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Phenomenology of KCMs

Spin models on a lattice, with specific dynamical rules
si = 1, ni = 1: ”mobile” particle - region of low density
si = −1, ni = 0: ”blocked” particle - region of high
density
H =

∑
i ni →< n >eq= c = 1/(1 + eβ)

Fredrickson-Andersen (FA) model in 1 dimension: a
spin can flip only if at least one of its nearest
neighbours are in the mobile state.
”Facilitation”: mobile low-density regions facilitate local
rearrangements.
[Ritort, Sollich, 2003]
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Phenomenology of KCMs

East model (1d): a spin can flip only if its right neighbour
is in the mobile state.
Kob-Andersen (KA) model: the particle number is
conserved: ∑

i ni = 1 − ρ.
In the context of glassy dynamics:

”dynamic heterogeneity” is put by hand: mobile
particles vs blocked particles
facilitation mimicks steric effects in amorphous solids
(molecular glasses, colloids, jammed materials,..)
slow relaxation (stretched exponentials)
these systems can be brought out of equilibrium by a
quench in T and exhibit aging.
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Phenomenology of KCMs

Growing of dynamic spatial correlations: particles are
dynamically correlated (cooperative) on a lengthscale ξ,
not related to static correlations.
e.g: KA model, ξ(ρ) ∝ exp(exp(C/(1 − ρ))), measurable
through 4-points spatio-temporal correlation functions.
Absence of a dynamical phase transition (”glass
transition”) at T > 0, but strong finite-size effects around
T = 0 (ρ = 1). e.g: KA model in 3d:
1 − ρ∗(L) ∝ 1/ ln(lnL).
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Phenomenology of KCMs

However: in the FA model, configurations are split into 2
distinct partitions.

↓↑↓
↓↓↓ is forbidden
ni = 0 for all i is a partition of its own.
all other configurations (2N − 1): ”high-T” partition,
active configurations.
→ FA is reducible - ”effectively” irreducible
→ (even weak) reducibility is crucial in the study of
phase-space trajectories.

How to classify trajectories? How to quantify dynamical
complexity?
Quantities like a dynamical entropy (Kolmogorov-Sinai
entropy hKS) are likely to be relevant.
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Relevant order parameters for space-time trajectories

Ruelle formalism for continous-time Markov dynamics
Observable: K(t): number of flips between 0 and t.
Master equation:
∂P
∂t (C, t) =

∑
C′ W (C ′ → C)P (C ′, t) − r(C)P (C, t), where

r(C) =
∑

C′ W (C → C ′)

P̂ (C, s, t) =
∑

K e
−sKP (C,K, t) → ∂tP̂ = WKP̂ , where

WK(s)(C,C ′) = e−sW (C ′ → C) − r(C)δC,C′.
Generating function of K:
ZK(s, t) =

∑
C P̂ (C, s, t) =< e−sK >. For t→ ∞,

ZK(s, t) ' etψK(s): ψK(s) is the largest eigenvalue of
WK(s).
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Relevant order parameters for space-time trajectories

Average activity: <K>(s,t)
Nt =

t→∞
− 1

Nψ
′
K(s).

Average density of particles at fixed s:
ρK(s) = lim

t→∞

1
ZK(s,t)

∑
histories e

−sK(history)ρ(t).

Analogy:
space of configurations, fixed β:
Z(β) =

∑
C e

−βH ' e−Nf(β),N → ∞.
space of trajectories, fixed s:
ZK(s, t) =

∑
C,K e

−sKP (C,K, t) ' e−tfK(s),t→ ∞.
fK(s) = −ψK(s): free energy for trajectories
ρK(s), <K>(s,t)

Nt : activity/chaoticity.
Active phase: < K > (s, t)/(Nt), ρK(s) > 0: s < 0.
Inactive phase: < K > (s, t)/(Nt), ρK(s) = 0: s > 0.
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Relevant order parameters for space-time trajectories

Similar order parameters can be defined for the
observable
Q+(t) =

∑K−1
n=0 ln W (Cn→Cn+1)

r(Cn) = ln Prob(history(0 → t)).

