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Quantum field theory has developed through its interaction with
many fields. Besides elementary paricle physics, statistical
physics and, in particular, the theory of critical phenomena
have played a very important role in the development of
Quantum Field Theory. This stimulated the development of
Wilson’s renormalization group ideas. Random walks and their
interactions provide paradigmatic examples of critical
phenomena. Field theories arise naturally. By analyzing these
theories rigorously we hope to learn something more about
both interacting random walks as well as rigorous
renormalization group analysis.
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Consider two classes of walks on the lattice Zd : those with
nearest neighbour jumps (simple walks) and those with long
range jumps (Lévy walks). An interaction is then added to make
them self repelling. The strength of the interaction is kept weak.
They are called respectively: (weakly) SAWs and SALWs.
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The Green’s function of a weakly self avoiding walk on the
lattice Zd can be represented as the two point correlation
function of a special type of supersymmetric field theory. This
will be discussed in detail later. In this talk I will discuss the
critical limit of a class of weakly self avoiding walks via rigorous
renormalization group analysis of the field theory. But first we
introduce some basic quantitities for which one wants to have
information.
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The Green’s function of a random walk (with or without
interactions) from x to y is the expected sum of all walks to go
from x to y . For a continuous time walk

𝒢𝜇(x , y) =

∫︁ ∞

0
dt e−𝜇t Pt (x , y)

where Pt (x , y) is the number of walks from x to y in time t and
𝜇 ≥ 𝜇c is related to the killing rate. For a free walk 𝜇c = 0 and
Pt is the transition probability. For interactions 𝜇c has to be
fixed so that the walk exists in infinite time. It corresponds to
critical temperature in ferromagnetic systems (critical mass in
Landau-Ginzburg-Wilson theory).
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The next quantitity of interest is the susceptibility 𝜒𝜇.

𝜒𝜇 =

∫︁
Zd

dx G𝜇(x) =

∫︁ ∞

0
e−𝜇tc(t)

c(t) =

∫︁
Zd

dx pt (x)

The smallest value of 𝜇 for which the integral for 𝜒𝜇 exists
defines the critical mass 𝜇c .

Finally, the end to end distance for a walk starting at the origin
is E(|xt |). The root mean square distance is

√︀
E(|xt |2). The

rms distance does not exist for Lévy walks with long range
jumps.
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Critical exponents:

The critical exponents 𝜂, 𝛾 and 𝜈 are defined as follows:

In the critical theory, as |x − y | → ∞

G𝜇c (x − y) ∼ const.|x − y |−(d−𝛼+𝜂)

The parameter 𝛼 ∈ (0,2] takes the value 2 for simple walks,
whereas 𝛼 < 2 for walks with long range jumps.
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As 𝜇→ 𝜇c from above

𝜒𝜇 ∼𝜇→𝜇c const.|𝜇− 𝜇c |−𝛾

In the critical theory (𝜇 = 𝜇c) as t → ∞ we have asymptotically

E(|xt |) ∼ const.t𝜈

When the underlying random walk is simple, we can replace
the mean distance by the root mean square distance.
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The same exponent 𝜈 arises in another way. For 𝜇 > 𝜇c , we
have asymptotically

G𝜇(x − y) ∼ e− |x|
𝜉(𝜇)

where the correlation length 𝜉(𝜇) diverges as 𝜇→ 𝜇c like

𝜉(𝜇) ∼𝜇→𝜇c const.|𝜇− 𝜇c |−𝜈
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Scaling relation

Just as in ferromagnetic systems we have the Fisher scaling
relation

𝛾 = (2 − 𝜂)𝜈

This can be proved by renormalization group arguments at a
fixed point at criticality in the supersymmetric field theory
representation just as in the Kadanoff argument for
ferromagnetic systems.
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SAWs: Rigorous results:

d > 4: Critical SAWs are diffusive (Brydges-Spencer, [CMP
1984] ) for large time for d > 4. The proof was by expansion
methods (lace expansion). Afterwards Hara and Slade proved
(by again using the lace expansion) the existence of the scaling
limit in this case. One gets at large distances

𝒢𝜇c (x − y) ∼ const .|x − y |−(d−2)

