varied the mass fraction of oil droplets between 0.5 and 10%.
Surfactant, CpCl is added to 0.2 M brine (NaCl in Milli-Q water) and properly mixed.
Then octanol is added followed by decane. The mixture is swirled to ensure the proper
mixing of the constituents. The solution is then filtered using a 0.22 µm filter. Then, the
polymer is added to the filtered microemulsions. The mixture is stirred to obtain a one-
phase transparent mixture. Samples are then stored in thermostat cabinet maintained
at temperature 30◦C. The erioglaucine dye of concentration 2.5 g/l is also added to the
same samples for experimental study.

2.1.1b Bridged micelles

When surfactant molecules are added in the aqueous medium they tend to form ag-
gregates known as micelles by creating an environment where the tail groups sequester
in the interior, forming hydrophobic domains expelling most of the water. Head groups
constitute the outer layer in the aqueous medium. There exists a concentration of sur-
factant above which surfactant molecules form micelles, known as the critical micellar
concentration (CMC). Below CMC there are just free surfactant molecules in the aque-
ous medium. Shape and size of the micelles are controlled by the nature and size of
an amphiphilic molecule, temperature, salt concentration, type of salt and addition of
cosurfactant. Rehage and Hoffman, [Rehage 1988, Rehage 1991], showed that the shape
of the micelles can be tuned by the cosurfactant to surfactant ratio. This ratio acts as an
elongation factor for the micelles, allowing one to modify the surfactant aggregate from
spheres to rods to wormlike tubes as shown in Figure 2.3.

R  

Figure 2.3: Schematic to show the change of morphology of the micellar system on
varying the cosurfactant to surfactant ratio, R: spherical to rod-like to wormlike micelles.

Cetylpyridinium chloride (CpCl) is used as a cationic surfactant and sodium salicy-
late (NaSal) as a cosurfactant in brine (0.5 M NaCl) to form the micelles. Telechelic
polymer of carboxylic chain length C12, C18 and C23 are used to bridge the micelles.



2.1. Experimental systems 23

[Tixier 2010]. The structural properties of bridged micelles of different morphologies are
previously studied in our laboratory [Ramos 2011]. The samples are prepared by weight
and to tune the morphology of the system, three parameters are taken into consideration,
ϕ, mass fraction of the micelles, β, amount of polymer and R, cosurfactant to surfactant
ratio:

ϕ =
mCpCl +mNaSal

mtotal
, β =

mpolymer

mCpCl +mNaSal
and R =

nNaSal

nCpCl

Here, mCpCl, mNaSal, mtotal, mpolymer, nNaSal and nCpCl are respectively, the mass of
cetylpyridinium chloride, the mass of sodium salicylate, total mass of the sample, mass of
triblock telechelic polymers, the mole number of sodium salicylate and the mole number
of cetylpyridinium chloride in the mixture.

Similarly to bridged microemulsions (Section 2.1.1a) , a percolation threshold also
exists for the bridged micellar system. For spherical and short rodlike micelles bridged by
telechelic polymers, there exists a critical concentration of ϕ or β, above which a transient
network forms and behaves as a viscoelastic liquid, known as percolation threshold. For
long cylindrical micelles, the network is self-sustaining even at low ϕ and β [Tixier 2010]
and thus for the bridged wormlike micelles no such percolation exists.

Sample preparation: For sample preparation, we have fixed the mass fraction of
micelles ϕ = 10% and the amount of polymer β is varied between 0 and 55%. Surfactant
(CpCl) is added to 0.5 M brine (NaCl in Milli-Q water) and the mixture is stirred until
a clear homogeneous solution is obtained. The solution is filtered using a 0.22 µm filter.
Then, the polymer is added to the surfactant solution which is thoroughly mixed. The
cosurfactant is added after complete dissolution of the polymer in the surfactant solution.
The samples are stored in a thermostat cabinet maintained at temperature 30◦C. All the
samples prepared for the experiment are homogeneous and transparent.

2.1.2 Elastic beads

Polyacrylamide gels are prepared by copolymerization of acrylamide (monomer) and
N,N ′−methylenebisacrylamide (comonomer) in the presence of initiators in water. Tetram-
ethylenediamine (TEMED) and sodium persulfate are often used to initiate the radical
polymerization. TEMED is added to accelerate the production of free radicals from
sodium persulfate by a redox reaction. The free radicals of sodium persulfate so gener-
ated, in turn, facilitate free radicals of acrylamide monomer. This is the initiation process
which is followed by propagation, in which monomer radicals react with other monomers
which are not radicalized and bisacrylamide cross-links the chain of monomers. Figure
2.4 shows the polymerization of acrylamide.

There are many factors which can inhibit the polymerization process, like presence
of oxygen, impurities in monomer or comonomer. It is important to do the polymer-
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ization reaction in an inert atmosphere and saturate the solutions with inert gas before
commencing the polymerization reaction. Temperature also plays an important role, an
optimal temperature of 23− 25◦C is good for the polymerization reaction [Menter 2000].

+ 
TEMED 

Acrylamide 

Bis-acrylamide 

Sodium persulfate 

Polyacrylamide 

Figure 2.4: Polymerization reaction of acrylamide and bisacrylamide in presence of
sodium persulfate and TEMED as an initiator.

Sample preparation: Elastic beads are home-synthesized from the guidance of Ty
Phou. Elastic beads of fixed radius r = 1.85 mm are prepared. The polymerization
reaction is done in a nitrogen atmosphere. Prior to mixing the constituents, all the
solutions are saturated with nitrogen gas, to ensure the near insufficiency of oxygen.
To tune the elasticity, Table 2.1 lists the range of concentration for different chemical
constituents.

For a required elasticity of a polyacrlyamide gel bead, solutions of monomer and
comonomer are mixed in a beaker and then the TEMED and sodium persulfate are
added. The solution is quickly swirled and then 26.5 µl (corresponding to drop radius
1.85 mm) of the solution mixture is transferred immediately to various eppendorf tubes,
filled with poly(methylhydrosiloxane) oil. This oil has a density nearly equal to that of
water (1.006 g/ml at 25◦C) to support the floating drop. The remaining solution is left
in the beaker (sealed from top) for the polymerization to occur and then it is later used
to measure the elastic modulus.
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Chemical Constituents Concentration (g/l)

Acrylamide 28.80 - 46.03

Bis-acrylamide 0.186 - 0.373

Sodium Persulfate 0.93

Tetramethylenediamine 0.6

Table 2.1: Showing the range of concentration used for preparing polyacrylamide gel of
different elasticity.

Erioglaucine disodium salt (dye) is used to improve the contrast of the images cap-
tured during experiments. Figures 2.5a and 2.5b show an elastic bead (dyed) floating
in oil inside eppendorf and pinned to pipette tip in air, respectively. Time duration for
the polymerization to finish for two polyacrylamide gels is shown in Figure 2.5c. The
time for each polymerization to finish is approximately the same ( 80 mins) because the
concentration of the two initiators is fixed in our sample preparation.

1 10 100 1000

0.1

1

10

100

1000

 

 

 40 Pa

 340 Pa

G
' 
(P

a)

t (min)

a. b. c. 

Figure 2.5: (a) Elastic bead floating in eppendorf filled with oil. (b) Elastic bead (radius
r = 1.85 mm) of shear modulus G0 = 736 Pa, scale bar is 1 mm. (c) Time evolution of
shear modulus for a typical polymerization process to occur.

The elastic modulus is varied between 10 Pa and 740 Pa and overall 200 elastic beads
are prepared. We show in Figure 2.6 elastic beads of different elastic moduli placed
on a polypropylene sheet, under their own weight. Soft elastic beads deform more in
comparison to harder beads.
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Figure 2.6: Images of prepared elastic beads with different elastic modulus as indicated,
deposited on polypropylene sheet. The scale bars are 1 mm.

2.1.3 Newtonian fluids

Newtonian fluids are used to compare the experimental results with viscoelastic fluids
and elastic systems. (i) Glycerol-water mixtures of varying weight percent of glycerol in
water are prepared. The samples are eventually comprised of CpCl (5.88 mM) and 0.5

M NaCl. The equilibrium surface tension is measured using Wilhelmy plate tensiometer
(KSV NIMA). The surface tension data is plotted in Figure 2.7a as a function of wt% of
glycerol in water (with and without surfactant). The experimental data is comparable to
literature values for pure glycerol-water mixture [producers association 1963]. We show
in Figure 2.7b the evolution of zero-shear viscosity with wt% of glycerol in water. We have
also checked that the addition of CpCl and NaCl does not modify the sample viscosity.
The viscosity is varied between 1.8 mPa.s and 700 mPa.s. The measured experimental
values are comparable to literature values [Sheely 1932] as indicated by the black solid
line.

(ii) Ethanol-water mixtures are prepared with two different mole fractions of ethanol
0.033 and 0.17 having surface tension values (50.44±0.2) mN/m and (32.54±0.06) mN/m
respectively. The surface tension for the mixture is measured with a pendant drop ten-
siometer (SINTERFACE PAT-1M) and are comparable to literature values [Khattab 2012].
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Figure 2.7: (a) Surface tension for different weight percent of glycerol in water (with
and without surfactant). (b) Zero-shear viscosity for glycerol-water mixtures as function
of wt% of glycerol in water (with and without surfactant).

2.2 Rheological methods

Rheology is the most common measurement done to study the simple flows and de-
formation of materials. Rheology allows one to determine the physical properties of the
system such as viscosity, characteristic time, elastic modulus etc. There are two funda-
mental flows: shear flow and extensional flow.

In shear flow, fluid elements flow over or past each other under the action of force as
shown in Figure 2.8a. Consider two parallel plates separated by a gap h. When a force F
is applied on the top plate, it results in a deformation in the material between the plates.
Top plate is displaced by an amount ∆x. Thus, shear stress is defined as σ = F/A and
the shear strain as γ = ∆x/h. The velocity gradient in direction perpendicular to the

flow is called the shear rate γ̇ = Vx/h (γ̇ =
1

h

∆x

∆t
). Vx is the velocity in direction of force

applied. For a constant shear rate, the fluid elements are separated linearly in time. For
the elastic solid shear stress is proportional to shear strain (σ = Gγ) and the constant
of proportionality is known as shear modulus (G). For viscous materials, shear stress is
proportional to shear rate (σ = ηγ̇) and the constant of proportionality is called viscosity
(η).

In the case of an extensional flow, the fluid elements either flow towards each other
or away from each other as shown in Figure 2.9a. Figure 2.9b shows the schematic of
a cylinder undergoing uniaxial extensional flow due to the force applied in a direction
perpendicular to the face of cylinder. The strain rate in this case is defined as ε̇ = dε/dt

and dε is the differential strain of the sample (dε = dl/l). Hence, one can deduce that the
fluid elements are separated exponentially in time for the material undergoing extensional
deformation (l = loe

ε̇t) at a constant strain rate. This shows that the material undergoes
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Figure 2.8: (a) Simple shear flow to show the effect on fluid elements when subjected
to a force, adapted from [Barnes 2000]. (b) Schematic showing the deformation in the
material when the force (F ) is applied on top plate.

much stronger deformation in an extensional flow compared to shear deformation.
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Figure 2.9: (a) Simple extensional flow to show the effect on particles when subjected
to a force adapted from [Barnes 2000]. (b) Schematic showing the uniaxial extension in
the case of a cylindrical material, when the force (F ) is applied from one side.

Rheometers are used to study the rheological properties of materials. Example for a
strain controlled rheometer equipped with simple flow geometries, the material undergoes
deformation and corresponding resulting stress is measured to understand the nature of
the material.

2.2.1 Shear rheological measurements

Shear rheology is performed to investigate the sample viscoelasticity. Two rheome-
ters have been used, a strain-controlled rheometer (Ares from TA instrument) and a
stress-controlled rheometer (MCR 502 from Anton-Paar), both equipped with a Couette
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geometry. Initial measurements are performed with ARES TA instrument. Due to some
technical problem with the rheometer, we had later on switch to MCR-502 Anton-Paar
to carry forward the rheological measurements.

To understand the mechanical behavior of viscoelastic fluids, frequency sweep has
been performed in the linear regime. In an oscillatory measurement, a sinusoidal shear
deformation (γ(t) = γ0sin(ωt)) is imposed on the sample and the resultant stress response
of viscoelastic material is measured as σ(t) = G′(ω)γ0sin(ωt) + G′′(ω)γ0cos(ωt). The
measurement is done as a function of pulsation ω because the material can behave as
elastic solid or viscous liquid depending on the time scale at which it is probed. Storage
(G′) and loss (G′′) moduli are measured with frequency ω in the range (0.1 - 100 rad/s)
for a fixed amplitude strain γo = 10%. G′ is associated with a solid-like response while
G′′ with a liquid-like response of the material. Frequency dependence moduli of the
viscoelastic samples are fitted using Maxwell models. Depending on the experimental
system one mode or two mode Maxwell model is used to fit the data.

For bridged spherical micelles and microemulsions, frequency sweep data is fitted by
a one mode Maxwell model:

G′(ω) =
G0(ωτ)2

1 + (ωτ)2 (2.1)

G′′(ω) =
G0(ωτ)

1 + (ωτ)2 (2.2)

Here G0 is the shear modulus and τ is the characteristics time.

Figure 2.10a shows the frequency dependence G′ and G′′ together with the fit of G′ and
G′′ from one mode Maxwell model for a C18-bridged microemulsion (φ = 3% and r = 4).
Independent fits of G′ and G′′ using Equation 2.1 and 2.2 yields: G0 = (43.03± 1.1) Pa,
τ = (0.46 ± 0.02) s (from G′), and G0 = (40.52 ± 0.34) Pa, τ = (0.52 ± 0.01) s (from
G′′). The fact that independent fitting of the storage and the loss moduli give equal
values within 3% shows the good quality of the fits. There are some samples for which
data at frequencies larger than the inverse of the relaxation time are not experimentally
accessible. In that case, the Maxwell model can be approximated as G′(ω) ≈ G0(ωτ)2

and G′′(ω) ≈ G0(ωτ). From the independent fitting of G′ and G′′ one can determine G0

and τ . We show a plot in Figure 2.10b for a C18-bridged micellar system (ϕ = 10% and
β = 24.64%), for which we find: G0 = (335± 4.8) Pa, τ = (2.8± 0.03) ms.

For entangled micellar systems, the two mode Maxwell model is used to fit the fre-
quency sweep data and G′(ω) and G′′(ω) are defined as:

G′(ω) =
Gslow(ωτslow)2

1 + (ωτslow)2 +
Gfast(ωτfast)

2

1 + (ωτfast)
2 (2.3)
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Figure 2.10: G′ and G′′ moduli dependence with the frequency, ω for (a) C18-bridged
microemulsion (φ = 3.0% and r = 4) and (b) C18-bridged spherical Micelles (ϕ = 10%

and β = 24.64%). Symbols are the experimental data points and lines are fits with one
mode Maxwell model (Equation 2.1 and 2.2).

G′′(ω) =
Gslow(ωτslow)

1 + (ωτslow)2 +
Gfast(ωτfast)

1 + (ωτfast)
2 (2.4)

Here, Gfast and Gslow are the elastic plateau modulus of fast and slow mode, τfast and
τslow are the relaxation time of fast and slow mode respectively. Elastic plateau modulus
is the sum of fast and slow mode elastic modulus, G0 = Gslow +Gfast. The slow mode is
associated with the transient network of entangled micelles and the fast mode with the
network of telechelic polymer bridging the micelles [Nakaya-Yaegashi 2008].

Figure 2.11 shows the frequency dependence of G′ and G′′ moduli (symbols) together
with the fit of G′ and G′′ with a two mode Maxwell model (lines) for C23-bridged wormlike
micelles (ϕ = 10% and β = 5%). Independent fit of G′ and G′′ gives: Gslow = (220.03±
7.08) Pa, Gfast = (294.32±7.7) Pa, τslow = (1.7±0.09) s, τfast = (0.076±0.003) s (from G′,
Equation 2.3) and Gslow = (214.7± 2.5) Pa, Gfast = (289.7± 3.5) Pa, τslow = (1.92± 0.03)

s, τfast = (0.095± 0.003) s (from G”, Equation 2.4). This gives G0 = (509.37± 14.26) Pa.

For all the viscoelastic systems (self-assembled transient networks) and Newtonian
fluids, zero shear viscosity η0 is measured. Ramp of shear rate is applied in the range
(0.01− 100 s−1) and corresponding shear stress and viscosity are measured. Figure 2.12
shows the flow curve for two systems: C18-bridged micelles (ϕ = 10% and β = 25%) and
C18-bridged microemulsion (φ = 2% and r = 4).
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Figure 2.11: Frequency sweep data of C23-bridged wormlike micelles (ϕ = 10% and
β = 5%). Symbols are the experimental data points and lines are fits from two mode
Maxwell model (Equation 2.3 and 2.4).
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Figure 2.12: Flow curves, steady state viscosity vs shear rate, for a C18-bridged micelle
(ϕ = 10% and β = 25%) and a C18-microemulsion (φ = 2% and r = 4).
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2.2.2 Extensional rheology measurements and imaging

To study the transient stress growth coefficient of viscoelastic fluids under the exten-
sional deformation flow field, VADER 1000 (Versatile accurate deformation extensional
rheometer) from Rheo Filament ApS [Huang 2016b] is used. These experiments are
performed in Technical University of Denmark (DTU) in collaboration with Prof. Ole
Hassager.

First, pure extensional rheological measurements are performed on VADER 1000. The
sample is put in between the two cylindrical stainless steel plates of identical diameters
(6 mm, 9 mm) aligned vertically (Figure 2.13).

Figure 2.13: Schematic to show (a) when the sample is between the two cylindrical
plates and (b) stretched filament. Diameter in time is recorded at mid-filament using
laser micrometer.

The Hencky strain is defined as: ε = −2ln(D(t)/Do), D(t) is the mid-filament di-
ameter measured at time (t) and Do is the initial diameter. A laser micrometer is used
to measure the diameter during the stretching. The motion of top plate is governed by
a control loop scheme, with an active feedback control, to ensure the constant Hencky
strain rate, ε̇ = (dε/dt) [Marín 2013]. This administers the uniaxial stretching at the
mid-filament plane.

Transient stress growth coefficient, η+
E [Barnes 1989] was calculated from the mean

stress difference at the mid-plane filament.

η+
E =

< σzz − σrr >
ε̇

=
F (t)

(π/4)D(t)2ε̇
(2.5)

The different strain rates are applied to measure the response of viscoelastic material in
viscous and elastic regimes. All the experiments are performed at ambient temperature,
25◦C. Figure 2.14 shows the transient stress growth coefficient as a function of time for
the C23-bridged wormlike micelles (ϕ = 10% and β = 5%) at different strain rates along
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with the linear viscoelastic envelope (LVE). LVE is calculated from the Maxwell model
fit parameters of the oscillatory shear measurement. For a Maxwell model with i modes,
extensional stress growth coefficient is given as:

η+
E = 3

∑
i

Giτi(1− exp(−t/τi)) (2.6)

Here, Gi and τi are the elastic modulus and characteristic time for the i Maxwell mode.
Strain hardening is observed for this sample, characterized by an abrupt increase of η+

E

as compared to LVE.
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Figure 2.14: Growth of η+

E in time for different Hencky strain rates as indicated in
the legend for C23-bridged wormlike micelles (ϕ = 10% and β = 5%). Symbols are data
points obtained from extensional experiment and line shows the LVE calculated from
Maxwell model parameters (Equation 2.6).

The measurements performed in control loop with a laser micrometer for constant
strain rates are used to calculate feedforward control parameters [Marín 2013]. These
parameters define the kinematic trajectory of the top plate during stretching. This is
done because the laser micrometer cannot be used while doing imaging of a stretching
filament. High-speed camera Photron Mini UX100 is coupled with VADER 1000 for the
image acquisition [Shabbir 2016]. Time series of filament stretching is recorded at the
operating setting of 5000 frames/s at the resolution of 1280 × 1000 pixel2. Figure 2.15
shows the time series of images of the filament undergoing stretching.
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Figure 2.15: Stretching of a filament in time at Hencky strain rate 1 s−1 for pure
wormlike micelles (ϕ = 10%). The scale bar are 1 mm.

2.2.3 Measurement of the elastic modulus of elastic beads

In this section, we present a method to determine the shear modulus G0 of very soft
elastic gels. This method has been developed in the lab by Jean-Marc Fromental and
Serge Mora. A scheme of the set-up is shown in Figure 2.16.

dp 

dp 

Figure 2.16: A container is partially filled with a gel with shear modulus G0 and the
gel is covered with a liquid. A rigid sphere indents the initially horizontal surface of the
gel. The penetration depth of the sphere below the gel surface is dp, and the (vertical)
force applied to the sphere is F .

The horizontal surface of the gel is covered by the gel’s solvent of density ρfluid, and a
centimetric sphere of radius R indents gradually the surface of the gel. A thin rod is fixed
perpendicular to the surface of the rigid sphere. The sphere is first completely immersed
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in the liquid and then gradually pushed down. Note that the vertical rod supporting
the sphere is assumed to be thin enough so that excess buoyancy due to the change in
the immersed volume is negligible. The force F exerted on the rod in order to drive the
motion of the sphere is measured. F is constant until the bottom of the sphere reaches
the surface of the gel. Let F0 be the value of this constant force. An additional downward
vertical displacement of the sphere requires a deformation of the gel surface. The force
F then increases.

The effects of gravity, surface energies, and adhesion forces are physically removed
by the solvent so that the unique remaining force is the elastic one, which can thus be
precisely measured.

Let dp be penetration depth of the sphere below the initial location of the gel-fluid
interface. We consider quasi-static states (so that the kinetic energy is negligible) and
we take the configuration with an unstressed gel as a reference. Following the arguments
of Hertz theory, the radius a of the contact area is of the order

√
Rdp. In the absence of

any significant disturbance, the solution provided by Hertz [Hertz 1895, Johnson 1987]
for the contact of a rigid sphere in an elastic half-space applies.

For dp < 0, the sphere is completely immersed in fluid,

F = F0 =
4π

3
R3(ρfluid − ρsphere)g (2.7)

When the sphere is in contact with the gel (dp > 0). The relationship between the
indentation depth and the normal force is given by:

F =
16

3
G0R

1/2dp
3/2 + F0 for dp > 0. (2.8)

The experimental protocol follows directly from Equation 2.8. The force F0 is measured
by a force sensor before the sphere has reached the surface of the gel (dp < 0). Then,
the unique remaining parameter in Equation 2.8 to be fitted with the experimental data
points for dp > 0 is G0.