Zdyn(s, t) =
∑

histories [Prob(history)]1−s =< e−sQ+ >

∼
t→∞

etψ+(s)

ψ+(s): topological pressure; ρ+(s): analog of ρK(s).

hKS = ψ′
+(s = 0) = lim

t→∞
−

<Q+(t)>
t : Kolmogorov-Sinai

entropy.
hKS = 0: one possible trajectory in configuration
space.
hKS > 0: many possible trajectories in configuration
space.
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Results: Mean-Field FA

Wi(0 → 1) = k′ nN , Wi(1 → 0) = k n−1
N , n =

∑
i ni.

Equilibrium distribution: Peq(n) = 1
ZC

n
Ne

−βn, where
Z = (1 + ζ)N , ζ = k′

k = e−β.
Symmetrization of WK : W̃K = Q−1

WKQ, with
Q(C,C ′) = P

1/2
eq (C)δC,C′.

W̃K(n, n′) = e−s(W+(n− 1)W−(n))1/2δn′,n−1 +

e−s(W+(n)W−(n+ 1))1/2δn′,n+1 − r(n)δn,n′

ψK(s): largest eigenvalue of WK can be calculated
using: ψK(s) = max

P

<P |W̃K |P>
<P |P>
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Results: Mean-Field FA

Assuming a homogeneous profile ρ = n
N : variational

principle for ψK(s), involving a Landau-Ginzburg free
energy FK(ρ, s):
1
N fK(s) = − 1

NψK(s) = min
ρ

FK(ρ, s), with

FK(ρ, s) = −2ρe−s(ρ(1 − ρ)kk′)1/2 + k′ρ(1 − ρ) + kρ2

Minima of FK(ρ, s) at fixed s:
s > 0: inactive phase, ρK(s) = 0, ψK(s) = 0.
s = 0: coexistence ρK(0) = 0 and ρK(0) = ρ∗,
ψK(0) = 0, → first order phase transition.
s < 0: active phase, ρK(s) > 0, ψK(s) > 0.
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Results: Mean-Field FA

FK(ρ, s) for different values of s:

0 0.2 0.4 0.6 0.8 1
rho

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

fre
e 

en
er

gy
 (F

A
 c

as
e)

s=-0.4
s=-0.2
s=0
s=0.2
s=0.4

Thermodynamics of histories for kinetically constrained models – p.12/21



Results: Mean-Field unconstrained model

Wi(0 → 1) = k′, Wi(1 → 0) = k, for all i
FK(ρ, s) = −2e−s(ρ(1 − ρ)kk′)1/2 + k′(1 − ρ) + kρ

No first-order phase transition.
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Results in finite dimensions

Numerical solution using the algorithm of Giardina,
Kurchan, Peliti for large deviation functions.
First-order phase transition for the FA model in 1d.
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Results in finite dimensions

ρK(s) for the FA model in 1d.
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Results in finite dimensions

First-order phase transition for the East model.
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Results in finite dimensions

ρK(s) for the East model.
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Results in finite dimensions

Comparison between 1d FA model and unconstrained
model A k

→∅, ∅ k
′

→A.
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Results in finite dimensions

ρK(s) for the 1d FA model and A k
→∅, ∅ k

′

→A.
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The existence of the first-order phase transition -and
coexistence of active and inactive phases- relies on the
reducible character of the dynamical model.
e.g: AA model

∅A
D

 A∅, AA k

−→ ∅∅, ∅∅ k′
−→ AA

Solvable model in 1d using free fermions for
2D = k + k′ → no first-order phase transition.
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Conclusions

Large deviation functions of generating functions in
trajectories space provide useful order parameters that
probe active/inactive phases. s plays the role of a
”chaoticity” temperature.
KCMs which are (even weakly) reducible show a
first-order phase transition at s = 0. In a real system,
coexistence between inactive and active states induce
the slowing down of the dynamics.
Possible link between ξ -dynamical correlation length-
and moments of K(t).
Look in more detail into specific features of glassiness:
strong glass (FA) vs fragile glass (East).
Study a more realistic glassy system in trajectory space.
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