E(x2
t ) ∼ const . t

which shows diffusion. The self-repelling interaction is
irrelevant.
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d = 4 is the critical dimension for SAWs. Brydges-Slade use
supersymmetric representation plus rigorous RG methods to
prove that for critical continuous time SAWs the critical Green’s
function at large distances behaves as

𝒢𝜇c (x − y) ∼ const .|x − y |−2

This is canonical behaviour in d = 4. The fixed point is
Gaussian but logarithmic corrections are expected for other
quantities.
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In d=4, perturbative RG calculations say that at criticality

E(x2
t ) ∼ const . t log

1
4 t

This has been proved for the hierachical s.a. walk
(Brydges-Imbrie) The proof in the general case is part of the
program of Brydges and Slade.
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In d=3 there are no rigorous results, analogous to the situation
for the d=3 Ising model. However Wison- Fisher 𝜖 expansion in
the n = 0 limit of the n-vector model (Le Guillou, Zinn-Justin)
and direct Monte Carlo studies (Madras-Sokal) indicate
non-trivial scaling

E(x2
t ) ∼ const . t2𝜈saw

with 𝜈saw = 0.58.... The Flory argument would have given
𝜈saw = 3

d+2 = 3
5 but this is excluded.

In d = 2 we expect that 𝜈saw = 3
4 in accord with Flory and this is

presumed to be exact but I am not sure that this has been
rigorously proved since the scaling limit for d = 2 SAWs has not
yet been proved to my knowledge.
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SALWs:

What is the upper critical dimension? There are two parameters
in play: The dimension d and the (Lévy Khintchine) parameter
𝛼 with 0 < 𝛼 ≤ 2. 𝛼 = 2 corresponds to simple random walk.
For SALWs the upper critical dimension (mean field theory) is
dc = 2𝛼. This means that 𝜖 = 2𝛼− d can be a small parameter
analogous to the 𝜖 in Wilson and Fisher’s 𝜖 expansion.
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The same situation arises for ferromagnets with long range
interactions. This was realized long ago by M.Fisher, S-K Ma
and B.G. Nickel (1972) who studied the n-vector model with
long range interactions and computed critical exponents in low
orders of 𝜖 . By Parisi’s perturbation theory argument the n = 0
limit would correspond to SALWs.
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SALWs: The the idea that 𝜖 = 2𝛼− d > 0 can taken as a small
parameter for SALWs has been exploited by Mitter and
Scoppola in ([MS] -2008) for the case d = 3 which is below the
upper critical dimension dc = 3 + 𝜖. The Green’s function of
(weakly) self avoiding walks, including those with long range
jumps, is expressed as the two point function of a
supersymmetric measure. The RG trajectory is then studied
rigorously.
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SALW: [MS] give a theorem on a global RG trajectory for the
critical supersymmetric lattice field theory in Z3. trajectory for
the supermeasure is uniformly bounded on all RG scales and
defines a non-Gaussian field theory. The existence of the
critical mass and the stable (critical) manifold is proved. The
interaction is non-vanishing at all scales. This is the lattice
counterpart of a non-Gaussian fixed point in the putative
underlying continuum theory.
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The proof that the critical manifold exists and that the RG
trajectory is uniformly bounded at all scales employs rescaling
at each RG step correponding to an assigned field dimension
ds = 3−𝛼

2 . Therefore from general reasoning we expect

𝒢𝜇c (x − y) ∼ const .|x − y |−(3−𝛼)

In other words 𝜂 = 0. But there are other non-trivial critical
exponents.
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If x𝛼t is the continuous time SALW starting at he origin, we want
to estimate the critical exponent 𝜈 given at criticality 𝜇 = 𝜇c by

E(|x𝛼t |) ∼ const .t𝜈

Note that we are using the mean distance and not the mean
square distance which does not exist for 𝛼 < 2. The mean
distance is much harder to estimate than the mean square
distance. To estimate 𝜈 we can either try to calculate directly
the correlation length index or one can adopt the following
strategy which uses the scaling relation. In either case we have
to stay slightly off critical.
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We calculate the susceptibility index 𝛾 near criticality directly
from the Green’s function. An 𝜖 = 2𝛼− d expansion for 𝛾 in the
framework of the renormalization group in the supersymmetric
field theory and use of the scaling relation 𝛾 = 2𝜈, since 𝜂 = 0,
then gives

𝜈 = 𝜈L

(︁
1 +

𝜖

6
+ O(𝜖2)

)︁
𝜈L = 1

𝛼 is the exponent of the Lévy walk.
Thus we have a non-trivial critical exponent. This is not yet a
rigorous estimate. Proving this is a challenging problem.