As an example we show in Figure 2.17 the force F applied to the vertical rod holding
the sphere as a function of the vertical displacement of the sphere. We measure a constant
force F0 prior the contact (F = F0), and a supplementary force (F − F0) that increases
as dp3/2 beyond the contact point (i.e. for dp > 0), in agreement with Equation 2.8.
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G0 

G0 

Figure 2.17: Indentation force F − F0 as a function of the penetration depth for two
different gels. The lines are fits of the experimental data with Equation 2.8, with F0 and
G0 as fitting parameters.

2.3 Experimental set-ups

This section focuses on two experimental set-ups that have been used and developed
to investigate the impact dynamics of thin sheets.

2.3.1 Drop impact on a small target

The experimental set-up used to study the impact of a liquid drop on a small cylindri-
cal target has been originally designed by Vignes-Adler et al. [Rozhkov 2002]. Schematic
of the set-up is shown in Figure 2.18.

A hydrophilic target of diameter, dt = 6 mm is made from aluminum and a glass
lamella is affixed on top of the cylinder. The solid target is conjoined with a coaxial
cylinder [Villermaux 2011] to keep the ejection angle of the sheet to 90 degree with
respect to the solid target. The liquid drop is injected from a syringe pump through a
needle placed vertically above the target. The size of the falling droplets is dictated by
the inner diameter of the syringe and the equilibrium surface tension of the samples. In
order to maintain a constant droplet size, needles with different diameters are used to
account for the various equilibrium surface tension of the samples.

A vertical tube is integrated into the set-up which is held between the needle and
slightly above the target to lessen the effects of air currents. The target is fixed on
transparent plexiglass plate, illuminated from below by a high-luminosity backlight (Phlox
LLUB, luminance of 19, 842 cd/m2). Time series are recorded after the impact of the
drop using a high-speed camera (Phantom V 7.3) operated at 6700 frames/s and resolution
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a. b. 

c. 

Figure 2.18: (a) Schematic to show the experimental set-up. (b) and (c) Maximum
expansion of a liquid sheet from the top and side view for pure water with do = 3.7 mm
and vo = 4 m/s. The scale bars are 6 mm

800 × 600 pixels2. Figure 2.19 shows the time evolution of a liquid sheet produced by the
impact of a water drop. After the drop impact, a liquid sheet freely expands in air. The
sheet is bounded by the thicker rim that destabilizes into ligaments, which subsequently
disintegrates into secondary drops. The sheet then retracts back due to surface tension.

1.29 ms 2.46 ms 7.16 ms 4.81 ms 

Figure 2.19: Time series of the liquid sheet produced by the impact of water drop.
Time instant is indicated in the images. The target (black disk) of diameter 6 mm sets
the scale.

To measure the impact velocity, vo and to ensure the flatness of the sheet, side view
imaging is also done. The experimental values are comparable to the theoretical values
(within 7% error) calculated using the relation, v =

√
2ghn, where g is the acceleration

due to gravity and hn is the height of the needle from the target. We used this theoretical
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relation with the assumption of free fall and negligible air friction. vo is varied from 4.3

m/s to 1.3 m/s and hn between 111 cm and 11 cm respectively.
There is a finite possibility of rupture of an expanding sheet (dewetting) at a solid-

liquid interface. To suppress the dewetting, glass disc is treated with a plasma gun
(Corona Surface Treater, Electro-Technic products) to facilitate the hydrophilicity to
ensure the wetting on the glass lamella [Vernay 2015a].

2.3.2 Drop impact using an inverse Leidenfrost effect

To substantially eliminate the role of a solid surface on the dynamics of liquid sheet, we
have designed an experimental set-up based on inverse Leidenfrost phenomenon [Hall 1969].
Leidenfrost effect was first reported in 1756 [Leidenfrost 1756]. In a Leidenfrost phe-
nomenon, when a liquid drop at ambient temperature comes in contact with a hot sur-
face, having a temperature much higher than the boiling point of the drop, a vapor layer
is formed. This layer thermally insulates the drop from evaporating instantly, instead,
it levitates on its own vapor cushion. There is a critical temperature above which this
phenomenon is observed known as Leidenfrost temperature. This temperature depends
on the nature of the substrate, the physical properties of droplet under study, the impact
velocity, the atmospheric pressure and presence of impurities. It is, therefore difficult to
realize this temperature for several experimental systems. For our experimental study, we
have instead worked with inverse Leidenfrost configuration. This is achieved by impact-
ing a drop at ambient temperature on a silicon wafer covered with a thin layer of liquid
nitrogen at T = −196◦C. At the impact of drop (relatively hotter than liquid nitrogen),
local vapor cushion forms at the liquid-surface interface due to the evaporation of liquid
N2. This vapor layer thermally insulates the droplet from freezing instantly, proving a
unique scenario of nonwetting and slip conditions which decreases the viscous dissipation
[Antonini 2013].

Figure 2.20 represents a schematic diagram of the experimental set-up. Expanded
polystyrene is used to make a box of dimension 35 cm × 35 cm which acts as a liquid
nitrogen bath. Plexiglass is used to cover the box, to form an enclosed chamber to mini-
mize the boiling of liquid nitrogen by homogenizing the environment inside the chamber
with N2 gas, to minimize the humidity and to protect against the air currents. Polished
Silicon wafer (Si-Mat silicon materials) is used as a solid substrate for the impact of liq-
uid drops and elastic beads. The level of liquid N2 is maintained in the bath below the
silicon wafer to avoid the boiling droplets of liquid N2 to hover on the surface. Due to
the very low temperature of a silicon wafer, frosting occurs on its surface. To limit this
from interfering with the impact of a liquid drop or elastic bead, two holes are pierced in
the polystyrene to make inlets for compressed N2 gas and liquid N2. Before each impact
of a liquid drop or an elastic bead, the silicon wafer is cleaned by blowing the compressed
N2 gas and then a finite layer of liquid N2 is deposited.

The liquid drops or elastic beads are ejected from a needle placed above the silicon
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a. b. 
i 

ii 

Figure 2.20: (a) Illustration of the experimental set-up, and (b) snapshots of sheet
produced with (i) liquid, ethanol-water mixture (surface tension 50 mN/m) and (ii) solid,
elastic bead (elastic modulus G0 = 118 Pa). The scale bars are 6 mm.

wafer. The needle is fixed on a movable cylindrical tube to change the distance between
the substrate and needle, thus varying the impact velocity. Liquid drops are injected from
a syringe pump through the needle. The fixed diameter of the falling drop is maintained
as explained above (section 2.3.1). In the case of elastic beads, a needle (narrow tip) is
attached to a syringe via a flexible tube. The bead is pinned at the needle by gently
sucking air. On ceasing the suction, the bead is released. To record the time series of
images, a fast camera (Phantom V7.3) is used with operating setting of 6700 frames/s
and with the resolution of 800 pixels × 600 pixels. High-intensity backlights (Phlox HSC,
luminance of 98, 203 cd/m2 and Phlox LLUB, luminance of 19, 842 cd/m2) are used to
properly illuminate the chamber for image acquisition. Side view imaging is also done
to measure the impact velocities, and later are compared with the theoretical relation,
v =
√

2ghn.

Experimentally, one cannot completely prevent the evaporation of liquid nitrogen,
but it can be slowed down to a point where the experiments (that lasts a few ms) can
safely be performed on a finite thin layer of liquid N2. Visually, it is easy to follow
the evaporation front as shown in Figure 2.21a where the arrow guides the direction of
evaporation. In addition, we have tried to minimize the crown formation due to the splash
of liquid N2 upon impact of a liquid drop or elastic bead, owing to low surface tension
8.9 mN/m of liquid nitrogen. The liquid drop or elastic beads are impacted just at the
onset of evaporation of liquid nitrogen from the silicon wafer. Each distinct sample of
elastic bead or liquid drop impact is repeated 5 times to ensure the reproducibility of the
measurements. Figure 2.21b shows the maximum expansion of a liquid sheet produced by
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a. b. c. 

Figure 2.21: Images showing the effect of liquid nitrogen on the maximum expansion
of a liquid drop. (a) Arrow showing the evaporation front of liquid nitrogen. (b) and (c)
Images showing the maximum diameter of glycerol-water mixture (zero-shear viscosity
227 mPa.s) on cold surface of silicon wafer without liquid nitrogen and in presence of
liquid nitrogen layer. The scale bars are 6 mm.

the glycerol-water mixture in the presence of liquid nitrogen and devoid of liquid nitrogen.

2.4 Image analysis
This section describes the techniques used to quantitatively analyze images obtained

from different experiments using a fast camera.

(i) For the experiments done using the set-up of "Drop impact on a small target"
(section 2.3.1) time series of the liquid sheet (formation, expansion, and retraction) is
recorded. Image J software is used to compute the time-evolution of the sheet diameter.
As shown in Figure 2.22a, the contour of the sheet is determined by thresholding the
images (filaments are also taken into account), and using Wand (Tracing) tool, the sheet
area A is measured, from which an effective diameter of the liquid sheet is deduced using
the simple geometric relation, d =

√
4A/π. Figure 2.22b shows the diameter of liquid

sheet calculated for the whole process of expansion and retraction. Diameter (d) of a
liquid sheet is plotted as a function of time (t). For the pure water sample shown here,
the sheet reaches its maximal expansion, dmax = 21.03 mm, at time tmax = 4.82 ms.

For the drop impact experiments performed using inverse Leidenfrost effect (section
2.3.2), the contour of the sheet is manually picked and the area of the sheet is measured
to calculate the effective diameter, due to the insufficiency of the contrast to perform
automatic thresholding.

(ii) To study the heterogeneity in the sheet, erioglaucine disodium salt (dye) is used
in the preparation of samples. Variation of intensity in time is evaluated by choosing four
ROIs of equal area, 5 mm2 at fixed position in the sheet. The mean intensity (I) and
standard deviation ∆I are measured in time for each ROI as shown in Figure 2.23. The
coefficient of variation (∆I/I) is calculated to study the relative magnitude of standard
deviation in time. Figure 2.24 shows the time evolution of coefficient of variation of
intensity for liquid sheet produced from the impact of a water drop. The empty symbols



2.4. Image analysis 41

0 2 4 6 8 10
0

5

10

15

20

  

 

d
 (

m
m

)

t (ms)

a. b. 

Figure 2.22: (a) Maximum diameter of the sheet for water on thresholding to calculate
the area of the sheet by picking the contour of sheet by the Image J wand tool. (b) Time
evolution of the sheet diameter for pure water. Images of the liquid sheet at different
times are shown in the inset. The target (black disk) of diameter 6 mm sets the scale.

shows the variation from four different ROIs and black solid line shows the averaging
done in time over the four ROIs.

Figure 2.23: Time evolution of the liquid sheet produced with the water (dye). Four
ROIs are marked at fixed points in the sheet. The target (black disc) of diameter 6 mm
sets the scale.

In addition, to compare the data at maximum expansion of the sheet for different
samples, manual outline (in black) is sketched to cover the whole sheet area as shown
in Figure 2.25. The mean intensity and standard deviation are noted for the sketched
region (in green), excluding the rim and area around the solid target.

(iii) Images of a filament of viscoelastic samples stretched using the extensional
rheometer (section 2.2.2) are analyzed using Matlab. To quantify a crack, a Matlab
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Figure 2.24: Time evolution of coefficient of variation (∆I/I) of the intensity for a
liquid sheet generated by the impact of water drop. The symbols show the data from the
four different ROIs and black solid line shows the average ∆I/I over four ROIs.

Figure 2.25: Maximum expansion of the sheet produced with a C18-bridged microemul-
sion (φ = 2.75% and r = 4). Mean intensity and standard deviation are measured over
the entire sheet area shown by marked green lines.
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code is developed to pick the coordinates which outline the crack as shown in Figure
2.26. Matlab code is based on intensity cut-off value, which allows one to pick intensity
values on the periphery of the fracture. This allows one to compute the corresponding
position coordinates and the vertex of the crack tip.

Figure 2.26: Crack profile of bridged wormlike micelles (ϕ = 10% and β = 15%) (left)
and the coordinates picked by the Matlab program (shown in red) to outline the crack
profile (right). The scale bars are 1 mm.
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In this chapter, the dynamics of freely expanding liquid sheets prepared with fluids with
different rheological properties has been investigated, (i) viscous fluids with a zero-shear
viscosity η0 in the range (1−1000) mPa.s and (ii) viscoelastic fluids whose linear viscoelas-
tic behavior in the frequency range (0.1− 100) rad/s can be accounted by a Maxwell fluid
model with characteristic elastic modulus G0, relaxation time τ , and zero-shear viscosity
η0 = G0τ , which can be tuned over several orders of magnitude. The sheets are produced
by impacting a drop of fluid on a small cylindrical solid target. For viscoelastic fluids,
we show that when τ is shorter than the typical lifetime of the sheet (τlife ∼ 10 ms), the
dynamics of the sheet is similar to that of Newtonian viscous liquids with equal zero-shear
viscosity. In that case, for less viscous samples (η0 . 30 mPa.s), the maximum expansion
of the sheet, dmax, is independent of η0, whereas for more viscous samples, dmax decreases
as η0 increases. We provide a simple model to account for the dependence of the maximal
expansion of the sheet with the viscosity that is based on an energy balance between iner-
tia, surface tension, and viscous shear dissipation on the solid target, and which accounts
well for our experimental data. By contrast, when τ is longer than the typical lifetime
of the sheet, the behavior drastically differs. The sheet expansion is strongly enhanced
as compared to that of viscous samples with comparable zero-shear viscosity, but is het-
erogeneous with the occurrence of cracks, revealing the elastic nature of the viscoelastic
fluid.

Most of the content of this chapter has been published in [Arora 2016]
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3.1 Experimental samples and techniques
Two classes of self-assembled transient networks have been used: surfactant micelles

(spherical micelles) and surfactant stabilized oil droplets (microemulsions) suspended in
water and reversibly linked by telechelic polymer. Telechelic polymers used for bridging
the two classes of self-assembled transient networks consist of PEO block of weight 35

kg/mol with the aliphatic chain length, Cn with n = 12 or n = 18. To compare the
experimental results obtained from self-assembled transient networks, tests with Newto-
nian glycerol-water mixtures are also performed. A glycerol-water mixture comprising
of surfactant, CpCl (5.88 M) and NaCl (0.5 M) is used to see the effect of surface ten-
sion. Table 3.1 shows the range of composition used for the preparation of samples. The
samples are prepared by weight.

Experimental Samples Experimental parameters

Bridged Micelles
mass fraction of micelles, ϕ = 10%

polymer concentration, β : 0%− 50%

Bridged Microemulsions
average number of telechelic stickers per droplet, r = 4

mass fraction of oil droplets, φ = 0.5%− 10%

Glycerol/Water (with and
without surfactant)

weight fraction of glycerol: 0%− 97.5%

Table 3.1: Showing composition for different classes of the samples.

Shear rheology is used to investigate the sample viscoelasticity and viscosity as ex-
plained in Chapter 2 (section 2.2.1). Thin sheets freely expanding in the air are produced
by impacting a single drop of fluid on a solid target as explained in section 2.3.1 and the
techniques used for image analysis are described in section 2.4.

3.2 Linear viscoelasticity
The sample composition is varied in order to tune the sample viscoelasticity. Our

objective is to produce viscoelastic samples with relatively low zero shear viscosity so
that drops can be produced and impacted on the target. As shown previously for similar
systems [Michel 2000, Tixier 2010] the experimental samples investigated here (spheri-
cal micelles and microemulsion reversibly linked by telechelic polymers) behave as purely
viscous liquids below a percolation threshold and exhibit viscoelasticity above the thresh-
old. In contrast to previous investigations [Tabuteau 2009, Tixier 2010, Tabuteau 2011],
we here focus on the region of the phase-diagram close above the percolation threshold.
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Samples above the percolation threshold behave as Maxwell fluids and are characterized
by an elastic shear plateau modulus, G0, and a characteristic relaxation time, τ . These
parameters are determined by fitting the frequency-dependent moduli of the samples
with the Maxwell model. Here, one varies the formulation, i.e. the mass fraction of oil
droplets, φ, for the emulsion-based samples, and the amount of telechelic polymers, β,
for the micelle-based samples, in order to approach the percolation threshold where G0

and τ vanish critically. One defines ε as the normalized distance from the percolation
threshold: ε = β−βc

βc
for the micelle-based samples and ε = φ−φc

φc
for the oil droplets-based

samples.
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Figure 3.1: (a) Elastic shear plateau modulus and (b) characteristic relaxation time of
viscoelastic samples as a function of the distance from the percolation threshold. Symbols
are data points and the lines are power law fits of the experimental data.
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Figure 3.1a shows the evolution of the shear elastic plateau modulus with ε for the
four classes of samples (spherical micelle and microemulsion comprising telechelic poly-
mers with C18- and C12-long hydrophobic stickers). In all cases, close to the percolation
threshold, the evolution of the elastic modulus with the distance from the percolation
threshold can be approximated by a power law fit: G0 = Aεp [Tixier 2010]. Numerical
values of the percolation thresholds, and of the exponent p, as derived from a power
law fit of the data, are given in Table 3.2. Notably, we found for each class of samples
(micelle-based and microemulsion-based networks) comparable values for the percolation
threshold and for the exponent, p, which are found independent of the telechelic polymer
used.

Sample φc(%) βc(%) p

Micelles C18 13.5 1.76
Micelles C12 11.5 1.76

Microemulsion C18 1.8 1.28
Microemulsion C12 2.2 1.37

Table 3.2: Percolation thresholds and critical exponents of the shear plateau moduli for
the four classes of transient networks.

On the other hand, the characteristic relaxation times τ strongly varies, as shown in
Figure 3.1b, where the evolution of τ with ε is plotted for the four classes of samples
investigated. Indeed, changing the length of the hydrophobic carboxylic stickers leads to
a change of the average residence time of the stickers in the micelles and oil droplets,
implying, in turn, modification of the characteristic viscoelastic relaxation times. We
note that the relaxation times for the C18-microemulsion-based samples are systemati-
cally about two orders of magnitude larger than those for the C18-micelle-based samples.
Using the four classes of samples, one therefore has access to viscoelastic samples whose
relaxation times span almost three orders of magnitude (from 1 ms to 880 ms). The
zero-shear viscosity, η0, of the samples, below and above the percolation threshold (above
percolation threshold, η0 = G0× τ) is plotted in Figure 3.2. Below percolation threshold
(ε < 0), the viscosity of the C12- and C18-based samples are roughly equal, and weakly
increases with ε. Above percolation threshold, η0 increases more sharply with ε, and, as
expected, the viscosity of the C12- and the C18-based samples strongly differ. Overall the
zero-shear viscosity spans more than 6 orders of magnitude, from viscosity close to the
one of water (0.0012 Pa.s) to 307 Pa.s.

Notably, Maxwell fluids that display the same zero-shear viscosity but with drastically
different characteristic relaxation time are available, allowing one to decouple the effect
of viscosity and of elasticity in the processes at play in the dynamics of freely expanding
sheets. For the Newtonian fluids, zero-shear viscosity varies between 1.8 mPa.s and 700

mPa.s, the addition of CpCl and NaCl does not modify the sample viscosity.
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Figure 3.2: Zero-shear viscosity of viscoelastic samples as a function of the distance
from the percolation threshold. Symbols are the same as in Figure 3.1

3.3 Dynamics of viscous and viscoelastic sheets
For viscoelastic fluids, a relevant parameter is the Deborah number, De, defined as

the ratio between the characteristic relaxation time of the viscoelastic samples and the
lifetime of the sheet (typically 10 ms). From the viscoelasticity measurements (Figure
3.1b), one deduces that the only class of samples for which De is significantly larger than
1 is the microemulsions linked by C18 telechelic polymers. For the C18-based micelles,
De ∼= 1, whereas for the C12-based samples, De� 1.

3.3.1 Dynamics of liquid sheets: De� 1

3.3.1a Experimental observations

Figure 3.3 displays a series of images of sheets produced by impacting drops of New-
tonian fluids of various viscosities (mixtures of water and glycerol and a micellar system).
It qualitatively shows that with the increase in the zero shear viscosity, maximum expan-
sion of the sheet decreases. At the same time, ejection of secondary droplets from the
rupture of ligaments decreases and ceases above η0 ' 100 mPa.s.

In Figure 3.4 we show the time evolution of the effective sheet diameter for samples
with various zero-shear viscosity, η0. For the sake of clarity, we have only shown data
for glycerol/water mixtures and C12 based micellar system. The two sets of data display
similar features. As η0 increases, the sheet expands less: the maximum diameter dmax is
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Figure 3.3: Snapshots of (a) viscous sheets made of water/glycerol mixtures and (b)
sheets made of C12-based micellar system, of various zero-shear viscosities as indicated.
In (b), the sample with the lowest viscosity η0 = 3.1 mPa.s is viscous and the two other
samples are viscoelastic. Images are taken at the maximal expansion of the sheets.

smaller and is reached earlier.
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Figure 3.4: Time evolution of the sheet diameter for (a) glycerol/water mixtures and
(b) C12 based micellar system of various viscosities as indicated in the legend. Half filled
symbols are representing the viscoelastic samples.

We quantify how the maximum expansion depends on viscosity and plot in Figure
3.5 the maximal diameter normalized by its value at small viscosity (the inviscid case),
d̃ = dmax

dmax(η0→0)
as a function of the zero-shear viscosity (bottom x-axis). We find that the

maximal diameter is constant dmax = (21.2± 1.2) mm, and independent of the viscosity
for η0 ≤ ηc ∼ 30 mPa.s, and then continuously decreases with η0. We notice that, in
the viscosity regime where the sheet dynamics is affected by the viscosity (η0 > ηc),
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volume loss due to ejection of secondary droplets is negligible. The evolution of the
normalized maximal expansion diameter, d̃, with the viscosity, η0, for the C12-based
micelles and microemulsions superimposes quite well over the whole range of viscosity
investigated with the data acquired for water/glycerol mixtures. These samples, although
being viscoelastic, behave as purely viscous samples. This is shown qualitatively in the
images displayed in Figure 3.3b taken at the maximal expansion of sheets produced with
C12-based micelles, and more quantitatively in Figure 3.5.
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Figure 3.5: Maximum diameter (normalized by its value at low viscosity), as a function
of zero-shear viscosity (bottom x axis) and Ohnesorge number (top x axis).

