Thermodynamics of histories for kinetically constrained models

Vivien Lecomte^{1,2}, Cécile Appert-Rolland¹, Estelle Pitard³, Kristina Van Duijvendijk^{1,2}, Frédéric Van Wijland^{1,2}, Juan P. Garrahan⁴, Robert L. Jack⁵, David Chandler⁵

¹Laboratoire de Physique Théorique, CNRS/Université d'Orsay
 ²Laboratoire Matière et Systèmes Complexes, CNRS/Université Paris 7
 ³Laboratoire Colloides, Verres et Nanomatériaux, CNRS/Université Montpellier 2
 ⁴School of Physics and Astronomy, University of Nottingham, UK
 ⁵Department of Chemistry, University of California, Berkeley, USA

Outline

- Phenomenology of kinetically constrained models (KCMs)
- Relevant order parameters for space-time trajectories
- Results: mean-field/ finite dimensions
- Conclusion

- Spin models on a lattice, with specific dynamical rules
 - $s_i = 1, n_i = 1$: "mobile" particle region of low density
 - $s_i = -1$, $n_i = 0$: "blocked" particle region of high density

•
$$H = \sum_{i} n_i \to _{eq} = c = 1/(1 + e^{\beta})$$

Fredrickson-Andersen (FA) model in 1 dimension: a spin can flip only if at least one of its nearest neighbours are in the mobile state.

"Facilitation": mobile low-density regions facilitate local rearrangements. [Ritort, Sollich, 2003]

- East model (1d): a spin can flip only if its right neighbour is in the mobile state.
- Kob-Andersen (KA) model: the particle number is conserved: $\sum_i n_i = 1 \rho$.
- In the context of glassy dynamics:
 - "dynamic heterogeneity" is put by hand: mobile particles vs blocked particles
 - facilitation mimicks steric effects in amorphous solids (molecular glasses, colloids, jammed materials,..)
 - slow relaxation (stretched exponentials)
 - these systems can be brought out of equilibrium by a quench in T and exhibit aging.

- Growing of dynamic spatial correlations: particles are dynamically correlated (cooperative) on a lengthscale ξ, not related to static correlations.
 e.g: KA model, ξ(ρ) ∝ exp(exp(C/(1 ρ))), measurable through 4-points spatio-temporal correlation functions.
- Absence of a dynamical phase transition ("glass transition") at T > 0, but strong finite-size effects around T = 0 ($\rho = 1$). e.g: KA model in 3d: $1 \rho^*(L) \propto 1/\ln(\ln L)$.

- However: in the FA model, configurations are split into 2 distinct partitions.
 - $\downarrow\uparrow\downarrow \rightleftharpoons \downarrow\downarrow\downarrow\downarrow$ is forbidden
 - $n_i = 0$ for all *i* is a partition of its own.
 - all other configurations $(2^N 1)$: "high-T" partition, active configurations.
 - \bullet \rightarrow FA is reducible "effectively" irreducible
 - \rightarrow (even weak) reducibility is crucial in the study of phase-space trajectories.
- How to classify trajectories? How to quantify dynamical complexity?
- Quantities like a dynamical entropy (Kolmogorov-Sinai entropy h_{KS}) are likely to be relevant.

Relevant order parameters for space-time trajectories

- Ruelle formalism for continous-time Markov dynamics
- Observable: K(t): number of flips between 0 and t.
- Master equation: $\frac{\partial P}{\partial t}(C,t) = \sum_{C'} W(C' \to C) P(C',t) - r(C) P(C,t), \text{ where}$ $r(C) = \sum_{C'} W(C \to C')$
- $\hat{P}(C, s, t) = \sum_{K} e^{-sK} P(C, K, t) \rightarrow \partial_t \hat{P} = \mathbb{W}_K \hat{P}$, where $\mathbb{W}_K(s)(C, C') = e^{-s} W(C' \rightarrow C) r(C) \delta_{C,C'}$.
- Generating function of K: $Z_K(s,t) = \sum_C \hat{P}(C,s,t) = \langle e^{-sK} \rangle$. For $t \to \infty$, $Z_K(s,t) \simeq e^{t\psi_K(s)}$: $\psi_K(s)$ is the largest eigenvalue of $\mathbb{W}_K(s)$.

Relevant order parameters for space-time trajectories

• Average activity: $\frac{\langle K \rangle(s,t)}{Nt} = -\frac{1}{N} \psi'_K(s)$. Average density of particles at fixed s: $\rho_K(s) = \lim_{t \to \infty} \frac{1}{Z_K(s,t)} \sum_{\text{histories}} e^{-sK(\text{history})} \rho(t)$.

Analogy:

- space of configurations, fixed β : $Z(\beta) = \sum_{C} e^{-\beta H} \simeq e^{-Nf(\beta)}, N \to \infty.$
- space of trajectories, fixed s: $Z_K(s,t) = \sum_{C,K} e^{-sK} P(C,K,t) \simeq e^{-tf_K(s)}, t \to \infty.$
- $f_K(s) = -\psi_K(s)$: free energy for trajectories
- $\rho_K(s)$, $\frac{\langle K \rangle(s,t)}{Nt}$: activity/chaoticity.
- Active phase: < K > (s,t)/(Nt), $\rho_K(s) > 0$: s < 0. Inactive phase: < K > (s,t)/(Nt), $\rho_K(s) = 0$: s > 0.