Pronob K. Mitter Self-Avoiding Walks and Field Theory



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

Motivation
Basic facts and results about self-avoiding walks
Hausdorff dimensions
Compound Poisson processes and Lévy walks
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Hausdorff dimensions (brief review):

Let E ⊂ Rd be a bounded subset. Suppose E is covered by
open sets {Ej},1 ≤ j <∞ of diameter |Ej | ≤ 𝜖 , E ⊂ ∪∞

i=1. Then
for 𝛽 > 0, the Hausdorff 𝛽 measure of E is defined by

ℋ𝛽(E) = lim
𝜖→0

inf
{Ej}

∞∑︁
j=1

|Ej |𝛽

Then the Hausdorff dimension dℋ(E) of E is defined by the
common value (the equality below can be proved)

dℋ(E) = inf{𝛽 : ℋ𝛽(E) = 0} = sup{𝛽 : ℋ𝛽(E) = ∞}

Pronob K. Mitter Self-Avoiding Walks and Field Theory



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

Motivation
Basic facts and results about self-avoiding walks
Hausdorff dimensions
Compound Poisson processes and Lévy walks
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Random walks can describe bizarre sets (fractal sets) and the
Hausdorff dimension need not be an integer! We will see some
examples very soon.

One may ask: What is the Hausdorff dimension in the scaling
limit of the self avoiding Lévy walk below the critical dimension?
This is not known rigorously. But we can make some
comments.
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Recall first that the typical brownian trajectory bt : t ∈ [0,1] has
Hausdorff dimension dH = 2 for d ≥ 2 as first shown by Paul
Lévy long ago followed by Taylor and McKean. This turns out to
be the inverse of the Brownian exponent 𝜈B = 1

2 . For SAWs in
d = 3 we expect that in the scaling lmit dH is approximately
1.72..., the inverse of 𝜈saw . For d = 2 the Flory estimate is
𝜈 = 3

4 and this is supported by renormalization group
calculations as well as Monte Carlo simulations. We therefore
expect that in the scaling limit dH = 4

3 . The Mandelbrot
conjecture says that this is also the Hausdorff dimension of the
outer frontier of a typical planar Brownian path. The latter has
been proved directly by SLE arguments (Lawler, Schramm and
Werner).

Pronob K. Mitter Self-Avoiding Walks and Field Theory



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

Motivation
Basic facts and results about self-avoiding walks
Hausdorff dimensions
Compound Poisson processes and Lévy walks
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For the stable Lévy process x𝛼t : 0 < 𝛼 < 2, t ∈ [0,1],
Blumenthal and Getoor proved in the 1960s that dH = 𝛼 in
d ≥ 2 which is the inverse of 𝜈L. We conjecture that for the
SALW in d = 3, 𝛼 = 3+𝜖

2 , in the scaling limit the Hausdorf
dimension is

dH =
1

𝜈SALW
= 𝛼

(︁
1 − 𝜖

6
+ 𝜖2

)︁
But this requires a proof!
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A weakly self-avoiding Lévy walk

The Lévy Walk

Let x𝛼t ∈ Zd , 0 < 𝛼 ≤ 2, be a continuous time Lévy process
(called a Lévy walk). This is a compound Poisson process with
i.i.d jumps. Jump distribution depends on 𝛼. For 𝛼 = 2 we have
simple random walks: nearest neighbour jumps. For 𝛼 < 2 the
jump distributions have long range tails.
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The characteristic function is given by the Lévy Khintchine
formula

E(ei(k ,x (𝛼)
t )) = e(2d)𝛼/2 t 𝜓𝛼(k)