We note that data obtained for pure water/glycerol mixtures and for water/glycerol
mixtures containing surfactant and salt perfectly collapse over the whole range of viscosity
investigated. The two classes of mixtures differ by their equilibrium surface tension:
γ = (66.9 ± 3.4) mN.m−1 for pure water/glycerol and γ = (38.5 ± 2.0) mN.m−1 for the
mixtures with CpCl and NaCl. Because of this difference, the diameter of the needle
used to dispense the drops has been modified in order to obtain droplets of equal size
for all water/glycerol mixtures. However, the collapse of the two sets of data suggests
that the equilibrium surface tension is not relevant to account for the sheet expansion.
This is presumably due to the fact that on the time scale needed to reach the maximal
expansion (at most 4 ms), the surface tension of the air/liquid interface does not have
enough time to reach its equilibrium value. This time scale can be estimated as td =
π

4D

(
Γeq

CB

)2

, where D is the diffusion coefficient of the surfactant molecules, Γeq is the

surface concentration of the surfactant at equilibrium and CB is the bulk surfactant
concentration [Bonfillon 1994]. For CpCl, Γeq = 5× 10−10 mol/cm2, and D = 8.6× 10−6
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cm2/s in water (η0 = 1 mPa s) [Rillaerts 1982], yielding for a bulk concentration of
5.88 mM, td = 0.7 ms in pure water. Hence, because D is expected to scale as the
inverse of the viscosity, the time scale needed to reach the equilibrium surface tension
exceeds the time scale needed to reach the maximal expansion of the sheet for viscosity
larger than ∼ 5 mPa s. Consequently, for large viscosity the relevant surface tension of
the water/glycerol/CpCl mixtures is expected to be that of water/glycerol mixtures, as
observed experimentally. Note, finally that surface tension gradients are presumably not
relevant in our experiments. Indeed, because of Marangoni stresses, such gradients would
cause perforation of the sheet [Vernay 2015c, Rozhkov ], which is never observed in our
experiments.

The normalized maximal diameter, d̃, is also plotted as a function of the Ohnesorge
number, Oh (top x axis, Figure 3.5). The Ohnesorge number is a dimensionless number
that represents the ratio of internal viscous dissipation to surface tension energy: Oh =
η0√
ργdo

, where ρ is the sample density, η0 its zero-shear viscosity, γ the surface tension and
do the drop diameter. Accordingly, for small Oh (Oh . 0.1), the maximal expansion
of the sheet is governed by a balance between inertia and surface tension, whereas the
higher Oh, the more dominant the viscous dissipation is.

3.3.1b Modeling

(i) Theoretical model: We provide here a modeling of the data obtained for New-
tonian fluids and micellar and micro-emulsions based samples bridged by C12 polymer.
We use a standard energy conservation approach as a starting point. For an inviscid
fluid, the kinetic energy of the drop upon impact is mainly converted into surface en-
ergy [Marmottant 2000, Villermaux 2011]. A rough estimate of the maximal expansion
diameter of the sheet can be derived by balancing the kinetic energy of the drop and the
surface energy at the maximal expansion of the sheet. In the case of a viscous drop, some
amount of energy is dissipated during the process, reducing the inertial expansion. We
assume that part of the impact energy is dissipated by a radial flow in the liquid sheet.
Balancing the initial kinetic energy against the surface energy at the maximal extension
of the sheet and the viscous dissipation energy Ediss yields:

1

2
mv2

0 ≈
γπd2

max

2
+ Ediss (3.1)

Here, m is the mass of the drop, v0 is the impact velocity and γ is the surface tension.
Note that Equation 3.1 neglects the interfacial energy between the target and the liquid
(this is expected to hold as long as dt � dmax) and assumes that the sheet has a disk
shape (the external rim is neglected). We have neglected the dissipation that might occur
in the rim due to vortical flows [Clanet 2004]. We define an effective velocity veff as the
impact velocity of a fictive drop of the same but inviscid fluid that will lead to the same
maximal extension of the sheet. By definition, no dissipation occurs in this case, and the
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energy balance reads:

1

2
mv2

eff ≈
γπd2

max

2
(3.2)

The dissipation energy therefore reads: Ediss = 1
2
mv2

0

(
1 −

(
veff

v0

)2)
. The maximal diam-

eter of the sheet normalized by its value in the inviscid case is obtained by considering
Equation 3.1 (with Ediss = 0) and Equation 3.2 yielding:

d̃ ≈ veff

v0

(3.3)

To model the effective velocity using a theoretical approach, we make a parallel with
experiments on so-called Savart sheets, formed through the impact of a slender jet on a
small disc at high Reynolds number [Clanet 2002]. In the stationary regime, the effect of
the disc is to induce a shear viscous dissipation, which alters the liquid film velocity at the
edge of the target leading to [Clanet 2001, Yarin 2006, Roisman 2009, Villermaux 2013]:

veff

v0

≈ 1

1 + ζ
(3.4)

Here veff is the velocity of the liquid film at the edge of the target, v0 is the impact velocity
of the liquid jet, and ζ is the ratio between the thickness of the viscous boundary layer,
δ, and the thickness of the fluid sheet at the edge of the target, h, as calculated from
mass conservation. This model ensures that outside the target region, the flow of the
viscous sheet emerging from the impacting jet is identical to the flow of an inviscid liquid
jet, provided that the impact velocity v0 is replaced by the effective velocity veff . On
the other hand, it has been shown theoretically [Villermaux 2011] that the kinematics
fields of the liquid sheet arising from the impact of a drop of an inviscid fluid onto a
small target are a time-dependent adaptation of a steady-state axisymmetric solution of
Euler equations for a continuous jet impacting a solid target. These predictions have
been confirmed experimentally [Vernay 2015b, Vernay 2015c]. Hence, following Clanet
and Villermaux [Clanet 2002, Villermaux 2011] we assume that the effect of the viscous
dissipation after the impact of the drop on the target with an impact velocity v0 can be
evaluated by considering that the flow of the viscous sheet is equivalent to the flow of
an inviscid liquid sheet with an impact velocity veff given by Equation 3.4. The scaling
of the parameter ζ is however different when one considers a jet and a drop impacting
the target. In the case of a single drop of diameter do hitting a target of diameter dt,
simple mass conservation yields for the thickness of the fluid sheet when it fully covers
the target (yet does not expand in air):

h ≈ 2

3
do(do/dt)

2 (3.5)
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On the other hand, the thickness of the viscous boundary layer reads δ =
√

ηT
ρ

with

T ≈ dt

2v0
the time needed to reach the edge of the target. Hence:

δ ≈

√
η0dt

2ρv0

(3.6)

In the case of a single drop the adimensional parameter ζ = δ
h
therefore reads:

ζ ≈ 3

2
√

2

1√
Re

(dt

do

)5/2 (3.7)

where Re = (ρv0do)/η is the Reynolds number. In our experimental conditions, ζ varies
from 0.03 to 0.96. From Equation 3.2, one therefore derives a simple expression for the
maximal extension of the sheet:

dmax

do
≈
√
We

6

1

1 + ζ
(3.8)

where We = (ρv2
0do)/γ is the Weber number, ρ is the density of the liquid and γ is the

surface tension. Once written for parameters normalized by their values in the inviscid
case, Equation 3.8 reads:

d̃ ≈ 1

1 + ζ
≈ 1

1 + α
√
η0

(3.9)

with

α =
3

2
√

2

1√
ρv0do

(dt

do

)5/2 (3.10)

Equation 3.9 shows that the maximal extension continuously decreases with the square
root of the sample viscosity. We check quantitatively this simple prediction with the
experimental results obtained from water/glycerol mixtures and C12-based viscoelastic
fluids of various viscosities (Figure 3.7). The dashed line (Figure 3.7) is the theoretical
prediction (Equation 3.9) using the calculated value α = (1 ± 0.1) (Pa.s)−0.5 (Equation
3.10). Error bars for α come from uncertainties on the drop diameters. Note that
here we have taken an average value for the water/glycerol density (1125 kg/m3) and
have neglected the increase in the density as the mixture gets enriched in glycerol, this
increase (at most 20 %) being negligible compared to that of the viscosity (3 orders of
magnitude). We find that the theoretical model provides a correct order of magnitude of
the normalized diameter but systematically underestimates the dissipation. A fit of the
experimental data using α as unique fitting parameter yields α = (1.46± 0.13) (Pa.s)−0.5

but does not provide a significantly better account of the viscosity-dependence of the
normalized maximal diameter as shown in Figure 3.7.
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(ii) Semi-empirical model: To better account for the viscosity dependence of the
maximal expansion, we still use a similar approach based on energy conservation and
consider that a viscous sheet expands as an inviscid one but with an effective impact
velocity veff reduced compared to the real one. This velocity is assumed to be the velocity
at the edge of the target and is reduced compared to the initial velocity of the sheet due
to viscous dissipation on the surface of the target. Instead of using a theoretical model
for veff as above (Equation 3.4), we here measure veff directly as the time derivative at
short time of d the diameter of the sheet: veff = 1

2
∂d
∂t

)t→0. We show in Figure 3.6a veff

for all the viscous samples and viscoelastic samples with De � 1. Data for all samples
reasonably collapse and show a continuous decrease with the sample viscosity. We find
that a linear dependence of veff with √η0 accounts fairly well for the dependence of veff

with the sample viscosity (Figure 3.6b).
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Figure 3.6: (a) Effective velocity of the sheet measured at the edge of the target, veff as
a function of the zero-shear viscosity η0 in lin-log scale, for the viscous samples and the
viscoelastic samples for which De� 1. (b) Same data plotted as a function of √η0 in a
lin-lin scale.
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Note that other simple functional forms, as for instance a linear dependence with the
viscosity or the theoretical expectation (Equation 3.4), are significantly less good. A fit of
the experimental data with the functional form veff = v∗(1−λ√η0) yields v∗ = (3.2±0.1)

m/s and λ = 1.24±0.10 (Pa.s)−0.5. Note that v∗ is 20 % smaller than the impact velocity
(v0 = 4 m/s), indicating that some dissipation also occurs in the inviscid case. A possible
reason could also be the conjoined co-axial cylinder to the solid target to limit the bell
effect [Clanet 2002]. From Equation 3.3 one therefore predicts:

d̃ = veff/v
∗ = 1− λ√η0 (3.11)
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Figure 3.7: Maximum diameter (normalized by its value at low viscosity), as a function
of zero-shear viscosity for viscous samples and viscoelastic samples for which De� 1, as
indicated in the legend. The symbols are data points and the lines are theoretical and
semi-empirical modeling.

We show in Figure 3.7 that Equation 3.11 provides a very good agreement of the
experimental data, with the numerical value of λ extracted from the fit of the effective
velocity (Figure 3.7). In spite of its simplicity, we find that the semi-empirical approach
provides a better agreement of the experimental data, especially, in the regime of relatively
high viscosity where the theoretical model fails. We also note that 1− λ√η0 in Equation
3.11 is the limit of 1/(1 + λ

√
η0) for λ2η0 � 1, a functional form that corresponds to the

theoretical model (Equation 3.9).

(iii) Discussion on expected role of shear and extensional viscosity: To con-
firm the crucial role played by the viscous dissipation on the surface of the small target,
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we have performed an experiment where we expect to suppress any dissipation on a solid
surface. To do so, a drop is impacted (with the same velocity as for previous experiments
on a solid target) on a surface covered by a thin layer of liquid nitrogen, allowing the
sheet to float above a gaseous cushion. Comparative images of the sheets at maximal
expansion are shown in Figure 3.8 for the same mixture of water and glycerol with a
zero-shear viscosity of 128 mPa.s, dmax = 16.3 mm when the drop is impacting on the
small solid target, whereas dmax reaches 27.3 mm on nitrogen. This expansion is compa-
rable to that of a fluid with a very low Newtonian viscosity, demonstrating that viscous
dissipation on the solid target governs the expansion dynamics.

a. b. 

Figure 3.8: Images of viscous sheet taken at the maximal expansion for a drop of
water/glycerol mixture with zero-shear viscosity 128 mPa.s impacting at the same velocity
(a) a small solid target and (b) a silicon wafer covered with a thin layer of liquid nitrogen.
The scale bars are (a) 6 mm and (b) 3 mm.

More quantitatively, we can evaluate and compare the shear viscous dissipation that
occurs in the boundary layer at the interface between the surface of the solid target and
the liquid sheet and the extensional viscous dissipation that occurs when sheet expands
in air. We therefore compare at a scaling level the magnitudes of the viscous dissipation
energies per unit volume (Vdrop) due to expansion of sheet in air (Eextension) and due to
shearing stresses on solid target (Eshear). Dissipation energy per unit volume due to the
radial expansion of the sheet in air can be evaluated on the basis of extensional stresses
which develop as a result of expansion and can be written as:

Eextension

Vdrop

' ηbe

(
1

tmax

)(
(dmax − do)2

dodmax

)
(3.12)

Here, ηbe is the biaxial extensional viscosity and for a purely viscous fluid ηbe = 6η0

[Macosko 1994]. The derivation of Equation 3.12 is given in detail in Appendix B.

On the other hand energy dissipation per unit volume due to the flow driven by
shearing stresses (on small solid target) can be written as:

Eshear

Vdrop

' η0tmax

(vo
l

)2

(3.13)



58
Chapter 3. Interplay between Viscosity and Elasticity in Freely Expanding

Liquid Sheets

here, l = min(h, δ) is the thickness over which the liquid sheet is sheared. In our experi-
ments δ < h, thus we consider viscous boundary layer δ to calculate the Eshear.

Eshear

Vdrop

= η0tmax

(vo
δ

)2

(3.14)

with δ ≈
√

η0dt

2ρv0
. Using this expression in Equation 3.14, we find that

Eshear

Vdrop

is inde-

pendent of the zero shear viscosity (η0) while energy due to the extensional stresses is
proportional to the zero shear viscosity.

We consider the case of liquid sheets produced by glycerol/water mixtures at different
viscosities. We plot in Figure 3.9 the energy dissipation per unit volume E due to shear
stresses over the target and the elongational stresses because of the extension of the liquid
sheet. We find that in the whole range of zero shear viscosity investigated (1 − 1000

mPa.s) the dissipation due to an extension of the sheet (in air) is much lower than the
dissipation, occurring due to the boundary layer. This simple calculation confirms that
the dissipation essentially occurs on the solid target.
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Figure 3.9: Energy dissipation per unit volume as a function of zero shear viscosity for
glycerol-water mixtures.

3.3.2 Dynamics of liquid sheet: De ≈ 1 and De� 1

In the high Deborah number regime, we observe that the sheets expand much more
than viscous sheets or sheets produced with viscoelastic samples with a short relaxation
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time. Remarkably, we find that up to zero-shear viscosity of 20 Pa.s, the maximal expan-
sion of the sheet does not significantly decrease compared to the case of inviscid fluids,
whereas for the other samples (C12-based micelles and microemulsions, and C18-based
micelle), the maximum diameter of the sheet expansion is smaller than the target diam-
eter (d̃ < 0.25). Moreover, we note that quantitatively comparable results are obtained
for regular microemulsions and for dyed ones.

Interestingly, the behavior of C18-based micelles for which the Deborah number is of
the order of 1 is intermediate between that of the C12-based samples (De � 1), and
that of the C18-based microemulsions (De� 1), confirming a crucial role of the coupling
between the characteristic relaxation time of the samples and the life-time of the sheet.
Figure 3.10 shows the maximal diameter normalized by its value at small viscosity (the
inviscid case) as a function of zero shear viscosity (bottom x-axis) and Ohnessorge number
(top x-axis).
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Figure 3.10: Maximum diameter (normalized by its value at low viscosity), as a function
of zero-shear viscosity (bottom x axis), and Ohnesorge number (top x axis).

Qualitatively, viscoelastic samples with characteristic times much larger than the life-
time of the sheet, as the C18-based microemulsions, behave in a drastically different
fashion. Figure 3.11 both dyed and undyed samples, cracks and holes invade the interior
of the sheets, while the sheet maintains the integrity of its contour. Hence, it is tempt-
ing to associate the fracture process that occurs in extension and shear for C18-based
microemulsion samples to the cracks observed when the sheet expands.

Our observations nevertheless clearly emphasize that the elastic contribution in the
viscoelasticity plays a crucial role in the overall way a sheet expands and are reminis-
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3.7 mPa.s 

(a) 

1335 mPa.s 8370 mPa.s 

120 mPa.s 437 mPa.s 8035 mPa.s 

(b) 

Figure 3.11: Snapshots of sheets made of C18-based microemulsions (a) without dye,
(b) with dye. Images are taken at the maximal expansion of the sheets. All samples
are above the percolation threshold, except the ones with lower zero-shear viscosity (3.7
mPa.s and 120 mPa.s).

cent of the rupture processes of Savart sheets observed upon collision of viscoelastic jets
[Miller 2005]. Note that, in sharp contrast, in the low number Deborah regime, in which
the viscoelastic sheet behaves as a viscous sheet, the sheet expands in a rather smooth
way and always preserves its integrity (Figure 3.3). Our experimental observations show
a clear link between the capability of a sheet to expand and the linear rheological prop-
erties of the fluid for samples with zero-shear viscosity larger than ∼ 30 mPa.s. A simple
yet quantitative way to account for the samples viscoelasticity is to consider the dynamic
viscosity. Note that this approach is similar to that followed by de Gennes to describe
the fracture dissipation process for complex fluids in the framework of the trumpet model
[De Gennes 1988, De Gennes 1996, Saulnier 2004, Tabuteau 2011].

For a Maxwell fluid, the dynamic viscosity reads as:

η′ = G′′(ω)/ω = G0τ
1+(ωτ)2

Taking as characteristic time, tmax, the time at which the sheet reaches its maximal
expansion, we can deduce:

η′ = η0

1+De2

with De = τ/tmax. Interestingly, if the data of the maximal expansion are plotted as
a function of η′ instead of η0 we find that the data for C18-based micelles (for which
De ≈ 1) and C18-based microemulsions (for which De � 1) almost collapse with the
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data gathered for Newtonian fluids and C12-based samples (Figure 3.12). This suggests
that the deviation from the Newtonian behavior, which is observed for viscoelastic sam-
ples whose relaxation time is comparable to, or larger than, the life-time of the sheet,
can be accounted for by the sample linear viscoelasticity. For C18-based microemul-
sions, the characteristic relaxation time being much larger than the life-time of the sheet
(De� 1), the dynamic viscosity is much smaller than the zero-shear viscosity, indicating
that dissipation is negligible, and the samples behave as almost purely elastic. Based on
previous experiments in different experimental conditions, we know that, for those kinds
of samples, fracture processes occur [Ligoure 2013]. Cracks have indeed been observed in
the gap of a shear cell (pure shear flow [Tabuteau 2009]), in a pendant drop experiment
(pure extensional flow [Tabuteau 2009]) and in Hele-Shaw cell (complex flow involving
both shear and extensional flows [Mora 2010a, Foyart 2013]). Fracture occurs when the
sample is deformed at rates larger than the inverse of its viscoelastic relaxation time.
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Figure 3.12: Same data as in figure 3.10 but plotted as a function of the dynamic
viscosity.

It is therefore instructive to evaluate the deformation rates involved upon the sheet
expansion. The extension rate of the fluid upon the expansion of the sheet, ε̇, can be
computed as ε̇ = 1

d
∂d
∂t
. Note that at short times, ε̇ = 2

dt
veff , with dt = 6 mm the target

diameter, and veff the effective velocity determined above (Figure 3.6), yielding a rate
ε̇ ≈ 1000 s−1 at short time that steadily decreases with time until vanishing when the
sheet reaches its maximal expansion. We can also evaluate the shear rate involved as
the drop hits the target. A simple estimation, by considering that shear flow only occurs
when the fluid interacts with the solid surface, gives γ̇ ≈ veff

δ
, with δ the thickness over

which viscous dissipation takes place (Equation 3.6). For C18-based microemulsions above
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percolation, veff ≈ 3.5 m/s, and γ̇ is in the range (1000 − 10000) s−1. Hence, the rates
involved are systematically larger than the inverse of the relaxation time (τ is in the range
(0.1− 1) s, Figure 3.1b), suggesting that fracture processes may occur.

Cracks in the viscoelastic sheet (C18-based microemulsion) will be discussed more in
detail in Chapter 5

3.4 Conclusion

We have investigated how viscous and viscoelastic sheets resulting from the impact of
a droplet on a small target of size comparable to that of the droplets expand in air. We
have found that, for viscous droplets and for small Ohnesorge number Oh, the maximal
expansion of the sheet is governed by the balance between inertia and surface tension,
whereas for higher Oh viscous dissipation plays an important role. We have used a simple
modeling of the sheet expansion where inertia, surface tension, and viscosity are taken into
account to compute an energy balance. One of the main ingredients is that dissipation
occurs in the viscous boundary layer at the interface between the surface of the target and
the liquid. Accordingly, we have directly measured the sheet velocity at the edge of the
target and relate this velocity to the maximal expansion of the sheet. The quantitative
agreement between the model and the experiments shows that the dissipation mainly
occurs on the small surface of the target and that, when the sheet freely expands in air,
extensional viscous dissipation is negligible, in agreement with an experiment performed
with a viscous sample freely expanding on a gaseous nitrogen cushion.

In addition, we have also investigated model complex fluids that behave as Maxwell
fluids, characterized by a plateau modulus G0 and a unique relaxation time τ . We have
been able to independently and finely tune τ and the zero-shear viscosity G0τ , allowing
us to decouple the effect of the viscosity and elasticity on the spreading of viscoelastic
sheets. Our experiments have evidenced a key role of the adimensional Deborah De

number defined as the ratio between τ and the typical lifetime of the sheet. When
De � 1, we find that the Maxwell fluids behave as simple Newtonian fluids with zero-
shear viscosity G0τ . Samples for which De > 1, the departure from the Newtonian
case can be accounted for by the sample viscoelasticity. Interestingly, the dynamics of
viscoelastic sheets produced with Maxwell fluids whose characteristic relaxation time is
much larger than the life time of the sheet (De � 1) drastically differ from those of
other samples. The sheet expands much more than viscous sheets with comparable zero
shear viscosity, due to reduced viscous dissipation. In addition, upon expansion the sheet
is highly heterogeneous and displays cracks and holes, revealing the sample elasticity.
Our results therefore show the interplay between the relaxation time of the viscoelastic
fluid and the characteristic time of the experiments, as could also be observed in other
experimental conditions like the dispensing of drop from a syringe with a controlled flow
rate [Clasen 2012]. The experimental set-up, originally designed by M. Vignes-Adler and
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collaborators and subsequently modified by Villermaux and Bossa to limit the bell effect,
provides an unusual yet interesting configuration for testing the rheology of complex fluids
as it involves large deformations and highly extensional flows on very short time scales.
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In this chapter, we study the dynamics of freely expanding sheets formed by soft spher-
ical elastic beads of millimeter size and elastic modulus in the range (10 Pa - 700 Pa).
The sheets are produced by impacting the elastic beads on a silicon wafer covered with a
thin layer of liquid nitrogen, thanks to the inverse Leidenfrost effect. The liquid nitrogen
layer suppresses shear dissipation at the bead-surface interface due to the formation of a
vapor cushion on impact. At high impact velocity, the elastic bead deforms into a flattened
disc like a pancake. For analogy, we also perform similar experiments with liquid droplets
with various surface tensions. We measure the maximal deformed size of the sheet dmax,
for several impact velocities. The experiments reveal a universal scaling behavior of dmax

with impact velocity for elastic beads and liquid drops. Moreover, we show that, the dy-
namics of the system mimics a conventional spring-mass system with a stiffness given by
a combination of surface tension and bulk elasticity demonstrating the absence of viscous
dissipation.