Relevant order parameters for space-time trajectories

Similar order parameters can be defined for the observable $Q_+(t) = \sum_{n=0}^{K-1} \ln \frac{W(C_n \rightarrow C_{n+1})}{r(C_n)} = \ln \operatorname{Prob}(\operatorname{history}(0 \rightarrow t)).$

•
$$Z_{dyn}(s,t) = \sum_{\text{histories}} \left[\text{Prob}(\text{history}) \right]^{1-s} = \langle e^{-sQ_+} \rangle$$

 $\sim e^{t\psi_+(s)}$
 $t \to \infty$

- $\psi_+(s)$: topological pressure; $\rho_+(s)$: analog of $\rho_K(s)$.
- $h_{KS} = \psi'_+(s=0) = \lim_{t\to\infty} -\frac{\langle Q_+(t) \rangle}{t}$: Kolmogorov-Sinai entropy.
 - $h_{KS} = 0$: one possible trajectory in configuration space.
 - $h_{KS} > 0$: many possible trajectories in configuration space.

Results: Mean-Field FA

•
$$W_i(0 \to 1) = k' \frac{n}{N}, W_i(1 \to 0) = k \frac{n-1}{N}, n = \sum_i n_i.$$

- Equilibrium distribution: $P_{eq}(n) = \frac{1}{Z}C_N^n e^{-\beta n}$, where $Z = (1 + \zeta)^N$, $\zeta = \frac{k'}{k} = e^{-\beta}$.
- Symmetrization of \mathbb{W}_K : $\mathbb{W}_K = Q^{-1} \mathbb{W}_K Q$, with $Q(C, C') = P_{eq}^{1/2}(C) \delta_{C,C'}$.

•
$$\tilde{\mathbb{W}}_{K}(n,n') = e^{-s} (W_{+}(n-1)W_{-}(n))^{1/2} \delta_{n',n-1} + e^{-s} (W_{+}(n)W_{-}(n+1))^{1/2} \delta_{n',n+1} - r(n) \delta_{n,n'}$$

• $\psi_K(s)$: largest eigenvalue of \mathbb{W}_K can be calculated using: $\psi_K(s) = \max_P \frac{\langle P | \tilde{\mathbb{W}}_K | P \rangle}{\langle P | P \rangle}$

Results: Mean-Field FA

- Assuming a homogeneous profile $\rho = \frac{n}{N}$: variational principle for $\psi_K(s)$, involving a Landau-Ginzburg free energy $F_K(\rho, s)$: $\frac{1}{N}f_K(s) = -\frac{1}{N}\psi_K(s) = \min_{\rho} F_K(\rho, s)$, with $F_K(\rho, s) = -2\rho e^{-s}(\rho(1-\rho)kk')^{1/2} + k'\rho(1-\rho) + k\rho^2$
- Minima of $F_K(\rho, s)$ at fixed s:
 - s > 0: inactive phase, $\rho_K(s) = 0$, $\psi_K(s) = 0$.
 - s = 0: coexistence $\rho_K(0) = 0$ and $\rho_K(0) = \rho^*$, $\psi_K(0) = 0$, \rightarrow first order phase transition.
 - s < 0: active phase, $\rho_K(s) > 0$, $\psi_K(s) > 0$.

Results: Mean-Field FA

• $F_K(\rho, s)$ for different values of s:

Results: Mean-Field unconstrained model

■
$$W_i(0 \to 1) = k'$$
, $W_i(1 \to 0) = k$, for all *i*

•
$$F_K(\rho, s) = -2e^{-s}(\rho(1-\rho)kk')^{1/2} + k'(1-\rho) + k\rho$$

No first-order phase transition.

- Numerical solution using the algorithm of Giardina, Kurchan, Peliti for large deviation functions.
- First-order phase transition for the FA model in 1d.

• $\rho_K(s)$ for the FA model in 1d.

First-order phase transition for the East model.

• $\rho_K(s)$ for the East model.

Comparison between 1d FA model and unconstrained model $A \xrightarrow{k} \emptyset, \ \emptyset \xrightarrow{k'} A.$

- The existence of the first-order phase transition -and coexistence of active and inactive phases- relies on the reducible character of the dynamical model.
- e.g: AA model

•
$$\emptyset A \stackrel{D}{\rightleftharpoons} A \emptyset, AA \stackrel{k}{\longrightarrow} \emptyset \emptyset, \emptyset \emptyset \stackrel{k'}{\longrightarrow} AA$$

• Solvable model in 1d using free fermions for $2D = k + k' \rightarrow$ no first-order phase transition.

Conclusions

- Large deviation functions of generating functions in trajectories space provide useful order parameters that probe active/inactive phases. *s* plays the role of a "chaoticity" temperature.
- KCMs which are (even weakly) reducible show a first-order phase transition at s = 0. In a real system, coexistence between inactive and active states induce the slowing down of the dynamics.
- Possible link between ξ -dynamical correlation lengthand moments of K(t).
- Look in more detail into specific features of glassiness: strong glass (FA) vs fragile glass (East).
- Study a more realistic glassy system in trajectory space.