𝜓𝛼(k) = −(1 − 1
d

d∑︁
j=1

cos kj))𝛼/2

E(ei(k ,x (𝛼)
t )) = e−t(−Δ̂)(k)𝛼/2
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For 𝛼 = 2 the characteristic function is that of a simple random
walk. But for 0 < 𝛼 < 2 it can be shown that the transition
probability

P𝛼
t (x , y) ∼ const . |x − y |−(d+𝛼)

This means that the variance is infinite but for 𝛼 > 1 the mean
distance is finite.
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It is easy to show that for d ≤ 𝛼 the walk is recurrent. Thus for
a Lévy walk with 1 ≤ 𝛼 < 2, the walk is recurrent only for d = 1.
For d > 𝛼 the walk is transient and the Green’s function is

G𝛼(x − y) =

∫︁ ∞

0
dt P(𝛼)

t (x , y) = (−∆)−𝛼/2(x − y)

∼ const.|x − y |−(d−𝛼)

when |x − y | → ∞ . Later in the RG analysis we will choose
d = 3 and 𝛼 = 3+𝜖

2 , with 0 < 𝜖 < 1.
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A weakly self-avoiding Lévy walk

The weakly Self-Avoiding Walk

Let Λ ⊂ Zd be a finite subset. The local time spent by the walk
at x ∈ Λ (upto time T ) is

𝜏T (x) =:

∫︁ T

0
ds 𝛿(x𝛼s − x)

where 𝛿 is the lattice delta function. Let dx be the counting
measure. Define

𝜏T (Λ) =

∫︁
Λ

dx 𝜏T (x)
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𝜏2
T (Λ) =

∫︁
Λ

dx 𝜏T (x)2 =

∫︁ T

0

∫︁ T

0
ds dt 𝛿d (xt − xs) Ixt ,xs∈Λ

This is a measure of the self intersection.

Pronob K. Mitter Self-Avoiding Walks and Field Theory



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

Motivation
Basic facts and results about self-avoiding walks
Hausdorff dimensions
Compound Poisson processes and Lévy walks
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We define the expectation for a weakly self-avoiding Lévy
process by the law

E (s.a.)
g,T ,Λ(f (x𝛼t )) = Z−1 E

(︁
f (x𝛼t ) e−g 𝜏2

T (Λ)
)︁

Z is a normalization factor and g > 0.

The exponential factor makes the walk tend to repel itself
(weakly) in Λ for finite g > 0.
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The Green’s function is defined by

𝒢𝜇(x , y) = lim
Λ↑Z3

𝒢𝜇Λ(x , y)

where

𝒢𝜇Λ(x , y) =

∫︁ ∞

0
dT Ex (e−g𝜏2

T (Λ)−𝜇𝜏T (Λ)𝛿d (x𝛼T − y))

It is asserted that this limit will exist for choice 𝜇 ≥ 𝜇c = h(g),
where 𝜇c = h(g) is the critical curve. Proving this and obtaining
the asymptotics as |x − y | → ∞ is part of the program.
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FIELD THEORY REPRESENTATION:

Let 𝜑1, 𝜑2 be independent identically distributed Gaussian
random fields in Z3 with covariance 1

2C, and C is the Green’s
function of the walk.

𝜑 = 𝜑1 + i𝜑2 and 𝜑 its complex conjugate.

𝜓,𝜓 are Grassmann fields (scalar fermions) of degree 1 and
−1 respectively.
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Φ = (𝜑, 𝜓), Φ̄ = (𝜑, 𝜓)

Inner product:

(Φ,Φ) = ΦΦ̄ = 𝜑𝜑+ 𝜓𝜓
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Let Λ ⊂ Z3 be a finite subset. Define

V (Λ,Φ,g, 𝜇) = g
∫︁
Λ

dx(ΦΦ̄)2(x) + 𝜇

∫︁
Λ

dxΦΦ̄(x)

where the coupling constant g0 > 0 and dx is the counting
measure in Z3. Define the |Λ| × |Λ| matrix CΛ by