4.1 Experimental samples and techniques

Soft elastic beads are prepared by the polymerization of acrylamide and bis-acrylamide
in the presence of initiators in water. To tune the elasticity of the beads, the concentra-
tions of acrylamide and bis-acrylamide are varied. The preparation of the elastic beads
is explained in details in section 2.1.2. To compare the results obtained with the beads
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to those obtained with liquid drops we have performed experiments with pure water and
ethanol-water mixtures. All the elastic beads and liquid drops have a same diameter
do = 3.7 mm.

The experimental set-up to measure the elastic modulus is described in section 2.2.3.
In brief, a rigid sphere is indented in the gel and the force along with the indentation depth
are measured to determine the shear modulus G0 of the gel [Hertz 1895, Johnson 1987].
The elastic modulus of beads is varied between 10 Pa and 740 Pa. The surface tension γ
of the elastic beads is taken to be equal to that of water 72 mN/m [Chakrabarti 2013].
For liquid drops we use samples with various surface tensions (72 mN/s, 50 mN/m and
32 mN/s) by changing the concentration of ethanol in water as explained in section 2.1.3.

Thin sheets are produced by impacting elastic beads and liquid drops on a silicon
wafer covered with a thin layer of liquid nitrogen. We vary the impact velocity vo in the
range (1 m/s - 5 m/s.) The time series of the images of the sheet are recorded using a
fast camera as detailed in section 2.3.2. The images are analyzed using the technique
explained in section 2.4.

4.2 Dynamics of elastic and liquid sheets

4.2.1 Experimental observations

We have shown the advantage of using the inverse Leidenfrost effect over the impact
on solid target in chapter 2. This allows one to study the dynamics of freely expanding
sheet of elastic/or liquid in the absence of shear viscous dissipation. When the elastic
bead or liquid drop impacts the substrate the inertial forces causes it to spread radially.
On impacting the silicon wafer covered with a thin layer of liquid nitrogen, a local vapor
cushion of nitrogen gas forms which thermally insulates the expanding sheet from freez-
ing. This evaporating vapor from liquid nitrogen moves radially outwards which induces
the slip conditions and reduces the viscous dissipation due to the non-wetting condition
between the substrate and the expanding sheet thus enhancing the expansion of the sheet
[Tran 2012, Antonini 2013]. Figure 4.1 shows the time evolution of sheet expansion and
retraction on impacting the silicon wafer for elastic bead G0 = 35 Pa and ethanol-water
mixture γ = 50 mN/m. Time at the impact is taken as t = 0. Unlike the elastic beads,
we see the formation of secondary droplets in the case of ethanol-water mixture because
of the rim destabilization.

Figure 4.2 shows the snapshot at the maximum expansion of elastic beads with dif-
ferent elastic moduli G0 but at fixed impact velocity (vo = 4.35 m/s). As G0 increases,
the maximum expansion of the sheet decreases. Figure 4.3 shows the snapshots at the
maximum expansion of sheets produced with the elastic bead of elastic modulus G0 = 11
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a. b. 

Figure 4.1: Images of the sheet at different times at a fixed impact velocity vo = 4.35

m/s for (a) an elastic bead with shear modulus G0 = 35 Pa and (b) an ethanol-water
mixture with surface tension γ = 50 mN/s. The scales bars are 6 mm.

Pa at different impact velocities. The maximum expansion of the sheet increases with
increasing impact velocity.

a b c 

Figure 4.2: Maximum expansion of sheet produced by impacting with a fixed velocity
vo = 4.35 m/s for elastic beads with elastic modulus (a) 35 Pa (b) 118 Pa and (c) 334

Pa. The scale bars are 6 mm.

a. b. c. 

Figure 4.3: Maximum expansion of a sheet produced by impacting an elastic bead of
shear modulus G0 = 11 Pa at different impact velocities (a) 4.6 m/s Pa (b) 3.4 m/s and
(c) 1 m/s. The scale bars are 6 mm.
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4.2.2 Quantitative analysis

4.2.2a Maximum expansion of elastic beads

Here, we examine the case of a large deformation of an elastic bead after the impact
on solid surface commonly known as pancake regime [Tanaka 2003, Tanaka 2005]. For a
quantitative analysis, we consider that the elastic bead behaves as a neo-Hookean solid
and undergoes deformations as shown in Figure 4.4.

λxdo = dx = dmax 

Deformed state 

x 

y 

z 

Undeformed state 

do 

λzdo = dz 

λydo = dy = dmax 

Figure 4.4: Scheme to show the affine deformation of an elastic bead on impacting the
solid substrate..

The elastic energy density ξ is given by [Ogden 1997]:

ξ =
1

2
G0

(
λx

2 + λy
2 + λz

2 − 3
)

(4.1)

Here G0 is the elastic (shear) modulus, λx, λy and λz are the stretching ratios along the
three principle axes. For incompressible materials: λxλyλz = 1 and in our case we are

looking at equibiaxial deformation thus λx = λy = λ. This gives λz =
1

λ2
. Experimentally,

we measure the maximum diameter reached by the sheet dmax and thus by definition
λ = dmax/do. Equation 4.1 reduces to:

ξ =
1

2
G0(2λ2 +

1

λ4
− 3) (4.2)

Assuming no viscous dissipation, we can write the energy balance equation in terms of
initial kinetic energy and elastic energy:

1

2
mvo

2 ≈ Vbeadξ (4.3)
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In the case of large deformations (λ� 1), ξ ≈ G0λ
2 and thus Equation 4.3 is given by:

1

2
mvo

2 ≈ VbeadG0λ
2 (4.4)

Here m is the mass of the bead m = ρVbead with Vbead the volume of the bead and ρ

the density. Simplifying Equation 4.4 gives the dependence of the maximal spread factor
on the Mach number M [Joseph 2013], defined as the ratio of impact velocity vo to the
velocity of transverse sound waves in an elastic medium US =

√
G0/ρ [Kolsky 1963].

λ ≈ 1√
2

vo√
G0

ρ

≈ 1√
2
M (4.5)

In Figure 4.5 we plot the maximal spread factor λ as a function of Mach number M for
all the experimental data obtained from elastic beads having different elastic moduli and
impact velocities. In our experiments M varies between 2 and 45 and λ between 1.6 and
6.5.
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Figure 4.5: Maximal spread factor λ as a function of Mach number M . Symbols are
the experimental data points and the solid line is a linear fit of the data at small M to
guide the deviation of data above M ' 20.

We observe that there exists a threshold value G0c ' 35 Pa above which all the
experimental data collapse on a straight line in accordance with the simple prediction of
Equation 4.5. We find that λ increases continuously with M . The data are fitted with a
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linear equation a+ bx, yielding a slope b = 0.2 while Equation 4.5 predicts a slope equal
to 0.7 and an intercept a = 1.2. We note that for vo tending to zero λ should tend to one
and not to 0 as predicted by Equation 4.5, because this asymptotic balance equation is
not valid for λ close to 1.

On the contrary, for ultra-soft elastic beads (G0 6 G0c), the expected scaling behavior
does not hold anymore. This shows that, for ultra soft elastic beads, we miss another
contribution to the elastic energy of the bead in the deformed state, since Equation
4.5 overestimates the stretching of the elastic sheet. To explain the deviation from the
classical theoretical expression, for ultra-soft elastic beads, the elastic contribution due
to surface tension has to be taken into account along with the bulk elasticity. In our
experiments, the kinetic energy of the bead or drop is much higher than the initial
surface energy of the bead or drop in the undeformed state. To ensure that, we can
equate the kinetic and surface energy of the bead or drop to calculate minimum velocity
below which the initial surface energy of the bead or drop cannot be neglected in the

energy balance vmin =

√
12γ

ρdo
. Since, the diameter of the bead or drop (do = 3.7 mm)

is fixed and the sample density varies between 1000 kg/m3 and 950 kg/m3, it is easy to
inspect for different values of surface tension, vmin varies between 0.5 m/s and 0.3 m/s.
Clearly, we are always above this minimal value: the minimum impact velocity in our
experiments is 1 m/s. Hence, for quantitative analysis, we can neglect the surface energy
of the undeformed bead or drop in an energy balance equation. Thus we can rewrite

Equation 4.4 by including the surface energy at maximum expansion
1

2
πγd2

max in the
limit of large deformations:

1

2
mvo

2 ≈ 1

2
πγd2

max + VbeadG0λ
2 (4.6)

Simplifying and rearranging Equation 4.6 we obtain,

1

2
vo

2 =
3γ

ρdo
λ2 +

G0

ρ
λ2 (4.7)

Considering, US =

√
G0

ρ
as the velocity of transverse sound waves in an elastic medium

and UL =

√
3γ

ρdo
as the typical velocity of the free oscillations of a drop called Rayleigh

velocity [Rayleigh 1879]. Equation 4.7 reduces to:

λ ≈ 1√
2

vo√
UL

2 + US
2
≈ 1√

2

vo
U∗

(4.8)

Here U∗ =
√
UL

2 + US
2 is a typical velocity of the material for generalized elastic de-

formations. Equation 4.8 demonstrates that λ depends on two elastic contributions, one
from the surface tension and the second one from the bulk elasticity of the elastic gel. If
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US � UL, the surface tension effects can be neglected and we observe that the expansion
of an elastic bead is purely dominated by its elastic modulus, as observed by Y. Tanaka et
al [Tanaka 2003]. On the other hand, interestingly, when US � UL, the bulk elasticity is
negligible in comparison to surface elasticity and we recover the prediction of D. Richard
et al [Richard 2002] for a simple liquid. In the present experimental study, both bulk
and surface energies may be important to explain the expansion of elastic sheets. To
quantitatively compare the two elastic energies, we define a characteristic elastocapillary
length lec = 3γ/G0 that characterizes the relative importance of surface elasticity with
respect to the bulk elasticity [Mora 2010b, Jagota 2012]. In terms of lec Equation 4.8 can
be expressed as:

λ ≈ 1√
2

vo
UL

√√√√√ 1

1 +

(
do
lec

) (4.9)

For our experimental system, we have fixed do = 3.7 mm and for elastic beads, we have
taken γ = 72 mN/m. Figure 4.6 shows a "state diagram" in the space (characteristic
length, elastic modulus) of the material. We can observe that for lec < do (G0 > 60 Pa)
bulk elasticity dominates and for lec > do ( G0 < 52 Pa) it is the surface elasticity which
dominates. If the two lengths are comparable, bulk and surface elasticity are expected
to be important to account for the expansion of elastic beads. We have investigated all
three regimes in the case of ultra soft elastic beads.
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Figure 4.6: Schematic phase diagram of length scale l as a function of G0. The symbols
are the experimental points. Highlighted area shows the region dominated by surface
elasticity and white region by the bulk elasticity.
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To emphasize the role of two contributions of elasticity we first plot the maximal
spread factor λ as a function of reduced impact velocities for two elastic beads (G0 = 11

Pa, 206 Pa) in Figure 4.7. In the inset a of Figure 4.7 λ is plotted as a function of
vo/US taking only bulk elasticity into account. We see that the experimental data do not
collapse and the deformation of the elastic bead with G0 = 11 Pa increases more slowly
than the deformation of a bead with G0 = 206 Pa with the reduced velocity vo/US.
Similarly, if we just take the elasticity due to surface tension into account we observe
that the two experimental data sets do not coincide as well (inset b.). This is consistent
with the fact, for elastic bead with shear modulus G0 = 11 Pa, lec = 19 mm � do = 3.7

mm. So, in addition to bulk elasticity, one has to take the effect of the surface tension into
account for analyzing the maximal deformation of the sheet. We see in Figure 4.7 (main
plot) when λ is plotted against vo/U∗ accounting for "generalized elastic deformations",
all the data collapse on a single curve.
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Figure 4.7: Maximal spread factor λ = dmax/do as a function of the reduced impact
velocity taking respectively bulk and surface energy (main plot,) only bulk elasticity
(inset a) and only surface elasticity (inset b) into account.

Figure 4.8 shows the maximal spread factor λ as a function of vo/U∗ for all the elastic
beads with distinct elastic modulus as indicated in the legend. The solid line is a linear
fit of the experimental data yielding a slope b ≈ 0.35 and a ≈ 0.6. Theoretical expression
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Figure 4.8: Maximal spread factor λ as a function of vo/U∗ where vo is the impact ve-
locity and U∗ is the velocity of generalized elastic deformations (Equation 4.8). The solid
symbols are experimental data points for elastic beads with shear modulus as indicated
in the legend. The solid line is a linear fit.

predicts the slope equal to 0.7 which is comparable to the slope obtained experimentally.
Equation 4.8 predicts for vo = 0, the deformation λ = 0. This is nonphysical, as Equation
4.8 is only valid for large deformation (λ� 1) and not applicable at very small velocities.
Hence, Equation 4.8 should work well only in case of large deformation; however, and
surprisingly, this asymptotic linear relation describes the experimental results well even
for moderate deformations.

4.2.2b Maximum expansion of elastic beads and liquid drops

Experiments are also performed with Newtonian liquid drops. We use pure water
and ethanol-water mixtures to investigate the influence of surface tension, for Newtonian
liquids US = 0 and U∗ = UL. We find that all the experimental data from elastic solids
and liquids collapse on a single curve (see Fig 4.9). This also establishes a universal scaling
behavior for the maximum deformation of both elastic beads and liquid drops under the
conditions of negligible viscous dissipation provided the bulk and surface elasticity are
correctly taken into account. In spite of neat universal scaling, we find that at high impact
velocities for liquids, data tends to deviate from the prediction especially for the liquid
with the smallest surface tension γ = 32 mN/m. This can be attributed to splashing
(prompt or corona) and to the ejection of secondary droplets from the destabilization
of the rim during the expansion of the sheet and consequently loss of volume in case of
liquids [Mundo 1995, Rioboo 2001].
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velocity and U∗ is the velocity of generalized elastic deformations (Equation 4.8). The
solid symbols are experimental data points for gel beads and empty symbols for liquid
droplets as indicated in the legend. The solid line is a linear fit.

4.2.2c Dynamics of expansion

We now describe the full dynamics of the sheet expansion and retraction that can
be approximated as a simple harmonic motion. Following the approach of A.L. Biance
et al [Biance 2006], we model the expansion of an elastic sheet as the dynamics of one-
dimensional zero-length spring with a mass m and stiffness k. With this elementary
approach, we can write the mechanical energy of the sheet expansion as:

1

2
mv2 +

1

2
πγd2 +

1

2
Vbead2G0

d2

do
2 = constant (4.10)

Here v = ∂d/∂t, d is the diameter of the sheet and t is the corresponding time instant.
Equation 4.10 can be rewritten as:

1

2
mḋ

2
+

1

2
kd2 = constant (4.11)

Here k = πγ + π
do
3
G0 is the spring constant.

Equation 4.11 is the equation of conservation of mechanical energy of a harmonic
oscillator. We can write pulsation ω =

√
k/m. The maximum deformation is reached at
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time tmax = T/4, T being the period of oscillation and the origin of time is taken at the
impact. Hence,

tmax '
π

2

√
m

k
(4.12)

Putting the values of m and k in Equation 4.12, we obtain

tmax '
π

2
√

2

do
U∗

(4.13)

Equation 4.13 shows that tmax does not depend on the impact velocity vo. This is in good
agreement with the experimental data obtained for elastic beads as well as liquid droplets
as shown in Figure 4.10a. With increasing impact velocity, tmax changes within 8% error.
Interestingly, combining Equation 4.8 and 4.13, we expect dmax/tmax ∼ vo. We plot
dmax/tmax as a function of vo in Figure 4.10b, we observe that dmax/tmax is independent
of elastic coefficients and indeed is dependent on impact velocity vo. The solid line just
shows the monotonic increase of dmax/tmax with vo.
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Figure 4.10: (a) tmax as a function impact velocity vo for elastic beads and liquid drops.
(b) dmax/tmax as a function vo. Solid line shows the linear increase of dmax with vo.
Symbols are the same as in Figure 4.9.

If we rescale Equation 4.13 with the collision time τcoll = do/vo we obtain,

tmax

τcoll

' π

2
√

2

vo
U∗

(4.14)

Equation 4.14 shows a similar dependence of tmax/τcoll with the reduced impact velocities
vo/U

∗ as Equation 4.8 for maximal spread factor. We observe that experimental data
for the elastic beads and liquid drops collapse well on a single curve using Equation 4.14
as shown in Figure 4.11b unlike if we plot tmax/τcoll as a function of the Mach number
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(Figure 4.11a) for solids only. In Figure 4.11a, we observe that the data deviates for shear
modulus less than G0 = 43 Pa from the solid line. The difference in the two scaling laws
is the contribution of surface elasticity is considered along with bulk elasticity in Figure
4.11b. The solid line is the linear fit bx with intercept a = 0. The slopes are roughly
similar for the two plots, 0.2 (Figure 4.11a) and 0.3 (Figure 4.11b). We note again in
Figure 4.11b at higher impact velocities, the data for liquid samples are slightly lower
than predicted from the scaling (Equation 4.14). This may be due also to the splashing
and eventually ejection of secondary droplets from the rim.
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Figure 4.11: tmax in reduced units as a function of (a) Mach number M and (b) vo/U∗.
Solid and empty symbols corresponds to elastic beads and liquid drops respectively as
indicated in the legend. Solid lines are affine fits.
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We also measure the diameter of sheet d as a function of time for elastic beads and
liquid drops. For the sake of clarity, we just show data at a fixed velocity vo = 4.35

m/s for all the systems (Figure 4.12a) and for one elastic bead with elastic modulus
G0 = 11 Pa for various vo (Figure 4.12b). All curves show similar features of expansion
and retraction. We find that for a fixed impact velocity, the maximum diameter of the
sheet reaches earlier in time with increasing elasticity (Figure 4.12a) and the maximum
expansion dmax increases with the impact velocity vo (Figure 4.12b).
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Figure 4.12: Time evolution of the diameter of the sheet d (a) for elastic beads and
liquid drops impacting the solid surface with vo = 4.35 m/s (symbols are same as in
Figure 4.11) and (b) for an elastic bead of elastic modulus G0 = 11 Pa for various impact
velocities as indicated in legend.

We can write the mechanical energy of the dynamics of the sheet in adimensional units
using Equation 4.10 by defining t̃ = ωt and d̃ = d/dmax, hence, ṽ = v/ωdmax. Equation
4.10 can be written as:

ṽ2 + d̃
2

= 1 (4.15)

If we now rescale the experimental data d(t) using the adimensional units d̃ = f(t̃),
we observe that all experimental curves for different bulk or surface elastic properties of
the impacting object as well as various impact velocities collapse very well as shown in
Figure 4.13. We note that the collapse of the data in the case of fixed impact velocity vo
for all the systems is quite perfect in case of both the expansion and retraction regimes
by contrast in Figure 4.13b where data for one given sample at different velocities are
plotted. There is a small deviation in the retraction regime. The retraction at low impact
velocity is slightly slower in comparison to higher impact velocities.

Note that the shape of the curve in Figure 4.13a and b is sinusoidal at the higher
deformation as shown by the green solid line in Figure 4.13a. The solid line is the sine
fit for the experimental data at deformation greater than 0.6. At smaller deformation,
data slightly deviates from a sinusoidal form as can be expected from a small deforma-
tion regime. Though the perfect collapse of all the data shows that there is no shear
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Figure 4.13: Dynamics of the sheet expansion in normalized units, d/dmax versus ωτ .
(a) for all elastic beads and liquid drops with a fixed impact velocity vo = 4.35 m/s. (b)
for an elastic bead with an elastic modulus G0 = 11 Pa at different impact velocities, as
indicated in the legend.

viscous dissipation during expansion and retraction of the sheet, and hence validates the
effectiveness of inverse Leidenfrost effect. Recently, M. Andrew et al [Andrew 2017] have
numerically shown for an axisymmetric drop impacting on solid surfaces, that the ex-
pansion and retraction are essentially a simple harmonic motion in absence of viscous
dissipation.

Note: C. Clanet et al have developed a model based on the pancake thickness which
is governed by the capillary wave created by the impact to account for the maximal
spread factor for liquids impacting on non-interacting surfaces. In Appendix C we briefly
describe this model, provide an extension of this for ultrasoft elastic beads and show that
the modified model does not account very well for our experimental data.

4.3 Conclusion
We have investigated freely expanding sheets produced by the impact of ultra soft elas-

tic beads and liquid drops on a solid surface covered with a thin layer of liquid nitrogen.
Upon impact, a gaseous cushion of nitrogen is formed due to the evaporation of liquid ni-
trogen. The cushion acts as a thermal insulator between the solid substrate and the sheet.
This substantially eliminates the shear viscous dissipation due to the solid substrate. This
has been claimed by T. Tran et al and H. Lastakowski et al [Tran 2012, Lastakowski 2014]
where they studied the impact of liquid drops at Leidenfrost conditions. Also, another
configuration was used by C. Antonini et al [Antonini 2013] where they studied the im-
pact of a liquid drop on a sublimating surface (dry ice). Experimental configuration of
Antonini et al [Antonini 2013] is similar to our experimental technique; in their case when
the drop impacts on the dry ice (i.e. solid carbon dioxide), the vapor cushion forms due
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to the sublimation of the solid surface unlike the case when the drop impacts the hot
plate (above Leidenfrost temperature), where the vapor layer forms due the evaporation
of droplet.

The impact of liquid drops on solid substrates has been studied extensively. In order
to effectively minimize the effect of viscous coupling between the sheet and the substrate,
D. Richard et el [Richard 2002] used the super-hydrophobic surfaces and A.L. biance et al
[Biance 2006] studied the impact on hot plates i.e. in Leidenfrost condition. Hence as the
liquid deforms the kinetic energy transforms into surface energy which then is converted
back to kinetic energy, enabling the system to behave like an elastic spring. The impact of
elastic beads on a solid surface is less studied. Y. Tanaka et al [Tanaka 2003, Tanaka 2005]
studied the impact of soft gels on a solid substrate and have shown that the maximal
deformation scales as the Mach numberM in the case of large deformation. In their case,
the elastic modulus is in the range (37 − 140 kPa) and ball diameter do = 14 mm and
31.5 mm which is much higher in comparison to our elastic system. A similar scaling law
has been proposed by L.H. Luu [Luu 2009, Luu 2013] for yield-stress fluids (carbopol)
with shear modulus G0 in the range (28 − 270 Pa) and do varies between 7.6 − 25 mm
in case of perfect slip condition. For our experiments we have do = 3.7 mm and shear
modulus G0 in the range (10− 700 Pa). We have worked with much softer elastic solids
compared to Y. Tanaka et al [Tanaka 2003]. We have shown that for ultra soft elastic
beads in the case of large and moderate deformations, contribution of both the surface
and bulk elasticity are important. We have provided a universal scaling to account for
the maximal deformation in the large deformation limit by introducing the velocity of
generalized elastic deformations U∗. This scaling also provides the asymptotic known
behaviors of simple liquids on one side and hard solids on the other side depending
on the respective values of elastocapillary length scale and the diameter of the bead
or drop. The time needed to reach the maximum deformation can also be described
by the same unified scaling prediction for liquids and solids as a function of reduced
impact velocities. Moreover, we show that the dynamics of expansion and retraction of
sheet produced by the impact of a solid bead and a liquid drop can be understood in
terms of simple harmonic motion without viscous dissipation [Biance 2006, Andrew 2017,
Okumura 2003] with characteristic frequency of oscillation being U∗/do. Finally, we have
also observed, surprisingly a universal scaling behavior that, in principle, is only valid for
very large deformations, also reproduces the experimental data in the regime of moderate
deformation as well.

Although elastocapillarity has not been exploited much in the case of impact dynam-
ics, it has been taken into account in many studies focused on soft solids. For instance,
S. Mora et al [Mora 2010b] have shown experimentally the Rayleigh-plateau instability
in soft solid cylinders, T. Liu et al [Liu 2014] demonstrated the effect of surface tension
on crack propagation in soft solids, L. Ducloué et al [Ducloué 2014] studied the influence
of the softness of an elastic medium by the inclusion of air bubble in the matrix and A.
Jagota et al [Jagota 2012] studied the effect of surface stresses on the deformation of soft
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In this chapter, we investigate the dynamics of freely expanding thin sheets. The
sheets are produced by impacting a drop onto a small solid target or onto a solid surface
covered with a layer of liquid nitrogen, in order to suppress any dissipation process. To
disentangle the role of capillary, viscous and elastic forces in the dynamics of the sheets,
different materials are used whose rheological characteristics can be tuned: viscous liquids,
viscoelastic Maxwell fluids characterized by an elastic modulus, G0 and a relaxation time,
τ . From the previous chapters, we know that when τ is shorter than the typical lifetime
of the sheet (τlife ∼ 10 ms), the dynamics of viscoelastic sheets is similar to that of
Newtonian viscous liquids with equal zero-shear viscosity. When τ is larger than the typical
lifetime of the sheet, the behavior differs drastically. The sheet expansion is strongly
enhanced as compared to that of viscous samples with comparable zero-shear viscosity η0.
Here, we investigate bridged microemulsions which are inviscid Newtonian fluids below a
percolation threshold, and viscoelastic above the threshold, with a relaxation time τ > τlife.
We show that the scaling law describing the maximal deformation of elastic beads and
liquids drops (Chapter 4) is also valid for viscoelastic drops impacting a solid surface
covered with a layer of liquid nitrogen. In addition, we show that the same scaling law
also holds for viscoelastic and viscous drops impacting a small solid target, once viscous
dissipation on the small target is quantitatively taken into account. Furthermore, on
impacting viscoelastic drops we observe a heterogeneous expansion of the sheet with the
occurrence of cracks, revealing the elastic nature of the viscoelastic fluid. This is in sharp
contrast with previous observations (Chapter 4) with sheets produced with ultra-soft solids
which expand but never break.
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5.1 Experimental samples and techniques

We use surfactant stabilized oil droplets (microemulsions) that are suspended in water
and reversibly linked by telechelic polymers with an aliphatic chain length C18. For sample
preparation, we fix the average number of telechelic stickers per oil droplet r = 4, and
vary the mass fraction of oil droplets φ in the range (0.5% − 3.5%). The samples are
similar to those used in Chapter 3.

Shear rheology is performed to investigate the sample viscoelasticity as explained in
Chapter 2 (section 2.2.1). The composition of the sample is varied to tune its viscoelastic-
ity. Above a critical φ, the sample behaves as a pure Maxwell fluid and is characterized by
a unique shear plateau modulus G0 and a unique characteristic relaxation time τ . These
parameters are obtained by fitting the frequency dependence of the storage modulus G′

and loss modulus G′′ with the corresponding theoretical expressions for Maxwell fluids.
We measure a percolation threshold φc = 2% (Chapter 3). For φ > φc, the shear plateau
modulus G0 is in the range (2 Pa - 34 Pa) and the characteristic time τ ranges between
100 ms and 425 ms. Note that the relaxation time for all viscoelastic systems is much
higher than the total duration of the experiment (τlife ∼ 10 ms). We define Deborah
number De = τ/τlife and in our experiments it lies in the range (10 - 42).

The surface tension γ is measured with a pendant drop tensiometer (SINTERFACE
PAT-1M) for dilute bridged microemulsions below percolation (φ = 0.5%). We find
γ = 28 mN/m. We assume that this value is valid for all bridged microemulsions even
above percolation.

Here we use two techniques, (i) drop impact on a solid surface covered with a layer of
liquid nitrogen (as in Chapter 4) and (ii) impact on a small solid target (as in Chapter 3).
We vary the impact velocity vo between 1.7 m/s and 4.0 m/s. We use data presented in
Chapter 3 for bridged microemulsions and viscous samples and perform some additional
drop impact experiments on a solid target by varying the impact velocity vo between 1.3

m/s and 4.3 m/s for a viscoelastic sample with an elastic modulus G0 = 19 Pa. Time
series of images of the sheets are recorded using a fast camera as detailed in Chapter 2
(section 2.3.1 and 2.3.2). The images are analyzed as explained in Chapter 2 (section
2.4).

5.2 Expansion of viscoelastic and Newtonian viscous
sheets

5.2.1 Impact of viscoelastic drops using inverse Leidenfrost effect

We perform similar experiments with viscoelastic samples as the ones described in
Chapter 4 for elastic solids and inviscid Newtonian liquids. In brief, a viscoelastic drop
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impacts a solid surface covered with a thin layer of liquid nitrogen. On impacting the
solid surface, a vapor cushion forms that thermally insulates the radially expanding drop.
The main objective of this part is to experimentally investigate whether the scaling law
for the maximal deformation of elastic beads and liquid drops is also valid in the case
of viscoelastic drops for which we expect elasticity, surface tension, and viscosity to play
a role. Figure 5.1 shows snapshots of a sheet at its maximum expansion produced with
drops of microemulsion with different shear moduli G0 (b,c) and of a microemulsion
below percolation G0 = 0 (a) but at a fixed impact velocity vo = 3.8 m/s. We observe a
slight decrease in the maximum expansion with the increase of G0. Also, the maximum
deformation of the drop decreases with decreasing impact velocity vo.

a. b. c. 

Figure 5.1: Images of the sheets at the maximum expansion for microemulsions pro-
duced by impacting drops at a fixed impact velocity vo = 3.8 m/s for (a) below percolation
(G0 = 0) (b) and (c) above percolation (G0 = 10 Pa) and (G0 = 21 Pa). The scale bars
are 6 mm.

Experimentally we measure the maximum diameter reached by the sheet, dmax and
define the maximal spread factor λ = dmax/do, where do is the initial diameter of the
drop. In our experiments, the relaxation time of the viscoelastic samples is always higher
than the time scale of the experiment i.e. De � 1. Hence, we expect the elastic nature
of the sample to largely dominate their behavior. The elasticity of a viscoelastic sample
is characterized by the shear plateau modulus G0. In the literature, the maximal spread
factor for yield stress fluids has been shown to be proportional to the elastic Mach number

M = vo/US [Luu 2009, Luu 2013] in the case of perfect slip. US =

√
G0

ρ
is the velocity

of transverse sound waves in an elastic medium [Kolsky 1963] with ρ the sample density.
In Figure 5.2a we plot the maximal spread factor λ as a function of the Mach number M
for all viscoelastic drops. In our experiments M varies between 10 and 90 and λ between
3.5 and 7.5. For all samples, we find that λ increases monotonically with M . However
one does not measure a linear evolution of λ with M . Furthermore, one finds that data
with different elastic moduli do not collapse.

For pure elastic beads (Chapter 4), we have explained the deviation of the experi-
mental data from the simple theoretical expectation, λ ∼M , by taking into account the
surface tension of the beads. λ is calculated by balancing the initial kinetic energy with
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Figure 5.2: (a) Maximal spread factor λ as a function of Mach number M . (b) λ as
a function of vo/U∗ where vo is the impact velocity and U∗ is the characteristic velocity
for generalized elastic deformations. The filled symbols are the experimental data points
for viscoelastic samples with different shear plateau modulus G0 as indicated in the
legend. The solid lines are guides to the eye. The open symbols correspond to liquid
microemulsion samples (below percolation).

the surface energy and bulk elastic energy at maximum expansion, under the assumption
of zero dissipation one obtains:

λ ≈ 1√
2

vo√
UL

2 + US
2
≈ 1√

2

vo
U∗

(5.1)

Here, US =

√
G0

ρ
is the velocity of transverse sound waves in an elastic medium and

UL =

√
3γ

ρdo
is the typical velocity of the free oscillations of a drop called Rayleigh

velocity [Rayleigh 1879] with γ the surface tension and U∗ =
√
UL

2 + US
2 is the velocity

of generalized elastic deformations. We plot the maximal spread factor λ as a function of
vo/U

∗ for the viscoelastic bridged microemulsions (φ > 2%) and also for liquid samples (
bridged microemusion below percolation threshold). We find that all data collapse on a
same unique curve.

We next compare the experimental data obtained by the impact of drops of bridged
microemulsion with those obtained with elastic beads and liquid drops. The elastic mod-
ulus of the elastic beads varies between 10 and 700 Pa (Chapter 4). Several Newtonian
liquids are considered (Chapter 4) in addition to microemulsion below the percolation
threshold yielding four liquids with surface tension (γ = 72, 50, 32, 28 mN/m). We plot λ
as a function of vo/U∗ in Figure 5.3 for elastic beads, viscoelastic drops and liquid drops
together. For simplicity we use a unique symbol for each class of sample. We observe
that all data collapse on one single curve. Furthermore, for λ . 7 and vo/U∗ . 20, we
find a linear variation of λ with vo/U∗ as theoretically expected from Equation 5.1. The
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best fit yields a = 0.6 and a slope b = 0.35 which is twice smaller than the theoretical
expectation (Equation 5.1).
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Figure 5.3: Maximal spread factor λ as a function of vo/U∗ where vo is the impact
velocity and U∗ is the velocity of generalized elastic deformations. The symbols are
experimental points for viscoelastic drops, elastic beads and liquid drops.

For simple liquids and viscoelastic fluids there is some deviation at higher velocities,
the maximum spread factor being smaller than the theoretically expected value. This
can be attributed to splashing [Mundo 1995, Rioboo 2001] and the formation of small
ligaments in the case of viscoelastic samples with very low elastic modulus (G0 ≈ 2 Pa)
that are not accounted in the measurement of the sheet area leading to an underestimation
of the diameter of the sheet.

Our experiments demonstrate that Maxwell fluid drops with a characteristic relaxation
time higher than experimental time obey the same scaling law for maximal deformation
as elastic solids and simple liquids.

5.2.2 Impact of viscoelastic drops on a small solid target

We use the experimental data for the maximal spread factor of bridged microemulsions
as in Chapter 3 (liquid microemulsions (below percolation, γ = 28 mN/m and η0 =

1.2 − 120 mPa.s) and viscoelastic microemulsions (above percolation, γ = 28 mN/m,
G0 = 2− 34 Pa and τ = 100− 425 ms). We also perform some additional experiments at
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different impact velocities in the range (1.3 m/s - 4.3 m/s) for water (γ = 72 mN/m, and
η0 = 1 mPa.s) and a viscoelastic microemulsion (γ = 28 mN/m, G0 = 19 Pa, and τ = 270

ms). Figure 5.4 shows the images at the maximum expansion for microemulsion drops
with different shear modulus G0 and relaxation time τ but at a fixed impact velocity
vo = 4 m/s. We observe that the maximum diameter of the sheet slightly decreases with
increasing G0. We also note that the ejection of secondary droplets and the formation of
ligaments are almost suppressed for viscoelastic samples as compared to liquid ones.

a. b. c. 

Figure 5.4: Images of the sheet at maximum expansion produced by impacting drops
of microemulsion at a fixed impact velocity vo = 4 m/s onto a small solid target. In
(a) sample (below percolation) is liquid (η0 = 4 mPa.s), (b) and (c) samples (above
percolation) are viscoelastic with G0 = 7 Pa and τ = 190 ms (b) and G0 = 32 Pa and
τ = 333 ms (c) The scale bar is set by the solid black disc of diameter 6 mm.

Figure 5.5 shows snapshots of images at the maximal expansion of the sheet for bridged
microemulsion (G0 = 19 Pa, τ = 270 ms) and for water at different impact velocities. We
observe that the ejection of secondary droplets is suppressed in the case of viscoelastic
microemulsions compared to water. Also, at a fixed velocity the maximum expansion
of water drops is larger than for viscoelastic microemulsions. For both samples, we also
measure that the maximum expansion increases with the impact velocity.

To quantify the maximum deformation produced by the impact of bridged microemul-
sion drops on a small solid target, we first attempt to use the same scaling law for λ as
in the case of impact on the solid surface covered with liquid nitrogen layer. We, there-
fore, plot the experimental data obtained from pure water and microemulsion drops on
impacting the solid target in Figure 5.6 along with the data for the samples impacting
the surface covered with liquid nitrogen as shown previously in (Figure 5.3).

We observe that the data for pure water drops, collapse with previous experimental
data obtained from inverse Leidenfrost experiments. By contrast, there is a significant
deviation in the case of liquid microemulsions (below percolation) and an even more ap-
parent deviation for data above percolation. The maximal spread factor is systematically
smaller for the impact on solid target than for the impact on the surface covered with
liquid nitrogen. This deviation may be attributed to shear viscous dissipation that occurs
due to the interaction between the microemulsion drop and the solid surface of the target.
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Figure 5.5: Snapshots of images at maximum expansion for (a) viscoelastic microemul-
sion (G0 = 19 Pa τ = 270 ms) and (b) water, at different impact velocities as indicated
on the images. The scale bar is set by the black solid disc of diameter 6 mm.
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Figure 5.6: Maximal spread factor λ as a function of vo/U∗ where vo is the impact
velocity and U∗ is the velocity of generalized elastic deformations. The symbols are
experimental data points for elastic beads, liquid drops and viscoelastic drops for experi-
ments performed using inverse Leidenfrost set-up referred to as ”N2” and on a small solid
target referred to as "target" as indicated.
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Indeed Equation 5.1 holds only in the case of a complete absence of shear dissipation.
Zero shear viscous dissipation conditions have been achieved in the experiments done
with help of inverse Leidenfrost effect. On the other hand, in Chapter 3 we have shown
that viscous dissipation occurs in the boundary layer at the interface between the surface
of the target and the liquid. To quantitatively account for this viscous dissipation at the
maximum expansion we have introduced an effective impact velocity veff which is reduced
compared to the real one. The effective velocity is defined as the velocity of the sheet
as it expands out of the target. We measure veff by taking the time derivative of the
diameter of the sheet d at short time, i.e. when the size of the sheet becomes larger than

the size of the target: veff =
1

2

∂d

∂t
|t→0.

To show the effect of viscous dissipation on the solid target we plot in Figure 5.7 veff

as a function of vo for pure water and bridged microemulsions (varying φ at fixed impact
velocity vo = 4 m/s and varying vo for a given sample with G0 = 19 Pa and τ = 270 ms).
We find that for water, veff = vo, over the whole range of impact velocity explored. By
contrast, for microemulsions veff is systematically smaller than vo. Interestingly, we note
that even for microemulsions below percolation (η0 = 1.2−120 mPa.s) viscous dissipation
is present as veff is smaller than vo and lies below the data of water drops.
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Figure 5.7: Effective velocity veff of the sheet measured at short time as a function of
impact velocity vo. The solid line corresponds to veff = vo.

Interestingly, we find that replacing the impact velocity vo by the effective velocity veff

which corresponds to the effective viscosity of a drop when dissipation can be neglected,
all experimental data points collapse on a single curve as shown in Figure 5.8. The data
acquired in the experiments using inverse Leidenfrost effect are also shown for which one
expects veff = vo. The solid line is a linear fit as in Figure 5.3.
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Hence, we demonstrate that the scaling law derived for samples impacting a solid
surface without interaction is also valid for the impact on a small solid target once viscous
dissipation is accounted.
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Figure 5.8: Maximal spread factor λ as a function of veff/U
∗ where veff is the effective

velocity measured for the experiments on a small target (for inverse Leidenfrost experi-
ments veff = vo) and U∗ is the velocity of generalized elastic deformations. The symbols
are experimental data points for elastic beads, liquid drops and viscoelastic drops for ex-
periments performed using inverse Leidenfrost set-up referred to as ”N2” and on a small
solid target referred to as "target" as indicated.

5.2.3 Impact of Newtonian viscous drops on a small solid target

To further check the above scaling law, we investigate drops of Newtonian liquids
impacting on a small solid target. We use here glycerol/water mixtures (these samples
have been already studied in detail in Chapter 3). Their surface tension is γ = (66.9±3.4)

mN/m but the viscosity varies over a broad range (1.8 mPa.s - 700 mPa).

We plot in Figure 5.9 the experimental data for glycerol/water mixtures together with
all the data of previous samples and experimental conditions (Figure 5.8). Figure 5.9a
shows the variation of λ with vo/U

∗: we observe that the scaling is totally ineffective
in interpreting the behavior of λ for viscous samples on a small solid target. Since,
for a given impact velocity, and for a given surface tension, the model predicts a given
maximal spread factor, whereas one measures that λ strongly depends on the sample
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viscosity. However, if we use veff which accounts for the viscous effects, we observe the
collapse of experimental data on the previously obtained curve Figure 5.8. Hence, all
viscous dissipation effects can be incorporated by replacing the impact velocity of the
drop by the velocity of the simple or viscoelastic liquid at the edge of the target. So, in
this case the maximum expansion of the sheet results from a balance between the kinetic
energy of the sheet at the edge of the target and the surface elastic energy of the sheet
at maximal expansion.
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Figure 5.9: Maximal spread factor λ as a function of (a) vo/U∗ (b) veff/U
∗ where vo

is the impact velocity, veff is the effective velocity and U∗ is the velocity of generalized
elastic deformations. The symbols are experimental data points for elastic beads, liquid
drops, Newtonian viscous drops, and viscoelastic drops for experiments performed using
inverse Leidenfrost set-up referred to as ”N2” (veff = vo) and on a small solid target
referred to as "target" as indicated (veff ≤ vo).
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5.3 Instabilities and cracks in viscoelastic sheets
When a liquid drop impacts on a solid surface covered with liquid nitrogen or on a

small solid target, a uniform sheet forms, which exhibits a smoothly varying thickness.
Similarly, upon impact, an elastic bead expands smoothly. By contrast upon impact, a
viscoelastic drop produces a radially expanding sheet that may exhibit instabilities. These
instabilities are visible for viscoelastic samples for which the intrinsic relaxation time is
much higher than the lifetime of the sheet (De � 1). We suspect these instabilities to
arise from fluctuations in the thickness of the sheet. To check this hypothesis, we have
dissolved a dye (erioglaucine salt (2.5 g/L)) in bridged microemulsions to have a better
contrast in the sheet. Previous experiments [Vernay 2015c] have shown that the grey
scale of the image of the sheet is quantitatively correlated with the thickness of the sheet.
A thicker sheet appears darker as compared to thinner sheets. For illustration Figure
5.10 displays the expansion of a viscoelastic sheet produced by (a) a sample with shear
modulus G0 = 7 Pa and relaxation time τ = 200 ms impacting on a small solid target,
and (b) a sample with G0 = 10 Pa and τ = 400 ms impacting on a solid surface covered
with a thin layer of liquid nitrogen. In both cases, we observe that, as the sheet expands
radially, some internal ruptures occur within the sheet that grows with time while a thick
rim sustains the overall integrity of the sheet.

1.64 ms 3.13 ms 

4.62 ms 6.11 ms 

1.0 ms 2.8 ms 

4.3 ms 5.2 ms 

a. b. 

Figure 5.10: Images of the sheet at different times and at a fixed impact velocity
vo = 3.9 m/s for a viscoelastic drop (a) with an elastic modulus G0 = 7 Pa impacting on
a small solid target. The scale bar is set by the black solid disc of diameter 6 mm and
(b) with G0 = 10 Pa impacting on a solid surface covered with liquid nitrogen. The scale
bars are 6 mm.

These irregularly shaped instabilities can occur at any point of time during the lifetime
of the sheet, i.e. before or after the maximum expansion of the sheet, and thus seems
stochastic in nature. This is shown in Figure 5.11 where we plot the time of occurrence
of first rupture events within the sheet as a function of the shear plateau modulus G0 of
the viscoelastic samples. The star-shaped symbols show the time corresponding to the
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maximum expansion and the square mark the time when the first rupture event occurs
within the sheet. The time for the rupture is evaluated by the defined intensity cut-off
value. Time t = 0 is the time when the drop hits the solid target.
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Figure 5.11: Time of occurrence of the first rupture event (square symbols) plotted
against the elastic modulus for the microemulsion drop impacting a small solid target.
Stars indicate the time at the maximum expansion of the sheet with error bars smaller
than the symbol size.

Figure 5.12 shows snapshots taken at the maximal expansion for viscoelastic samples
with an elastic modulus G0 ' 20 Pa, for two kinds of experiment (impact on a small solid
target and impact on a solid surface covered with liquid nitrogen) for impact velocities
vo in the range (1.7 m/s - 3.9 m/s). At high velocity, the sheet expands much more
than at small velocity owing to the higher initial kinetic energy. With the decrease in the
impact velocity rupturing of the sheet does not occur. Nevertheless, the sheet thickness is
not homogeneous during the expansion or retraction at lower impact velocities. Notably,
the images obtained from experiments using a small solid target have a much better
contrast in comparison to experiments performed using inverse Leidenfrost effect due to
the expansion in air.