CΛ(x , y) = C(x − y) : x , y ∈ Λ

CΛ is a symmetric, positive definite matrix.
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Then our field theory in finite volume Λ is defined by the
supermeasure

d𝜇Λ(Φ) = d𝜇CΛ
(Φ)e−V0(Λ,Φ,g,𝜇)

where d𝜇CΛ
(Φ) is the Gaussian supermeasure

d𝜇CΛ
(Φ) =

∏︁
x∈Λ

dΦ(x) e−(Φ,C−1
Λ Φ̄)L2(Λ)

dΦ(x) = d𝜑1(x)d𝜑2(x)d𝜓(x)d𝜓(x)
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Green’s function and supersymmetric field theory

RG analysis of supermeasure

Green’s function
The Parisi-Sourlas representation.

Integration over the Grassmann fields is Berezin integration and
d𝜇Λ(Φ) is interpreted as a linear functional on the Grassman
algebra ΩΛ (generated by the 𝜓,𝜓 over the ring of functions
which are functionals of the 𝜑, 𝜑). Determinants have cancelled
out.
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Green’s function
The Parisi-Sourlas representation.

An important fact is that the potential V0(Λ,Φ) is
supersymmetric. Here by supersymmetry we mean invariance
under the transformation 𝒬 defined on the fields as follows

𝒬𝜑 = 𝜓, 𝒬𝜑 = −𝜓

𝒬𝜓 = 𝜑, 𝒬𝜓 = 𝜑

This induces in a natural way a supersymmetry transformation
𝒬 on functionals of fields. 𝒬 is nilpotent on gauge invariant
functionals F

𝒬2F = 0
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Green’s function
The Parisi-Sourlas representation.

The supermeasure 𝜇Λ is 𝒬 invariant. For any functional F (Φ)

𝜇Λ(𝒬F ) = 0

If in addition 𝒬F = 0 then

𝜇Λ(F ) = F (0)

.
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As a consequence we have that the supermeasure d𝜇Λ(Φ) is
normalized : ∫︁

d𝜇Λ(Φ) 1 = 1

No vacuum energy will be generated.
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The McKane-Parisi-Sourlas representation says that:

𝒢𝜇Λ(x , y) =

∫︁
d𝜇CΛ

(Φ)e−V (Λ,Φ)𝜑(x)𝜑(y)

Proof: (Brydges, Evans and Imbrie and more recently Brydges,
Imbrie, Slade).
We want to analyze the supermeasure

d𝜇CΛ
(Φ)e−V (Λ,Φ)

by lattice renormalization group transformations. We will
generate a sequence of measures (the RG trajectory) living in
smaller and smaller cubes in finer and finer lattices.
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A function C(x , y) is said to have finite range L if

C(x , y) = 0 : |x − y | ≥ L

Consider case where C is translation invariant. We are
interested in positive definite functions (distributions) C which
have expansions

C =
∑︁

Cn

where each Cn is positive definite, finite range Ln and smooth.
Green’s functions of self adjoint, second order elliptic operators
defined by Dirichlet forms in the continuum or on the lattice
have such expansions (Brydges, Guadagni and Mitter, JSP
2004). Fractional powers thereof have such expansions.

Pronob K. Mitter Self-Avoiding Walks and Field Theory



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

A finite range multiscale expansion
Renormalization group transformations
coordinates for densities
RG map on coordinates
Banach spaces for RG coordinates
Stable manifold

Let 𝒳 = Rd or Zd . Suppose 𝜑 : 𝒳 → R is a Gaussian random
variable distributed according to the covariance C. We have an
expansion:

𝜑 =
∑︁
n≥0

𝜁n

where the 𝜁n are independent Gaussian random variables
distributed according to Cn. The 𝜁n have finite range
correlations:

E(𝜁n(x)𝜁n(y)) = 0 : |x − y | ≥ Ln
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Let Λ ⊂ 𝒳 is a large cube. Let F (𝜑,Λ)) be an L1 function (on
probablity space). Typically to begin with F = exp − V where V
is a local functional.