To quantitatively investigate the homogeneity of the sheet in the case of experiments
performed on a small solid target, we measure the mean intensity I and the standard
deviation ∆I in time as explained in detail in Chapter 2 (section 2.4). In brief, four
regions of interest (ROIs), each corresponding to an area 5mm2 are selected close to
the target, as shown by the black lines on the images of the sheets (Figure 5.13). We
use ImageJ to independently measure I and ∆I for the four ROIs. The coefficient of
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1.9 m/s 2.7 m/s 

3.2 m/s 3.9 m/s 

1.7 m/s 2.6 m/s 

3.2 m/s 3.8 m/s 

a. b. 

Figure 5.12: Snapshot at maximum expansion for sheets produced with viscoelastic
samples at different impact velocities as indicated, impacting (a) on a small solid target
for a sample with G0 = 19 Pa (the scale bar is set by the black solid disc of diameter 6

mm) and (b) on a solid surface covered with liquid nitrogen for a sample with G0 = 21

Pa. (The scale bars are 6 mm).

variation ∆I/I is calculated for the four ROIs and finally average over four ROIs. For
clarity we show in Figure 5.13 the time evolution of ∆I/I for one measurement, in case
of a viscoelastic sample (G0 = 19 Pa and τ = 270 ms) in the main plot, and for liquid
samples (water and bridged microemulsion below percolation) in the inset. The shaded
area shown is the error bar resulting from the average over the four ROIs and the symbols
are the mean values.

For liquid samples, we measure that ∆I/I stays roughly constant in time, i.e. whole
thickness of the sheet during expansion and retraction is homogeneous. Images taken at
the maximum expansion are shown in Figure 5.13. We measure ∆I/I = 0.030 ± 0.004

for water and ∆I/I = 0.025 ± 0.004 for bridged microemulsion below percolation as
averaged over the lifetime of the sheet. Our observation can be generalized for experiments
performed with liquid samples at different impact velocities. Data are acquired for water
samples with various impact velocities vo and for several bridged microemulsion below
percolation (several φ). We find that ∆I/I does not depend on vo and φ. An average
over different experimental conditions yield ∆I/I = 0.040± 0.007 as averaged over vo for
water and ∆I/I = 0.030 ± 0.005 as averaged over φ for bridged microemulsion (below
percolation).

In the case of a viscoelastic sample, we measure that, at shorter times, i.e. before
the occurrence of rupture events, ∆I/I is comparable although slightly larger than liquid
samples (∆I/I = 0.06± 0.003). However, as the sheet ruptures (within one of the ROI)
there is a sharp increase by a five fold in ∆I/I is recorded. Images are shown with the
guided arrows for the corresponding time.

Previous analysis suffers from the fact that the result might depend on the choice of
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Figure 5.13: ∆I/I as a function of time for a viscoelastic sample with G0 = 19 Pa
(main plot). The inset shows the same for pure water and bridged microemulsion below
percolation. The shaded area shows the error bars and symbols are the mean values. The
sheets are produced for a fixed impact velocity vo = 4 m/s. Images are shown at the
corresponding time and samples.
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ROIs. To overcome this limitation, we perform complimentary analysis for which the
intensity fluctuations are measured over the whole area of the sheet. However, because
this has to be done manually, we restrict our analysis to the maximal expansion of the
sheet. Figure 5.14a shows ∆I/I as a function of ε for bridged microemulsions. As
explained in Chapter 3, we define ε as the normalized distance from the percolation

threshold ε =
φ− φc
φc

, φ is the mass fraction of oil droplets and φc = 2% is the critical

mass fraction of droplets above which the system behaves as viscoelastic. The error
bar on each symbol is the result of averaging over three experiments done for the same
sample under the same experimental conditions. We observe that, below percolation
(ε < 0), ∆I/I stays constant. On averaging over different liquid samples we measure
∆I/I = 0.05 ± 0.005, hence numerically comparable to the values measured for liquids
previously with the analysis in time over different ROIs (shown by the highlighted band
in Figure 5.14).

Interestingly, we find that ∆I/I continuously increases above percolation, i.e. for
viscoelastic samples up to εc = 0.35 (∆I/I = 0.17 ± 0.023) and then slightly decreases
but is always much larger than below percolation (∆I/I ∼= 0.11 ± 0.011). Similarly, we
also plot ∆I/I as a function of the impact velocity vo in Figure 5.14b for water and for
the bridged microemulsion with G0 = 19 Pa which exhibits the highest heterogeneities as
measured in Figure 5.14a. We find that ∆I/I does not depend on the impact velocity:
∆I/I = 0.050±0.005 for water and ∆I/I = 0.13±0.04 for bridged microemulsion (as av-
eraged over all investigated velocities). Hence, the results of Figure 5.14 strongly suggest
that heterogeneity in the sheet are governed by the sample elasticity and independent of
impact velocity studied here.
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Figure 5.14: (a) ∆I/I averaged over the whole area of the sheet at maximum expansion
is plotted as (a) a function of ε (normalized distance from the percolation threshold) for
bridged microemulsion below (ε < 0) and above percolation (ε > 0) for an impact
velocity vo = 4 m/s. (b) ∆I/I as a function of impact velocity for water and bridged
microemulsion above percolation (ε = 0.35). Symbols are the mean value of ∆I/I.
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Further, a calibration curve has been previously derived by correlating the grey level
of each pixel I of the image of a dyed liquid sheet to the local thickness h of the sheet:
h = Lexp(−BI) with L = 2207µm and B = 6.187 [Vernay 2015c]. Note that h is not
constant over the whole surface of the sheet, but decays from the center to the edge of
the sheet [Vernay 2015c]. Here, we measure an average value of h.
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Figure 5.15: (a) ∆h/h is plotted as (a) a function ε (normalized distance from the
percolation threshold) for the impact velocity vo = 4 m/s. (b) ∆h/h as a function of the
impact velocity for water and bridged microemulsion (ε = 0.35). Symbols are the mean
value of ∆h/h. The data are same as in Figure 5.14.

We used the above relation between the thickness and intensity and plot the data
of Figure 5.14 in terms of the relative fluctuations of ∆h/h = B∆I (Figure 5.15). We
observe that for viscoelastic samples the relative fluctuations of the thickness increases
with increasing elasticity and marginally increases with increasing impact velocity. For
water, ∆h/h stays constant with increasing impact velocity. Thus the occurrence of
cracks is essentially intrinsic to elasticity rather than impact velocity.

Figure 5.16a shows an example of the spatial fluctuation (guided by an arrow) in the
sheet produced by impacting viscoelastic microemulsion drop on a small solid target fol-
lowed by the emergence of the crack. In comparison, we can see that in the case of a sheet
produced by the impact of water drop, the sheet is homogeneous during the expansion.
At present, it is not clear how to analyze and rationalize those spatial fluctuations.
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Figure 5.16: Images of the sheet at different times at fixed impact velocity vo = 4 m/s
for (a) viscoelastic bridged microemulsion G = 19 Pa (b) water. The scale bar is set by
black solid disc of diameter 6 mm.

5.4 Conclusion

We have investigated freely expanding sheets produced by the impact of viscoelas-
tic drops on a solid surface using inverse Leidenfrost effect and on a small solid target.
There are few studies available in the literature regarding the impact of viscoelastic drops
compared to studies dealing with Newtonian systems. There have been experiments per-
formed to investigate the effect of polymer on the dynamics of thin sheets. The main focus
of these studies was to investigate the suppression of the drop rebound. Many hypothe-
ses have been proposed: for instance, V. Bergeron et al [Bergeron 2000] claimed that the
retraction of the sheet is impeded due to the elongational viscosity. By performing the
experiments with polymeric drops on a hot plate above the Leidenfrost temperature and
on a small solid target V. Bertola [Bertola 2009] and A. Rozhkov et al [Rozhkov 2003]
respectively showed that the role of elongational viscosity is negligible. D. Bartolo et al
[Bartolo 2007] alternatively suggested that the retraction of the sheet can be curtailed
by the non-Newtonian normal stresses that developed due to the presence of polymer.
But more recent studies have shown that inhibition in the rebound may be due to the
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interaction of polymer chains with the substrate that enhances the friction at the contact
line during the retraction [Smith 2010, Zang 2013, Smith 2014, Bertola 2015, Huh 2015].
In addition, there have been studies on yield-stress fluids by L.H. Luu et al [Luu 2009,
Luu 2013] to study the maximum expansion of microgel suspension (carbopol) on impact-
ing a smooth glass surface, a rough hydrophobic surface, and a small solid target. They
found that for impact on a smooth glass substrate, the maximal spread factor λ scales
as M1/3, M being the Mach number and for an impact on small solid target (perfect slip
condition) λ ∼ M . In another study using yield stress fluids, S. Chen et al [Chen 2016]
explain that the maximum diameter of the sheet is dominated by the inertial force and
thus scales as Weber number We. They also showed that, for higher yield stress, the
deformation of the sheet becomes permanent due to the inability of the surface forces to
retract the sheet.

We have used two experimental set-ups to investigate the maximum deformation of
a sheet produced by the impact of viscoelastic drops. The first set-up is based on drop
impacting a small solid target and the sheet freely expands in air. Despite the diameter
of the target is comparable to the drop diameter we have shown that viscous dissipation
occurs due to the finite contact between the expanding sheet and solid target [Arora 2016].
The second set-up is based on the principle of inverse Leidenfrost effect and the gaseous
vapor layer that forms when a drop impacts the surface covered with a layer of liquid
nitrogen leads to a substantial suppression of shear dissipation [Antonini 2013]. We have
shown that if the impact velocity is replaced by the effective velocity, the maximal spread
factor obeys the scaling law λ ∼ veff/U

∗, which is analogous to the one we have previously
and experimentally checked for elastic beads (Chapter 4). Here, veff is the velocity of the
sheet measured at the exit of the target and U∗ is the velocity of generalized elastic
deformations. We have also checked the validity of the scaling for viscous fluids. In the
case of minimal dissipation, veff = vo and when shear dissipation occurs veff < vo. Overall,
we have quantitatively rationalized the spreading dynamics of impacting drops and beads
for viscous, viscoelastic and elastic materials by taking surface elasticity, bulk elasticity,
and viscous dissipation into account.

We have also observed cracks in the interior of the sheet produced by the impact of
viscoelastic drops whose relaxation time is higher than the experimental time. Fracture
occurs when the sample is deformed at rates larger than the inverse of its relaxation
time. This has been shown in previous experiments for the same type of samples but in
different experimental conditions [Ligoure 2013]. Cracks have been observed in the gap
of a shear cell (pure shear flow [Tabuteau 2009]), in a pendant drop experiment (pure
extensional flow [Tabuteau 2008]) and in Hele-Shaw cell (complex flow involving both
shear and extensional flows [Foyart 2013]). Interestingly, E. Miller et al [Miller 2005]
and J.C. Thompson et al [Thompson 2007] have observed similar internal failures within
viscoelastic fluid sheets produced by impinging jets. For their experiments, they used
wormlike micelles and observed that, with the increase of sample elasticity and above a
critical flow rate, the number and growth of holes increase. They referred these multiple
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rupture events as fluid webs. Viscoelasticity also affects the symmetry of impacting jets,
unlike Newtonian fluids that preserve the radial symmetry [Lhuissier 2014]. In our case,
the rupture in the sheet occurs above the percolation threshold of bridged microemulsions
and we have observed the fracture in the sheet in both kinds of experiments (Inverse
Leidenfrost condition and solid target). Initiation of the cracks is a stochastic process
and can occur during expansion or retraction of the sheet. As an attempt to rationalize
the cracks within the sheet, we have quantified the heterogeneity of the thickness of
the sheet by measuring the relative fluctuations of the thickness of the sheet. Although
this approach seems promising at this stage, it is unfortunately not sufficient to fully
understand the occurrence of cracks in the freely expanding sheets of viscoelastic fluids
having relaxation time higher than the lifetime of the sheet.
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In this chapter, we study the fracture of reversible double transient networks, consti-
tuted of a water suspension of entangled surfactant wormlike micelles reversibly linked
by various amounts of telechelic polymers. We provide a state diagram that delineates
the regime of fracture without necking of the filament from the regime where no fracture
or break-up has been observed. We show that filaments fracture when stretched at a rate
larger than the inverse of the slowest relaxation time of the networks. We quantitatively
demonstrate that dissipation processes are not relevant in our experimental conditions
and that, depending on the density of nodes in the networks, fracture occurs in the linear
viscoelastic regime or in a non-linear regime. In addition, analysis of the crack open-
ing profiles indicates deviation from a parabolic shape close to the crack tip for weakly
connected networks. We demonstrate a direct correlation between the amplitude of the
deviation from the parabolic shape and the amount of non-linear viscoelasticity.

6.1 Experimental samples and techniques
We investigate self-assembled transient networks consisting of a semi-dilute solution

of surfactant wormlike micelles eventually reversibly cross-linked by telechelic polymers.
We use a mixture of cetylpyridinium chloride (CpCl) and sodium salicylate (NaSal) with



102 Chapter 6. Brittle Fracture of Polymer Transient Networks

a NaSal/CpCl molar ratio of 0.5 dispersed in brine (0.2 M NaCl). This mixture is known
to form long and flexible surfactant cylindrical micelles. The sample eventually comprises
home-synthesized triblock telechelic polymer, which has a poly(ethylene oxide) (PEO) hy-
drophilic backbone (molecular weight 10, 000 gmol−1) with hydrophobic aliphatic chains
grafted at both ends, CnH2n+1, where n = 23. The samples are prepared by weight and
mass fraction of micelles ϕ is fixed at 10%, with the amount of polymer β varied between
0 and 55%.

Shear rheology is used to investigate the sample viscoelasticity as explained in Chapter
2 (section 2.2.1). To measure the mechanical response of the samples under an exten-
sional deformation flow field, a VADER 1000 (versatile accurate deformation extensional
rheometer) from Rheo Filament ApS [Huang 2016b] is used. This has been explained in
detail in Chapter 2 (section 2.2.2). In our experiments, different strain rates, in the range
(0.03 − 2) s−1, are applied to measure the response of the viscoelastic materials in the
viscous and elastic regimes. The maximum Hencky strain reported is about 3. The main
reason for this limitation is the noise in the force signal for values less than about 10−3

N (corresponding to 0.1 g). All experiments are performed at T ≈ 25◦C.

The imaging of a filament during its stretching is performed using a high-speed cam-
era (Photron Mini UX100) coupled with the VADER 1000 rheometer [Huang 2016a] as
explained in Chapter 2 in section 2.2.2. The images are analyzed using the technique
explained in section 2.4.

6.2 Linear viscoelasticity
The composition of the samples is varied to tune their viscoelasticity. A simple worm-

like micelles solution (without telechelic polymer, β = 0) behaves as a pure Maxwell fluid
and is characterized by a shear plateau modulus G0 and a unique characteristic relaxation
time τ . G0 is related to the mesh size of the network of wormlike micelles, and τ is the ge-
ometric mean of the characteristic time for breaking/recombination and the characteristic
time for reptation [Cates 1987]. These parameters are obtained by fitting the frequency
dependence of the storage, G′ and loss modulus G′′ with their theoretical expressions for a
Maxwell fluid. Samples comprising telechelic polymers behave as two-mode Maxwell flu-
ids, resulting from the coexistence of two coupled networks [Nakaya-Yaegashi 2008], one
related to the bridging of the micelles by the telechelic polymers (elastic plateau Gfast,
relaxation time τfast) and another related to the micelle entanglement (elastic plateau
Gslow, relaxation time τslow with τslow > τfast). Here, the elastic plateau modulus is the
sum of the elastic moduli of the fast and slow modes, G0 = Gslow +Gfast.

Figure 6.1a shows the frequency dependence of G′ and G′′ together with the Maxwell
fits (one-mode Maxwell fluid for pure wormlike micelles, β = 0, and two-mode Maxwell
fluid otherwise), which account very well for the experimental data. Figure 6.1b summa-
rizes the evolution with the amount of telechelic polymer, β, of the rheological character-
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istics of the samples as extracted from the fits. The shear plateau modulus, G0, increases
monotonically with the amount of telechelic polymer, β, from 170 Pa in the absence of
polymer to 4600 Pa for β = 55 %. Similarly, both relaxation times continuously increase
with β. The characteristic relaxation time τslow of the micelles network increases from
0.6 s without polymer up to 7 s, for β = 55 %. The faster relaxation time, related to the
network of telechelic polymers, is systematically about one order of magnitude smaller
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Figure 6.1: Linear shear rheology for samples with various polymer concentrations, β,
as indicated in the legend. (a) evolution of the storage and loss moduli with frequency.
The symbols are the experimental data points and the continuous lines are the fit with
a one-mode (for β = 0) and a two-mode (for β 6= 0) Maxwell fluid models. (b,c) Fit
parameters, (b) elastic moduli and (c) characteristic relaxation times as a function of β.
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than the slower one. Note that, although the slow mode is related to the network of
wormlike micelles, its rheological characteristics (Gslow, τslow) are measured to continu-
ously increase with the amount of telechelic polymer, demonstrating a coupling between
the two networks.

On the other hand, the Young modulus can be measured using extensional rheology.
This requires data to be acquired at a sufficiently large extensional rate ε̇ as compared
to the slowest relaxation time so that viscous dissipation is not relevant. Figure 6.2a
shows the growth of the measured stress σ as a function of the strain ε = ε̇t, with ε̇ the
imposed extension rate and t the time elapsed since the sample is strained. In the limit of
small deformation, σ is found to be proportional to ε, as expected from linear elasticity:
σ = Eε, where the proportionality constant is the Young modulus E (Figure 6.2a). The
Young modulus is measured by fitting the experimental data at small deformation. We
find that E increases from 850 to 11600 Pa as β increases (Figure 6.2b). We measure
that E ' 3G0 as expected for an isotropic incompressible material.
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Figure 6.2: (a) Extensional stress as a function of the Hencky strain, ε, in the linear
regime (small ε), for samples with various polymer concentrations, β, as indicated in
the legend. The symbols are experimental data points and the lines are linear fits whose
proportionality constant is the elastic modulus, E. Data have been acquired in the elastic
regime (with Wi in the range (1-4) depending on the samples). (b) Young’s modulus E,
as a function of β is plotted.
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6.3 Modes of rupture of the filaments

6.3.1 State diagram

We perform extensional rheology measurements using the feedback loop to ensure
constant extensional rates, ε̇, for samples with various copolymer contents, β. Because
samples differ by their characteristic relaxation times (as shown in Figure 6.1c), the
relevant quantity is not ε̇ but the Weissenberg number, defined as Wi = ε̇τ for one-mode
Maxwell fluid and asWi = ε̇τslow, for two-mode Maxwell fluids. In our experiments,Wi is
varied over about two orders of magnitude (from 0.1 to 9.5). Visualization of the filament
during its extension indicates two distinct types of material behavior: either a continuous
liquid-like thinning up to the maximum Hencky strain εmax ≈ 3 or by solid-like fracturing
without necking [Tripathi 2006, Tabuteau 2009] at a Hencky strain below εmax. Note that
elastocapillary break-up [Eggers 1997, Anna 2001] is not observed for Hencky strains less
than 3. Clearly the thinning cannot continue to arbitrarily large Hencky strains since
capillary forces must ultimately dominate as the radius tends to zero. However, the
resulting capillary break-up is not the object of the present study. For all experimental
conditions, therefore, the behavior of the filament under a constant elongation rate is
categorized into one of these two classes, liquid-like (thinning) or solid-like (fracture).

All data are reported in a schematic state diagram (Figure 6.3) where Wi is plotted
as a function of β. We observe that the filament thins continuously at low Wi and cracks
at a finite thickness (without necking) at higher Wi. The transition from continuous
flow to filament rupture is similar to previous experimental observations on wormlike
micelle [Bhardwaj 2007] and associating polymer [Tripathi 2006] viscoelastic solutions.
Remarkably, for all samples investigated here, the transition from thinning to fracturing
occurs for a comparable critical Weissenberg numberWic ≈ (0.5−0.6). This experimental
result follows remarkably well with the theoretical Weissenberg criterion [Malkin 1997]
for the rupture of polymeric liquids in extension with a constant strain rate that predicts
Wic = 0.5 for an elastic (upper convected Maxwell) liquid, and Wic = 0.5/(1− E ) with
0 6 E < 1 that parameterizes non-affinities.

6.3.2 Non-linear extensional rheology

To assess the importance of non-linearity, we compare the time dependence of the
transient extensional viscosity, or tensile stress growth coefficient, η+

E , to the linear vis-
coelasticity expectations. As an illustration, data acquired at different extensional rates
for two samples differing by their amount of copolymer, β = 5 % (Figure 6.4a) and β = 55

% (Figure 6.4b), are displayed together with the linear viscoelastic expectations computed
thanks to the linear viscoelastic parameters determined using a shear rheometer. For a
two-mode Maxwell fluid, linear viscoelasticity predicts that η+

E continuously increases
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Figure 6.3: Schematic state diagram, Weissenberg number, Wi, as a function of the
amount of telechelic polymers in the sample. The symbols correspond to the experimen-
tal configurations investigated. The two regimes, continuous thinning at low Wi, and
fracturing without necking at high Wi, are shown. Representative images of the filament
corresponding to the two regimes are displayed. For the top image (crack), β = 25 %
and ε̇ = 1 s−1, and for the bottom image (capillary thinning), β = 0 and ε̇ = 1 s−1. Scale
bars: 1 mm.

with time until reaching a plateau for a time larger than the inverse of the slowest relax-
ation time, τslow. We measure that, at an early stage of time, the extensional rheology
data follow the expected linear viscoelastic behavior. The nice quantitative agreement
ensures the reliability of the two sets of measurements. In addition, we measure that crack
occurs at a time tc that decreases as the imposed extensional rate ε̇ increases, such that
the cumulated strain experienced by the sample, ε̇ tc, is roughly constant (of the order of
1). The marked difference between the two samples lies in the fact that for one sample
the fracture occurs nearly in the linear regime (β = 55 %, Figure 6.4b), whereas the other
sample exhibits a significant departure from the linear behavior before fracturing (β = 5

%, Figure 6.4a).