Suppose we want to calculate the expectation E(F (𝜑,Λ)). We
write this as a multiple expectation with respect to all the 𝜁n,
n = 1,2, ..., and carry out the expectations over each n starting
with n = 1 sequentially. At each step we also perform a
rescaling. Together we have a RG step. These steps generalize
to super expectations.
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Problem: Each such expectation is over fields in a very large
region. We have to decouple distant parts to proceed efficiently.

Suppose we have performed n − 1 RG steps. At this stage we
have the fluctuation field 𝜁n and the unintegrated fields
𝜑 =

∑︀
j≥n+1 𝜁j . Let Fn−1 denote the evolved random function.
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Pave 𝒳 with unit blocks. Λ has the induced paving. Polymers
are connected subsets of blocks. A polymer activity is a
functional of fields over polymers.

The evolved random function Fn−1(𝜁n, 𝜑) can be written as a
sum of products of activities of disjoint polymers with the
spaces in between filled by local functionals of fields
independent of 𝜁n. Suppose the polymers are sufficiently
disjoint. Then the 𝜁n expectation factorizes by the finite range
property. We are left to study the expectation over a small
region. No cluster expansion is necessary.

Pronob K. Mitter Self-Avoiding Walks and Field Theory



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

A finite range multiscale expansion
Renormalization group transformations
coordinates for densities
RG map on coordinates
Banach spaces for RG coordinates
Stable manifold

Lattice RG transformations will be based on finite range
expansion of the covariance C, [BGM 2004]. This is an
alternative to Kadanoff- Wilson block spin RG.
Let L be a large triadic integer (3p). Let 𝛿n = L−n. Let
ds = (3−𝛼)

2 . We have a sequence of compatible lattices (𝛿nZ)3

and positive definite functions Γn : (𝛿nZ)3 → R of finite range L
2

such that for all x , y ∈ (Z)3

C(x − y) =
∑︁
n≥0

L−2nds Γn

(︁x − y
Ln

)︁
The series converges in L∞(Z3)
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Regularity properties
The fluctuation covariances Γn have good regularity properties
uniform in the lattice scale n. For example

‖𝜕m
𝛿n

Γn‖L∞((𝛿nZ)3) ≤ cL,m

Moreover the sequence Γn converges exponentially fast to a
smooth positive definite continuum function Γ* of finite range L

2
in the following sense: For all n ≥ l ≥ d , with l fixed we have

‖𝜕m
𝛿n

Γn − 𝜕m
c Γ*‖L∞((𝛿lZ)3) ≤ cL,mL−qn

for some q > 0.
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Define by recursion the positive definite functions Cn on (𝛿nZ)3

Cn(x) = Γn(x) + L−2dsCn+1(
x
L

)

The Cn have regularity properties uniformly in the lattice scale.
They, and their lattice derivatives, converge to smooth
continuum functions. Now we can define RG transformations.
As usual this is the composition of fluctuation integration ( next
frame) with rescaling of fields. The scale transformation SL is
defined by SLΦ(x) = L−ds Φ(x/L).
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Let Λm = (−Lm/2,Lm/2)3 ⊂ R3 and define Λm,n = Λm ∩ (𝛿nZ)3.
Start with the density 𝒵0(ΛN,0,Φ) = exp(−V0(ΛN,0,Φ)) with
initial parameters g0, 𝜇0 in a large cube on the unit lattice.
There is a sequence of RG transformations which gives the
evolution of densities belonging to the Grassman algebra over
the ring of bosonic fields on finer and finer lattices

TN−n,n : Ω0(ΛN−n+1,n−1) → Ω0(ΛN−n,n)

defined by

𝒵n(ΛN−n,n,Φ) = 𝜇Γn−1 * 𝒵n−1(ΛN−n+1,n−1,SLΦ)

∫︁
d𝜇C0𝒵0(ΛN,0,Φ) =

∫︁
d𝜇Cn𝒵n(ΛN−n,n,Φ)
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At any given step n of the sequence of RG transformations the
densities will be given coordinates gn, 𝜇n,Kn. Here gn, 𝜇n are
the evolved parameters of the local potential Vn. and Kn is a so
called irrelevant (contracting) term characterized as a polymer
activity. The density 𝒵n(ΛN−n,n,Φ) can be expressed in terms
of these coordinates in a polymer gas representation.
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Pave R3 with a disjoint union of open unit cubes which are
integer translates of (−1