The crucial role of the sample structure on the non-linear viscoelastic behavior is also
clearly seen in Figure 6.5, where data for samples with different amounts of telechelic
polymers are plotted together. To account for the varying elasticities, the measured
stress, σ, is normalized by the modulus, E, as measured in the short time regime, at
small strain ε. By definition, data collapse at smaller strains. Although all samples crack
at a similar strain of the order of 1, they do so in very different manner: the sample with
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Figure 6.4: Extensional stress growth coefficient, for two samples with (a) β = 5 % and
(b) β = 55 % and for various extensional rates, as indicated in the legends. The symbols
are experimental data points and the continuous lines are the theoretical expectations for
linear viscoelasticity. Black crosses correspond to filament thinning and colored symbols
correspond to cracks. The arrows indicate the time when fracture occurs.

a large amount of polymer seems to fracture more or less in the linear viscoelastic regime
whereas the sample comprising of a small quantity of polymer exhibits large deviation
from the linear regime before fracturing. More quantitatively, we measure the stress, σc,
and the strain, εc, at which the sample fractures. For a given sample, we find that in the
range of extensional rates ε̇ investigated, εc and σc only weakly depend on ε̇, as previously
observed for pure wormlike micelles solutions [Rothstein 2003, Bhardwaj 2007]. We define
χ = σc

Eεc
, which quantifies non-linearity. For a sample that breaks in the linear viscoelastic

regime, one expects σc = Eεc, hence χ = 1. For a sample that strain-hardens, χ > 1.
We report in the inset of Figure 6.5 the evolution of χ with the amount of telechelic
polymer, β, where data acquired at different ε̇ are averaged. We find that χ decreases
as β increases, from values larger than 5 for the sample with a small amount of polymer
down to values in the order of 1 for β ≥ 45 %.

Thus, weakly connected samples (i.e. sample containing low amount of telechelic
polymers) exhibit significant strain-hardening before fracture, whereas more connected
samples break in the linear viscoelastic regime. Note that the numerical value found
here for a sample without telechelic polymer is in agreement with the one measured
in [Bhardwaj 2007] for a comparable system.

Hence, extensional rheology demonstrates that, although all samples display quali-
tatively similar linear viscoelastic behavior (which can be well accounted by a Maxwell
model), they present very different non-linear viscoelastic behaviors and fracture pro-
cesses can occur in the linear regime (χ ≈ 1) or after a significant strain-hardening
(χ > 1) depending on the sample connectivity.
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Figure 6.5: Extensional stress normalized by the Young modulus measured in the linear
regime at low strain (Figure 6.2a) as a function of the strain, for samples with different
amount of telechelic polymers, β, as indicated in the legend. For all samples, the strain
rates have been adjusted such that Wi ∼ 1. The symbols are the experimental data
points and the continuous line is the linear regime expectation σ/E = ε. Fracture occurs
at σc and εc. Inset: Variation of χ = σc

Eεc
with β. The dotted line indicates the linear

viscoelastic regime.

6.3.3 Crack imaging

To better understand the links between the sample structure, the non-linear exten-
sional rheology, and the fracture process, we use a fast camera to image the cracks during
the extension of a filament at a prescribed rate. Figure 6.6 displays a representative time
series during the crack propagation of a sample with β = 25 %. Cracks are imaged for
various samples with β ranging from 15 to 55 %. In all cases, a single crack is formed
that systematically propagates straight, perpendicularly to the extension direction.

By tracking the crack tip, the instantaneous velocity of the crack, UC , can be mea-
sured. To account for the various elastic moduli of the samples considered here, data
have to be compared with the shear wave sound velocity, US, of each sample. For a
solid of shear modulus G0, US =

√
G0/ρ, with ρ the sample density. For the samples

investigated here, US varies between 1 and 2 m/s. Figure 6.7 displays for all samples
the crack velocity normalized by the sound velocity, UC/US. UC/US increases steadily
and reaches a plateau value more or less when the crack length becomes comparable to
half the filament diameter (ς = 0.5). The cracks propagate fast as the steady state value
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Figure 6.6: Time series of a crack propagating in a sample with β = 25 % and strain
ε̇ = 1 s−1. The scale bar is 1 mm.

is comparable to the shear wave velocity (UC/US ranges between 0.5 and 1). Finally,
we mention that cracks propagate fast but do not oscillate (as opposed to the finding
of [Deegan 2001, Livne 2007]) probably because cracks travel over very short distances
in our experiments.
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Figure 6.7: Velocity of the crack tip as a function of the run distance, for samples with
different amounts of telechelic polymers and different strain rates, as indicated in the
legend. The velocity is normalized by the shear wave sound velocity and the distance by
the total thickness of the filament, such that ς = 0.5 correspond to the mid-filament.
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6.3.4 Crack opening profiles

An interesting feature concerns the crack opening profiles. As shown in Figure 6.8, the
crack shape might depart significantly from the parabolic shape theoretically expected
with the use of finite elasticity theory required for such soft materials [Tabuteau 2011],
and displays close to its tip a wedge profile. The deviation from the parabolic shape
is quantified by the length ` extracted from a fit of the profile of a crack (whose tip is
positioned at x = 0, y = 0) with the functional form y = ` + ax2. The fit shown as red
lines in Figure 6.8 account very well for the experimental data and yield numerical values
for ` between 0.017 and 0.2 mm, and for a between 0.42 and 0.76 mm−1.
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Figure 6.8: Crack opening profiles are measured when the cracks have propagated over
a distance equal to half the filament thickness for a sample with β = 15 % (a) and 55 %
(b). The grey symbols are the experimental data points and the thin red lines correspond
to the fit of the profile with a parabola, allowing the determination of the distance `.

This type of profile has already been observed experimentally in elastomers and per-
manent gels [Deegan 2001, Livne 2008, Goldman 2012, Morishita 2016]. Similarly, to the
previous works, we find that overall ` increases as the propagation velocity of the crack
increases (Figure 6.9).

6.4 Discussion

The samples investigated here are viscoelastic fluids, characterized by one (or two)
relaxation times. We observe (Figure 6.3) that they fracture only if they are submitted
to an extensional strain larger than the inverse of their longest relaxation time (Wi ≥ 1).
Hence we expect that for the large strain rates viscous dissipations are negligible. This
is in accordance with the fact that the cracks propagate at very large speed, comparable
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Figure 6.9: Length ` as a function of the velocity of the crack tip normalized with the
speed of the shear wave, for samples with different amounts of telechelic polymers and
different strain rate. The symbols are the same as in Figure 6.7.

to the shear wave velocity for a solid. More quantitatively, to check whether viscoelastic
effects do play a role or not in the crack propagation, one has to compare the length
over which the crack propagates L and the length l = UCτslow over which viscoelastic
effects are relevant [De Gennes 1988, De Gennes 1996]. In our experiments, the crack
velocity in the steady state (at mid-filament) UC is typically in the order of 1 m/s and
the slow relaxation time of the network τslow is in the range (2 − 7) s. These values
yield a length l = UCτslow that ranges between 2.5 and 11 m, while the radius of the
filament, that dictates the length L over which the crack propagates, is typically of 1

mm. Hence in all cases, l is several orders of magnitude larger than L, ensuring that
viscous effects are not relevant. This is consistent with the fact that at large distance
the crack is parabolic and does not exhibit the x3/2 scaling predicted by the viscoelastic
trumpet model [De Gennes 1996] and experimentally measured in the adhesive fracture
of a polymer melt [Saulnier 2004] and in polymer liquid under tension [Huang 2016a].
In addition, because the samples investigated here are very soft and strained elastically
over very large deformation, they can be considered as hyperelastic. The importance
of hyperelasticity in the vicinity of the crack tip may play an important role in the
dynamics of fracture [Buehler 2003, Buehler 2006]. The characteristic size over which
very large strains are involved close to the crack tip reads Rtip ≈ Γ/G0 with G0 the
shear modulus and Γ the fracture energy which can be approximated in the framework
of finite elasticity as πG0

4a
[Hui 2003] (with a the radius of curvature of the crack tip,

extracted from the parabolic fit of the crack profile). Hence Rtip ≈ 1/a, and ranges in
our experiments between 1.3 and 2.4 mm. In addition to the criterion given above, the
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generalization of the viscoelastic trumpet model to hyperelastic materials dictates that
Rtip

L
L
l
must be small [Tabuteau 2011] to ensure that viscous dissipations are negligible.

In our experiment Rtip is comparable to L and L � l, hence Rtip

L
L
l
� l, and viscous

dissipation is expected to be negligible. All these experimental facts show that filaments
always fracture in the elastic limit and that dissipation is not relevant in the process.
Hence, despite the samples being viscoelastic, the fractures are brittle in the experimental
conditions considered here.

Our results can therefore, be put in parallel with experiments on solid samples. The
peculiar opening profile of the cracks that we measure has been previously observed,
but only in elastomers [Deegan 2001, Livne 2008, Goldman 2012, Morishita 2016]. Livne
et al pointed out the importance of non-linear elasticity close to the crack tip for the
investigated soft incompressible elastomers (elastic moduli in the range 33 − 190 kPa).
They demonstrated that the length ` is not related to dissipative processes, i.e. ` cannot
be regarded as a characteristic length of a process zone, and argued indirectly that ` is
related to finite elasticity. More recently, a correlation has been experimentally shown be-
tween ` and the hyperelasticity measured independently for elastomers filled with various
amounts of carbon black [Morishita 2016].

Our data allows us to check for a direct correlation between the shape of the opening
profile and the sample non-linear viscoelasticity. As discussed above, the non-linear
viscoelasticity can be quantified with χ = σc

Eεc
, where σc, resp. εc, is the stress, resp. the

strain at which a crack nucleates and E is the sample modulus. We show in Figure 6.10a
that ` is rather small (of the order of 0.08 mm) when the samples cracks in the linear
viscoelastic regime (χ ≈ 1) and continuously increases with χ, directly demonstrating the
correlation between the amount of non-linear viscoelasticity and the departure from the
parabolic shape of the crack profile. It is interesting to compare ` to the characteristic
length of the fracture process, L = UC

ε̇
, where UC is the speed of the crack and ε̇ is the

rate at which the filament is strained. The plot of the non-dimensional length `
L varies

monotonically with χ (Figure 6.10b). Intriguingly, we find that `
L varies as a power law

with χ− 1 with an exponent 1/3, suggesting a critical phenomenon (inset Figure 6.10b).

As a final remark, we wish to discuss our results in light of the sample structure.
On the time and length scales considered here, the samples can be considered as blends
of two coupled networks. One network is formed by the entangled wormlike micelles
and the other one is formed by the telechelic polymers that link the wormlike micelles.
We have investigated a family of samples such that the network of wormlike micelles
is kept constant and the density of the network of telechelic polymers is varied, as β
changes. Our results show that double networks with a loose telechelic network strain
hardens before fracturing. By contrast, when the telechelic polymer network is denser,
the sample does not strain harden but fractures in the linear regime. Our findings,
therefore, suggest that the capacity to strain harden is a specific feature of the worm-
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Figure 6.10: Correlation between the non-linear viscoelasticity quantified by χ = σc
Eεc

and the departure from the parabolic shape quantified by (a) the length `, (b) the normal-
ized length `

L . The dotted lines indicate linear viscoelasticity. Inset: normalized length
as a function of χ− 1 in a log-log plot. The best fit yields a powerlaw with an exponent
1/3.

like micelles network, which may be impeded to do so due to the strong coupling with
the telechelic network. This physical picture is consistent with experiments on various
wormlike micelle systems. Indeed, for entangled wormlike micelles solutions, considerable
strain hardening has been measured and modeled by the finitely extensible nonlinear elas-
tic (FENE-PM) model which accounts for the finite extensibility of the wormlike micelles
regarded as Gaussian chains [Walker 1996, Rothstein 2003]. Interestingly, Rothstein et
al. [Rothstein 2003, Bhardwaj 2007] have also measured a decrease of the strain harden-
ing when the concentration of wormlike increases, in agreement with our experimental
observations, due to the increase in the density of elastic nodes.

6.5 Conclusion
We have investigated the fracture processes in self-assembled double transient net-

works by combining fast imaging to a filament stretching rheometer. The networks break
elastically without necking when deformed at a rate larger than the inverse of their lowest
characteristic relaxation time. We have rationalized the non-relevance of viscous dissipa-
tion effects and from the analysis of the crack opening profile, we have evidenced for the
first time, for viscoelastic fluids and in filament breaking experiments a departure at the
crack tip from the parabola expected from linear viscoelasticity. Thanks to the unique
coupling in one single experiment between rheological measurements and crack opening
profile characterization, we have provided a direct evidence of a correlation between the
non-linear viscoelasticity and the shape of the crack profile close to the tip. By varying
the composition, we have tuned the sample viscoelasticity and have found that samples
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with dense networks of elastic nodes break in the linear regime whereas samples with a
loose network of nodes exhibit significantly strain-hardening before fracturing.



General Conclusions and Perspectives

During my PhD project, I have performed two different kinds of experiments to study the
effect of large deformations on various gels. One class of experiments aims to study freely
expanding sheets produced by the impact of liquid drops, viscoelastic drops and elastic
beads on solid surfaces. These expanding sheets undergo large extensional deformations.
The second class of experiments aims to investigate the extensional stretching deformation
and fracture of viscoelastic fluids using a filament stretching rheometer coupled to a fast
camera.

Freely expanding sheets

We have investigated freely expanding sheets produced by impacting viscous and
viscoelastic drops on a small solid target of size comparable to that of the drops. To do so,
we used Newtonian fluids of glycerol/water mixtures and viscoelastic fluids that consist of
self-assembled transient networks (surfactant spherical micelles and surfactant-stabilized
oil droplets suspended in water reversibly linked by telechelic polymers). The sample
composition is varied to tune the viscoelastic behavior. Below a percolation threshold
micelles and microemulsions behave as Newtonian fluids. Above the percolation they are
viscoelastic and behave as simple Maxwell fluids. We have characterized the percolation
threshold, the zero shear viscosity η0, the shear plateau modulus G0 and characteristic
relaxation time τ of the Maxwell fluids by standard linear rheological measurements.

The Ohnesorge number that compares the viscous forces to inertial and surface forces,
Oh = η0√

ργdo
is the relevant parameter to classify the behavior of viscous drops upon im-

pact. Here ρ is the sample density, η0 is the zero-shear viscosity, γ is the surface tension
and do is the drop diameter. Figure A summarizes our main experimental findings. We
have found that, for viscous droplets and for small Oh, the maximal spread factor λ
is governed by the balance between inertia and surface tension, whereas for higher Oh
viscous effects play an important role. We have used a simple model of the sheet expan-
sion where inertia, surface tension and viscosity are considered to explain the maximal
deformation of the sheet. To take into account the viscous effects on λ, we have defined
an effective impact velocity veff which is reduced compared to the real impact velocity.
We have measured veff by taking the time derivative of the diameter of the sheet d at
short time i.e. when the size of the sheet becomes larger than the size of the target. A
simple model based on an effective energy conservation where the impact velocity has
been replaced by the effective velocity has been successfully used to account for our ex-
perimental results. The quantitative agreement between the model and the experiments
shows that the dissipation mainly originates from viscous shear on the small surface of
the target and that, when the sheet freely expands in air, extensional viscous dissipation
is negligible.
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In the case of viscoelastic fluids a relevant parameter is the Deborah number, De,
defined as the ratio between the characteristic relaxation time τ , and the lifetime of the
sheet (τlife ∼ 10 ms). When De� 1, we find that upon impact Maxwell fluids, behave as
simple Newtonian fluids with zero-shear viscosity G0τ . For samples for which De > 1, the
departure from the Newtonian case can be accounted for by the sample viscoelasticity.
Interestingly, the dynamics of viscoelastic sheets produced with Maxwell fluids whose
characteristic relaxation time is much larger than the lifetime of the sheet (De� 1), the
expansion drastically differs from those of other samples. The sheet expands much more
than viscous sheets with comparable zero shear viscosity. In addition, the expansion of
the sheet is highly heterogeneous and displays cracks and holes, revealing the sample
elasticity. We have shown that the cracks observed in viscoelastic sheets for De� 1 are
the consequence of the sample elasticity. A more quantitative analysis would however be
needed to fully understand and model the nucleation and growth of the cracks.
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Figure A: Maximum diameter (normalized by its value at low viscosity), as a function
of zero-shear viscosity (bottom x-axis) and Ohnesorge number (top x-axis). Images are
shown for inviscid regime, viscous regime and viscoelastic regime (De� 1). The scale is
set by the black solid discs of diameter 6 mm.

The results are reported in the publication, Interplay between viscosity and elasticity
in freely expanding liquid sheets, S. Arora, C. Ligoure and L. Ramos, Phys. Rev. Fluids,
1, 083302, 2016 [Arora 2016].

To investigate the maximal deformation in more detail and also to elucidate the role
of elasticity, we have designed a new and original set-up to avoid any viscous dissipa-
tion that occurs even when using a small solid target. We have used a solid substrate
covered with liquid nitrogen (−196◦C). On impacting the surface, a gaseous cushion of
nitrogen forms between the drop or bead and the surface due to the evaporation of liquid
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nitrogen. The cushion acts as a thermal insulator between the solid substrate and the
sheet. The sheet while expanding or retracting is supported by the vapor layer. We
have provided a universal scaling model for the maximal spread factor λ that depends on
two elastic contributions: the surface elasticity due to surface tension that is quantified
by the characteristic velocity UL =

√
3γ/ρdo and the bulk elasticity, quantified by the

characteristic velocity US =
√
G0/ρ. Here, γ is the surface tension, ρ is the density, do is

the initial diameter of drop, and G0 is the elastic modulus. A simple argument of energy
conservation yields λ ≈ vo/U

∗ with U∗ =
√
UL

2 + US
2 and vo the impact velocity. This

scaling also provides the asymptotic known behaviors for simple liquids (λ ≈ vo/UL) and
elastic solids (λ ≈ vo/US).

To check the validity of the theoretical model, we have performed experiments on a
large variety of samples and have impacted drops and beads at different velocity in the
range (1 m/s - 5 m/s). We have also used original ultra-soft beads with elastic modulus
in the range (10 − 700 Pa) made of a loose permanently crosslinked polymer network.
We have also used liquids with various surface tensions (30 ≤ γ ≤ 72 mN/m), and
viscoelastic samples with De� 1. We find that the data for all the samples collapse on
a single master curve when λ is plotted as a function of vo/U∗ and that λ varies linearly
with vo/U

∗ as predicted theoretically. Our data also demonstrates that for ultra-soft
elastic beads, it is necessary to take surface elasticity into account in order to model their
spreading. We have also shown that the time needed to reach the maximum deformation
can be described by the same unified scaling prediction for liquids and solids as a function
of the reduced impact velocity. Moreover, the dynamics of expansion and retraction of
the sheets produced by the impact of a solid bead or a liquid drop can be understood in
terms of simple harmonic motion without viscous dissipation and with a characteristic
frequency of oscillation ∼ U∗/do.

Interestingly, we have also shown that the impact experiments done on a small solid
target using viscoelastic fluids (with De � 1) and viscous Newtonian fluids follow a
similar scaling law once the impact velocity vo is replaced by the effective velocity veff

defined as above. Figure B shows the data acquired for liquid, viscous, viscoelastic, and
elastic samples impacting on a small solid target as well as on a surface covered with
liquid nitrogen. This master curve reveals a universal feature of all impacting materials.

In perspective, the present study can be extended to viscoelastic systems whose
characteristic relaxation time is close to the experimental time scale in order to ratio-
nalize the subtle interplay between viscous dissipation and elasticity. Furthermore, more
experiments would be required to better understand quantitatively the manifestations of
cracks observed in sheets produced by impacting viscoelastic drops (with De� 1).

Filament stretching

We have investigated the uniaxial extensional deformation of self-assembled transient
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Figure B: Maximal spread factor λ as a function of veff/U
∗ where veff is the effective

velocity with veff = vo for the experiments performed using inverse Leidenfrost effect and
U∗ is the velocity of generalized elastic deformations. The symbols are experimental data
points for several classes of sample as indicated in the legend.

networks comprising surfactant wormlike micelles reversibly crosslinked by telechelic poly-
mers using an extensional rheometer coupled to a fast camera. We have found that the
networks break elastically without necking when deformed at a rate larger than the in-
verse of their lowest characteristic relaxation time. Figure C presents a state diagram of
the viscoelastic filament under extensional stress. By varying the amount of copolymer,
we have tuned the sample viscoelasticity and have found that samples with a dense net-
work of elastic nodes break in the linear regime whereas samples with a loose network
of nodes exhibit significantly strain hardening before fracturing. With the advantage of
coupling the extensional rheometer with the fast camera, we have provided a direct evi-
dence of a correlation between the non-linear elasticity and the shape of the crack profile
close to the tip. We have rationalized the non-relevance of viscous dissipation effects.We
have evidenced, for the first time for viscoelastic fluids, a departure from linear elasticity
in the crack propagation as shown by a deviation from the parabolic shape at the crack
tip. This amplitude of deviation increases with the decrease in node density. We have de-
fined a non-dimensional length `/L, where ` is the amplitude of deviation from parabolic
shape and L = Vc/ε̇ is the characteristic length of fracture process with Vc the velocity
of the crack tip and ε̇ the extensional rate. We have found that `/L varies as (χ− 1)1/3,
χ = σc/Eεc quantifies the non-linearity of the sample. Here σc is the extensional stress
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Figure C: Schematic state diagram of stretched viscoelastic filament, Weissenberg num-
ber, Wi = ε̇τ as a function of the amount of telechelic polymers β in the sample. Here
ε̇ is the extensional rate and τ is the rheological relaxation time of the sample. The
symbols correspond to the experimental configurations investigated. The two regimes,
(i) continuous thinning at low Wi, and (ii) fracturing without necking at high Wi, are
shown. Representative images of the filament corresponding to the two regimes are dis-
played. For the top image (crack) crack, β = 25 % and ε̇ = 1 s−1, and for the bottom
image (capillary thinning), β = 0 and ε̇ = 1 s−1. The scale bars are 1 mm.

at which fracture occurs, E is the Young’s modulus, and εc is the strain at which fracture
occurs.

The results are reported in the manuscript Brittle fracture of polymer transient net-
works, S. Arora, A. Shabbir, O. Hassager, C. Ligoure and L. Ramos, submitted to special
issue of J. Rheol. 2017.

In perspective, first it would be interesting to elucidate the physical meaning of the
simple scaling behavior of the characteristic length, `/L = (χ− 1)1/3 that we have ob-
served. We have focused on very long entangled wormlike micelles bridged by telechelic
polymers. These samples are expected to align under stress (as shown in [Foyart 2016]).
It would therefore be interesting to investigate how the structural rearrangement of these
networks is coupled with the formation, shape and propagation of the cracks under exten-
sional deformation. It would be also interesting to study other samples where the shape
of the micelles varies (it can be tuned from spherical to rodlike to wormlike) in order to
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study its influence on crack propagation. Indeed, previous experiments from our group
have suggested that this factor controls the brittle-like to ductile-like fracture transition
[Ramos 2011, Foyart 2016].