2 ,
1
2)3. Take their intesection with a fine

lattice. These are unit blocks of the fine lattice. A polymer
X ⊂ ΛN−n,n is by default a connected union of unit blocks. Two
disjoint polymers are separated by a distance ≥ 1. A polymer
activity Kn is a map (X ,Φ) → Ω0(X ) and

𝒵n(ΛN−n,n) =
∑︁
N≥0

1
N!

e−Vn(Xc)
∑︁

X1,..XN

N∏︁
j=1

Kn(Xj)

The sum is over mutually disjoint connected polymers in ΛN−n,n.
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The density 𝒵n(ΛN−n,n,Φ + 𝜉) can also be written as

𝒵n(ΛN−n,n) =
∑︁
N≥0

1
N!

e−Ṽ (Yc)
∑︁

Y1,..YN

N∏︁
j=1

ℬK (Yj)

The sum is now over mutually disjoint connected L- polymers in
ΛN−n,n . ℬK is a non-linear functional of Kn, Ṽn which depends
on Φ, 𝜉. Ṽn is a yet to be chosen local potential which depends
only on Φ . Then the fluctuation map SL𝜇Γn* which integrates
out the 𝜉 factorizes over the product of polymer activities
because of the finite range property of Γn since the connected
L- polymers are separated by a distance ≥ L. Thus the polymer
representation is preserved after fluctuation integration.
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The fluctuation inntegration plus rescaling has given a map

Vn → Ṽn,L = SLVn, Kn → ℱKn

The image polymer activity lives on polymers in ΛN−1−n,n+1.
The polymers have become finer and the cube smaller.

We can profit from the arbitrariness in the choice of Ṽn to
subtract out the (localized) expanding parts of ℱKn, and absorb
them in Ṽn,L thus producing a flow of parameters. This
subtraction operation on ℱKn(X ,Φ) needs only to be be done
for small sets X , because large sets provide contracting
contributions. The new subtracted polymer activities have good
contraction properties (irrelevant terms). Finally note that
supersymmetry is preserved by these maps. No vacuum
energy terms are produced by supersymmetry.
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This procedure produces our final RG map fn+1

fn+1,V (Vn,Kn) = Vn+1, fn+1,K (Vn,Kn) = Kn+1

Using second order perturbation theory,

Kn = e−VnQn + Rn

Qn is a second order contribution. It is form invariant and
depends on gn, 𝜇n and a non-local kernel wn which converges
fast to continuum kernel. We will ignore it for simplicity. Rn is a
remainder. Let un = (gn, 𝜇n,Rn) represent a point on the RG
trajectory. The RG map produces a discrete flow:

un+1 = fn+1(un)
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The flow map in components is:

gn+1 = fn+1,g(un) = L𝜖gn((1 − L𝜖angn) + 𝜉n(un)

𝜇n+1 = fn+1,𝜇(un) = L
3+𝜖

2 𝜇n − L2𝜖bng2
n + 𝜌n(un)

Rn+1 = fn+1,R(un) =: Un+1(un)

The coefficients an are positive and converge fast to a limit
ac > 0. We have an approximate flow ḡn obtained by ignoring
the remainder 𝜉n and replacing an by its limiting value ac . This
approximate flow has an attractive fixed point ḡ = O(𝜖), for 𝜖
sfficiently small.

Pronob K. Mitter Self-Avoiding Walks and Field Theory



Introduction
Green’s function and supersymmetric field theory

RG analysis of supermeasure

A finite range multiscale expansion
Renormalization group transformations
coordinates for densities
RG map on coordinates
Banach spaces for RG coordinates
Stable manifold

Let g̃n = gn − ḡ. Then vn = (g̃n, 𝜇n,Rn) are the new
coordinates. Then

g̃n+1 = fn+1,g(vn) = (2 − L𝜖)g̃n + 𝜉n(vn)

𝜇n+1 = fn+1,𝜇(vn) = L
3+𝜖

2 𝜇n + 𝜌n(vn)

Rn+1 = fn+1,R(vn) =: Un+1(vn)

are the new flow equations. (2 − L𝜖) = (1 − O(logL)𝜖 is a
contraction factor.
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Banach spaces:

We will consider the RG action on polymer activities in the
formal infinite volume limit. This makes sense because of the
finite range property of fluctuation covariances.