Appendix A

Chemical Compounds

Numerous chemical constituents are used for the sample preparation. All the chemi-
cals are purchased from Sigma-Aldrich except the telechelic polymers which are home-
synthesized by Ty Phou. Cetylpyridinium chloride (CpCl) is purified by successive re-
crystallisation in acetone and water before usage. The rest of the chemicals are used as
received.

Table A.1 and A.2 summarize the chemicals used with their chemical formula and
molecular weight.

Chemical Compound Chemical Formula
Molar
Mass
(gmol−1)

Cetylpyridinium chloride (CpCl) C21H38ClN
339.99

Sodium Salicylate (NaSal) C7H5NaO3
160.10

Sodium chloride (NaCl) NaCl 58.44

Octanol C8H)17OH 130.23

Decane C10H22
142.29

Telechelic Polymer C12
[CH3(CH2)11]NHCO(OCH2CH2)795

O(CO)NH[(CH2)11CH3]

35,400

Telechelic Polymer C18
[CH3(CH2)17]NHCO(OCH2CH2)795

O(CO)NH[(CH2)17CH3]

35,600

Telechelic Polymer C23
[CH3(CH2)22]NHCO(OCH2CH2)239

O(CO)NH[(CH2)22CH3]

10,540

Table A.1: Chemical formula and molecular mass of the different compounds used for
sample preparation.
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Chemical Compound Chemical Formula
Molar
Mass
(gmol−1)

Acrlyamide C3H5NO
71.08

N,N’-methylenebisacrylamide C7H10N2O2
154.17

Sodium persulfate Na2S2O8
238.1

Tetramethylethylenediamine
(TEMED)

C6H16N2
116.21

poly(methylhydrosiloxane) (CH3(H)SiO)n -

Glycerol C3H8O3
92.09

Ethanol C2H6O
46.08

Silicone Oil (Si(CH3)2O)n
-

Erioglaucine disodium salt C37H34N2Na2O9S3
792.84

Table A.2: Chemical formula and molecular mass of the different compounds used for
sample preparation.



Appendix B

Extensional Viscous Dissipation During
the Expansion of a Liquid Sheet

We take into account the fact that dissipation occurs in the whole volume of the expanding
sheet. This dissipation is due to the elongation stresses that develop in the liquid sheet
during its expansion. We can write the energy dissipation at a scaling level as:

Eextension '
∫ tmax

0

∫
V

σε̇dV dt (B.1)

Here tmax is the time at the maximum expansion of the sheet, Vdrop is the volume of the
drop, σ is the extensional stress and ε̇ is the strain rate. The integration is over time and
volume. σ can be written as ηbeε̇ where ηbe is the biaxial extensional viscosity. Equation
B.1 thus reads:

Eextension '
∫ tmax

0

∫
V

ηbeε̇
2dV dt (B.2)

In the case of biaxial extensional flow, the strain rate is given by:

ε̇ =
1

d

dd

dt
(B.3)

here, d is the diameter of the sheet at time t and do is the initial diameter of the drop.
Substituting for the strain rate using Equation B.3 in Equation B.2 and assuming volume
conservation yields:

Eextension ' ηbeVdrop

∫ tmax

0

(
1

d(t)

)2(
dd

dt

)2

dt (B.4)

here, Vdrop =
πdo

3

6
is the volume of the drop.

Using a simple scaling approach, at maximal expansion of a sheet dmax we can write:

dd

dt
≈ dmax − do

tmax

and d ≈
√

dmaxdo (B.5)

Using Equation B.5 in Equation B.4 we obtain:
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Liquid Sheet

Eextension ' ηbeVdrop

(
1

tmax

)(
(dmax − do)2

dmaxdo

)
(B.6)

Equation B.6 gives the expression for the dissipation energy due to biaxial extension flow
in the expanding sheet.



Appendix C

An Alternative Model for the Maximal
Spread Factor?

C. Clanet et al [Clanet 2004] have proposed an alternative model to predict the maximal
spread factor λ = dmax/do (with dmax the maximum diameter of expanded sheet and
do the initial drop diameter) of a drop of low viscosity impacting a superhydrophobic
surface. The model predicts λ ∼ We1/4 rather than the more classical result λ ∼ We1/2

derived from energy conservation approach. Here, Weber number We = ρvo
2do/γ with ρ

the density, vo the impact velocity and γ the surface tension.

The scaling law λ ∼ We1/4 has been shown to be in good quantitative agreement
with experimental data [Josserand 2016]. The physical picture behind this scaling is
that, during the impact, the drop is submitted to a high acceleration a ∼ vo

2/do leading
to an effective capillary length l∗c =

√
γ/ρa much larger than the classical capillary length

of a drop at rest in the gravitational field of earth lc =
√
γ/ρg. The shape of the sheet

should result from a balance between the effective gravity and surface forces. Thus its
thickness h necessarily scales as l∗c . Using simple volume conservation, do3 ≈ hdmax

2,
gives λ ∼ We1/4.

Using a similar approach and assuming thickness scales as l∗ec, we calculate an effective
elasto-capillary length l∗ec for soft elastic solids and liquids in the gravitational field a by
balancing the effective gravitational energy, surface energy and bulk elastic energy at a
simple scaling level:

dmax
2ρal∗2ec ≈ γdmax

2 + do
3G0

dmax
2

do
2 (C.1)

Here G0 is the elastic modulus and a ∼ vo
2/do as in [Clanet 2004]. Using simple volume

conservation d2
maxl

∗
ec ≈ do

3, we obtain:

ρal∗ecdo
3 ≈ γ

do
3

l∗ec
+ do

3G0
do

3

do
2l∗ec

(C.2)

By solving Equation C.2,

l∗ec ≈

√
γ

ρa
+
G0do
ρa

(C.3)
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Using a ∼ vo
2/do in Equation C.3,

l∗ec ≈

√
γdo
ρvo2

+
G0do

2

ρvo2
(C.4)

Writing Equation C.4 in terms of characteristic velocity, we obtain:

l∗ec =
do
vo

√
UL

2 + US
2 (C.5)

with US =

√
G0

ρ
as the velocity of transverse sound waves in an elastic medium [Kolsky 1963]

and UL =

√
3γ

ρdo
as the typical velocity of the free oscillations of a drop called Rayleigh

velocity [Rayleigh 1879]. Thus Equation C.5 can be written as:

l∗ec =
do
vo
U∗ (C.6)

with U∗ =
√
UL

2 + US
2 a typical velocity of the material for generalized elastic deforma-

tions.

Using simple volume conservation, do3 ≈ l∗ecdmax
2 one obtains a simple scaling for the

maximal spread factor,

λ ∼
√
vo
U∗

(C.7)

Equation C.7 shows that λ is predicted to vary linearly with (vo/U
∗)1/2 rather than with

vo/U
∗ using an energy approach developed in Chapter 4 and 5.

We check the agreement of our experimental data with the prediction of Equation
C.7. We first plot in Figure C.1a data for soft elastic beads impacting a non-interacting
solid surface (using inverse Leidenfrost effect, Chapter 4). We find that all the data fairly
collapse on a single curve. However, we find that the linear variation of λ with (vo/U

∗)1/2

predicted by Equation C.7 only holds at small λ ≤ 3. By contrast Figure C.1b clearly
shows that λ varies linearly with (vo/U

∗) over the whole range of λ as demonstrated in
Chapter 4.

We also plot in Figure C.2a data obtained with the same experimental set-up for
liquid drops, viscoelastic drops and elastic beads (Chapter 4 and 5). Similarly, we find
that (vo/U

∗)1/2 does not provide a nice account of the experimental data in contrast with
the scaling derived from energy argument (Chapter 4 and 5) shown in Figure C.2b.
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Figure C.1: Maximal spread factor λ as a function of (a) (vo/U
∗)1/2 (b) (vo/U

∗) where vo
is the impact velocity and U∗ is the velocity of generalized elastic deformations (Equation
C.7). The solid symbols are experimental data points for elastic beads with different shear
modulus as indicated in the legend. The solid lines are linear fits.
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Figure C.2: Maximal spread factor λ as a function of (a) (vo/U
∗)1/2 (b) (vo/U

∗) where
vo is the impact velocity and U∗ is the velocity of generalized elastic deformations. The
solid symbols are experimental data points for elastic beads with different shear modu-
lus, empty symbols for liquids with different surface tension and semi black symbols for
viscoelastic drops with different shear modulus as indicated in the legend. The solid lines
are linear fits at small λ.
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Drops, beads and filaments of gels under extreme deformations

Abstract: In this thesis, we investigate the behavior of various gels subjected to extreme mechanical
stresses. Two kinds of gels have been explored: self-assembled transient gels and permanently crosslinked
gels. Two different techniques are used to impose large extensional deformations. In one class of experi-
ments, we study the dynamics of freely expanding sheets produced by impacting a drop or bead on solid
surfaces in minimal dissipation conditions. This can be achieved either by impacting the drop or bead
on a small solid target or on repellent surfaces. Upon impact, the drop or bead is transformed into a thin
sheet that expands and retracts due to elasticity. The drops comprise of Newtonian viscous fluids with a
zero shear viscosity η0 in the range 1− 1000 mPa.s, viscoelastic fluids whose linear viscoelastic behavior
can be accounted by Maxwell model with a characteristic elastic modulus G0 in the range 2 − 600 Pa
and relaxation time τ in the range 1− 400 ms and the polymeric gel beads whose elastic modulus lies in
the range 10− 700 Pa.

In the case of sheets produced by impacting a drop on a small solid target, we show that for vis-
coelastic fluids with τ smaller than the typical lifetime of the sheet (τlife ∼ 10 ms), the dynamics of
viscoelastic sheets is similar to that of Newtonian viscous liquids with equal zero-shear viscosity. The
maximal expansion of the sheet, dmax, decreases with η0 = G0τ and can be quantitatively accounted by
a simple model based on an energy balance between inertia, surface tension and viscous shear dissipation
on the solid target. By using a semi-empirical approach, we quantitatively account for the dependence
of maximum spreading of the sheet with the sample viscosity and show that the dissipation on the small
target can be accounted by measuring an effective velocity of the expanding sheet at short time scale. On
the other hand, when τ > τlife the behavior differs drastically. The sheet expansion is strongly enhanced
as compared to that of viscous samples with comparable zero-shear viscosity.

We show that the shear dissipation can be substantially eliminated by performing drop impact
experiments on a solid surface covered with a thin layer of liquid nitrogen, thanks to inverse Leidenfrost
effect. We performed experiments using elastic beads of various elastic moduli, liquid drops of various
surface tensions and viscoelastic fluids with τ > τlife. The experiments reveal a universal scaling behavior
of the maximum expansion with the impact velocity and the dynamics of the system mimics the dynamics
of a conventional spring-mass system. Furthermore, we show that in the case of viscoelastic or Newtonian
viscous drops impacting the solid target, similar scaling can be used once the viscous dissipation is
accounted by replacing the impact velocity with the effective velocity that can be measured. Another
fascinating behavior observed in the case of viscoelastic fluids with τ > τlife is a heterogeneous expansion
of the sheet with the occurrence of cracks, revealing the elastic nature of the viscoelastic fluid.

In another class of experiments, we study the fracture of reversible double transient networks by
coupling extensional rheology to fast imaging of the stretching filament. We provide a state diagram
that delineates the regime of fracture without necking of the filament from the regime where no fracture
or break-up has been observed. We show that filaments fracture when stretched at a rate larger than the
inverse of the slowest relaxation time of the networks. We quantitatively demonstrate that dissipation
processes are not relevant in our experimental conditions and that, depending on the density of nodes
in the networks, fracture occurs in the linear viscoelastic regime or in a non-linear regime preceded by
a considerable strain hardening. In addition, analysis of the crack opening profiles indicates deviations
from a parabolic shape close to the crack tip for weakly connected networks. We demonstrate a direct
correlation between the amplitude of the deviation from the parabolic shape and the amount of non-linear
viscoelasticity.

Keywords: drop impact, liquid sheet, maximal expansion, viscoelastic fluids, Newtonian fluids, elastic
solids, elasto-capillarity, filament stretching, fracture, extensional rheometry





Gouttes, perles et filaments de gel sous déformations extrêmes
Résumé: Nous étudions le comportement de gels soumis à des contraintes mécaniques extrêmes. Deux
types de gels (transitoires auto-assemblés et réticulés permanents) et deux techniques pour imposer de
grandes déformations extensionnelles sont explorés.

D’une part, nous étudions la déformation biaxiale de nappes libres produites par impact d’une
goutte ou perle sur une surface solide dans des conditions de dissipation énergétique minimisée, réalisée
par impact soit sur une petite cible solide, soit sur une surface répulsive. Lors de l’impact, la goutte ou
perle est transformée en une nappe mince qui s’étend puis se rétracte sous l’action de forces de rappel
élastiques. Les gouttes sont constituées de fluides Newtoniens de viscosité η0 entre 1 et 1000 mPa.s, et
de fluides viscoélastiques de Maxwell avec un module élastique de cisaillement G0 entre 2 et 600 Pa et un
temps de relaxation τ entre 1 et 400 ms. Les perles sont constituées de gels polymériques réticulés avec
un module élastique de cisaillement entre 10 et 700 Pa. Lors de l’impact d’une goutte sur une petite cible
solide, nous montrons que, pour les fluides viscoélastiques avec τ inférieur à la durée de vie typique de la
nappe (τlife ∼ 10 ms), la dynamique de la nappe est similaire à celle d’un liquide visqueux Newtonien de
même viscosité. L’expansion maximale de la nappe, dmax, décroît avec η0 = G0τ et peut être reproduite
par un modèle simple basé sur un bilan énergétique entre l’énergie cinétique de la goutte à l’impact,
l’énergie de surface et la dissipation visqueuse de cisaillement. Grâce à une approche semi-empirique,
nous reproduisons quantitativement la dépendance de dmax avec la viscosité de l’échantillon et montrons
que la dissipation sur la petite cible peut être prise en compte en mesurant une vitesse effective de la nappe
aux temps courts, en sortie de cible. Par contre, lorsque τ > τlife, le comportement diffère drastiquement
et l’expansion des nappes augmente fortement par rapport à celle d’échantillons visqueux de viscosité
comparable. En outre, nous montrons que la dissipation due au cisaillement peut être sensiblement
éliminée en utilisant comme surface d’impact une surface solide recouverte d’une mince couche d’azote
liquide, grâce à un effet de Leidenfrost inverse. Des expériences conduites avec des perles élastiques ultra
molles de module élastique variable, des gouttes liquides de tension superficielle variable et des fluides de
Maxwell avec un module de cisaillement très faible et τ > τlife, révèlent un comportement universel pour
l’expansion maximale de la nappe et la durée d’expansion avec la vitesse d’impact. Nous démontrons que
la dynamique d’expansion de la nappe peut être simplement modélisée par la dynamique d’un oscillateur
harmonique linéaire unidimensionnel. En outre, nous montrons que, dans le cas de gouttes visqueuses qui
impactent une petite cible solide, une description similaire peut être utilisée une fois que la dissipation
visqueuse est prise en compte en remplaçant la vitesse d’impact par la vitesse effective de la nappe
que nous mesurons. Un autre comportement fascinant des fluides viscoélastiques avec τ > τlife est une
expansion hétérogène de la nappe avec l’apparition d’instabilités de type fissures, associées à la nature
élastique du fluide.

D’autre part, nous étudions la déformation uniaxiale et la fracture de filaments de doubles réseaux
transitoires en couplant rhéométrie extensionnelle et imagerie rapide des filaments étirés. Nous établis-
sons un diagramme d’état qui sépare les régimes de fracture et d’amincissement progressif continu du
filament. Les filaments se fracturent lorsqu’ils sont étirés à un taux supérieur à l’inverse du temps de
relaxation du plus lent des deux réseaux. Nous démontrons quantitativement que les processus de dissi-
pation ne sont pas pertinents dans nos conditions expérimentales, et que, suivant la densité des nœuds
dans les réseaux, la rupture se produit dans un régime viscoélastique linéaire, ou non-linéaire et précédé
d’une augmentation considérable de la viscosité extensionnelle. L’analyse des profils d’ouverture des
fissures indique des écarts par rapport à une forme parabolique de la pointe de fissure, caractéristique
d’une fracture fragile en régime linéaire, pour des réseaux faiblement connectés. Nous montrons une
corrélation directe entre l’amplitude de la déviation par rapport à la forme parabolique et le caractère
non linéaire de la déformation viscoélastique.

Mots-clés: nappe liquide, impact de goutte, expansion maximale, fluides viscoélastiques, fluides New-
toniens, solides élastiques, élasto-capillarité, étirage de filaments, fracture, rhéomètrie extensionnelle



Gouttes, perles et filaments de gel sous déformations extrêmes 
 

Résumé : Nous étudions le comportement de gels, transitoires auto-assemblés et réticulés permanents, soumis à des 
contraintes mécaniques extrêmes. D'une part, nous étudions la déformation biaxiale de nappes libres produites par impact 
d'une goutte liquide (Newtonienne ou viscoélastique) ou d’une perle de gel polymère sur des surfaces solides dans des 
conditions de dissipation minimale, obtenues soit avec une petite cible solide, soit avec une surface répulsive. Lors de l'impact, 
la goutte ou perle est transformée en une nappe mince qui s’étend et se rétracte sous l’action de forces de rappel élastiques . 
Pour les fluides viscoélastiques avec un temps de relaxation plus petit que la durée de vie typique de la nappe, la dynamique 
de la nappe viscoélastique est similaire à d’un liquide visqueux Newtonien de même viscosité. L’expansion maximale de la 
nappe diminue avec la viscosité et est modélisée quantitativement en utilisant un bilan énergétique entre l'inertie, la tension 
superficielle et la dissipation du cisaillement visqueux sur la cible solide, qui peut être prise en compte en mesurant une 
vitesse effective de la nappe à temps court, en sortie de cible. Nous montrons en outre que la dissipation visqueuse  peut être 
sensiblement éliminée en utilisant une surface solide sur la base d'un effet de Leidenfrost inverse. Les expériences effectuées à 
l'aide de perles élastiques de modules élastiques variables, de gouttes liquides de tensions superficielles variables et de 
gouttes viscoélastiques révèlent un comportement universel pour l’expansion maximale de la nappe avec la vitesse d'impact, 
avec une dynamique analogue à celle d'un système ressort-masse conventionnel. Nous montrons en outre que, pour les 
gouttes qui impactent une petite cible solide, une description similaire peut être utilisée une fois que la dissipation visqueuse 
est prise en compte en remplaçant la vitesse d'impact par la vitesse effective. Un autre comportement fascinant des fluides 
viscoélastiques est l’expansion hétérogène de la nappe associée à l’apparition de fissures, révélant la nature élastique du fluide 
viscoélastique. D’autre part, nous étudions la déformation uniaxiale et la facture de filaments de doubles réseaux transitoires 
en couplant rhéométrie extensionnelle et imagerie rapide des filaments étirés. Nous établissons un diagramme d'état qui 
délimite le régime de du filament, lorsqu'il est étiré à un taux supérieur à l'inverse du temps de relaxation du plus lent des 
deux réseaux. Nous démontrons quantitativement que les processus de dissipation ne sont pas pertinents dans nos conditions 
expérimentales et que, suivant la densité des nœuds dans les réseaux, la rupture se produit dans le régime élastique linéaire , 
ou non linéaire précédé d'une augmentation considérable de la viscosité extensionnelle. L'analyse des profils d'ouverture des 
fissures indique, pour des réseaux faiblement connectés,  des écarts par rapport à une forme parabolique en pointe de fissure, 
caractéristique d’une fracture fragile en régime linéaire. Nous montrons une corrélation directe entre l'amplitude de la 
déviation de la forme parabolique et le caractère non linéaire de la déformation élastique. 
 

Mots-clés : nappe liquide, impact de goutte, expansion maximale, fluides viscoélastiques, fluides Newtoniens, solides 
élastiques, élasto-capillarité, étirage de filaments, fracture, rhéomètrie extensionnelle 
 
 

Drops, beads and filaments of gels under extreme deformations 
 

Abstract: We investigate the behavior of transient self-assembled and permanently crosslinked gels subjected to extreme 
mechanical stresses. On the one hand, we study the dynamics of freely expanding sheets produced by impacting a (Newtonian 
or viscoelastic) liquid drop or a bead of polymeric gel on solid surfaces in minimal dissipation conditions, achieved using 
either a small solid target or a repellent surface. Upon impact, the drop or bead is transformed into a thin sheet that expands 
and retracts due to elasticity. For viscoelastic fluids with a relaxation time smaller than the typical lifetime of the sheet, the 
dynamics of the viscoelastic sheet is similar to that of Newtonian liquids with equal viscosity. The maximal expansion of the 
sheet decreases with the viscosity and is quantitatively modeled using an energy balance between inertia, surface tension and 
viscous shear dissipation on the solid target that can be accounted by measuring an effective velocity of the expanding sheet at 
short time scale. We further show that the shear dissipation can be substantially eliminated by performing impact 
experiments on a solid surface based on an inverse Leidenfrost effect. Experiments performed using elastic beads of various 
elastic moduli, viscoelastic or liquid drops of various surface tensions reveal a universal scaling behavior of the maximum 
expansion with the impact velocity, with a dynamics that mimics that of a conventional spring-mass system. We furthermore 
show that, for drops impacting a solid target, a similar scaling holds once the viscous dissipation is accounted by replacing the 
impact velocity with the effective velocity. Another fascinating behavior of viscoelastic fluids is a heterogeneous expansion of 
the sheet with the occurrence of cracks, revealing the elastic nature of the viscoelastic fluid. On the other hand, we study the 
uniaxial deformation and the fracture of reversible double transient networks by coupling extensional rheology to fast 
imaging. We provide a state diagram that delineates the regime of fracture without necking of the filament, when it is 
stretched at a rate larger than the inverse of the slowest relaxation time of the networks. We quantitatively demonstrate that 
dissipation processes are not relevant in our experimental conditions and that, depending on the density of nodes in the 
networks, fracture occurs in the linear elastic regime, or in a non-linear elastic regime preceded by a considerable strain 
hardening. In addition, analysis of the crack opening profiles indicates, for weakly connected networks, deviations from a 
parabolic shape close to the crack tip, which is expected for the linear elasticity of a brittle fracture. We demonstrate a direct 
correlation between the amplitude of the deviation from the parabolic shape and the amount of non-linear elasticity. 
 

Keywords: drop impact, liquid sheet, maximal expansion, viscoelastic fluids, Newtonian fluids, elastic solids, elasto-capillarity, 
filament stretching, fracture, extensional rheometry 
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