We endow polymer activities Kn with a norm ‖ · ‖n. This norm
tends to a continuum norm as n → ∞. This gives us a Banach
space of Polymer activities at scale n. The norm measures:

1. Large 𝜑 field growth (large field regulator)

2. Partial derivatives in the 𝜑, 𝜓, finite number in 𝜑, and all in 𝜓.

3. Puts in a weight which says that large polymers contribute
small amount (large set regulator).
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We introduce a second norm | · |n. This is the same as the
previous norm except that we evaluate poymer activities at
𝜑 = 0, and therefore no large field growth to be measured.

We measure the remainder Rn in a norm ||| · |||n, where

|||Rn|||n = max{|Rn|, ḡ2||Rn||}

Define a Banach space En consisting of elements
vn = (g̃n, 𝜇n,Rn) with norm

||vn|| = max{(𝜈ḡ)−1|g̃n|, ḡ−(2−𝛿)|𝜇n|, ḡ−(11/4−𝜂)|||Rn|||n}

where 𝛿, 𝜂 > 0 are very small numbers and 0 < 𝜈 < 1/2.
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Let En(r) ⊂ En be an open ball of radius r centered at the
origin. Let vn ∈ En(1). Then our first theorem says

|𝜉n(vn)| ≤ CLḡ11/4−𝜂, |𝜌n(vn)| ≤ CLḡ11/4−𝜂

These are estimates for the error terms in the gn, 𝜇n flow.
Moreover Rn+1 = Un+1(vn) has the bound

|||Un+1(vn)|||n+1 ≤ L−1/4ḡ11/4−𝜂

On the right hand side we have a contraction factor. We also
have Lipshitz continuity in the above norms with the same
constants.
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Existence of stable manifold

We consider a Banach E space of sequences s = {vn}n≥0, with
vn ∈ En, supplied with the norm

||s|| = sup
n≥0

||vn||n

E(r) ⊂ E is an open ball of radius r . Let v0 = (g̃0, 𝜇0,0). The
next theorem states that if g̃0 is held in a sufficiently small open
ball then there exists a Lipshitz continuous critical mass 𝜇c(g̃0)
such that the trajectory un+1 = fn+1(un) is uniformly bounded in
the norm on the space of sequences.
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Main Theorem:

Let L be sufficiently large, 𝜈 be sufficiently small depending on
L, then 𝜖 sufficiently small depending on L. Let v0 ∈ E0(1/32).
Let g̃0 ∈ U0(r) ⊂ R where U0(r) is an open ball of radius r
sufficiently small. Then there is a Lipshitz continuous function
h : U0(r) → R such that if 𝜇0 = h(g̃0) then there is a sequence
s = {vn}n≥0 in E(1/4) satisfying vn+1 = fn+1(vn) for all n ≥ 0.
The stable manifold is the graph WS = {g̃0,h(g̃0)}.

Corollary: the theorem implies vn ∈ En(1/4) for all n ≥ 0 and
hence |g̃n| = |gn − ḡ| ≤ 1/4𝜈ḡ. Since 0 < 𝜈 < 1/2, it follows
that gn is non-vanishing at all scales.
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Proof of the theorem is done in 2 steps inorder to circumvent
lattice artifacts.

First we iterate the RG map a large (but finite) number of times.
We come to a high scale (sufficiently fine lattice). We are then
able to prove the existence of the stable manifold starting at this
scale using a fixed point argument on the Banach space of
sequences plus an argument of Schub. Exponential
convergence of finite range fluctuation covariances to the
continuum plays an important role.
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Stable manifold has been established at a high scale. Now use
the Banach space implicit function theorem to prove that there
exists a unique unit lattice critical mass which is a C1 function
of g̃0 in a small enough neigborhood such that after a finite
number of iterations we arrive at the data of the stable manifold
at the high scale.
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