Montpellier, March 11th 2014

EW chiral Lagrangians and the Higgs properties at the one-loop level

J.J. Sanz-Cillero (UAM/CSIC-IFT)

 A. Pich, I. Rosell and JJ SC, JHEP 1208 (2012) 106; PRL 110 (2013) 181801; JHEP 1401 (2014) 157;
 R. Delgado, A. Dobado, M.J. Herrero and JJ SC [in preparation]

J.J. Sanz Cillero

OUTLINE

- 1) Introduction: searching for tiny deviations from SM
- The EW Chiral Lagrangian+Higgs (ECLh)
 S and T phenomenology (?)
- 3) ECLh + Resonances
 - S and T phenomenology

Introduction:

Deviations from SM?

•A new Higgs-like boson discovered at LHC

•M_H=125.64 ± 0.35 GeV

•Still many questions:

- Spin?

0^+ most likely $[\theta^-, 1^\pm, 2^+]$

- Coupling to gauge bosons?

Very close to SM's

- Invisible decays vs SM?

- ATLAS: $BR_{inv} < 0.60 @ 95\% CL (0.84 exp.)$ - CMS: $BR_{inv} < 0.75 @ 95\% CL (0.91 exp.)$ From $\gamma\gamma$: $\Gamma_{H} < 6.9 \text{ GeV}$ at 95% CL (direct)

- SM Higgs?

Compatible so far

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults#Animations

Higgs couplings

•
$$\kappa_{V}$$
: H \rightarrow WW, ZZ (κ_{V}^{SM} =1)
• κ_{F} : H \rightarrow f \overline{f} (κ_{F}^{SM} =1)

[1303.4571 [hep-ex]]

Many other similar analyses (2012-2013): Espinosa et al.; Carni et al.; Azatov et al; Ellis, You...

Summary of all searches for coupling deviations

C. Moratti [ATLAS]

Compatibility with the SMBest uncertainties (10%)

LHC prospects for next years

Spectrum below 1 TeV

SM particles... and nothing else below the TeV

(e.g. SUSY exclusion limits)

ATLAS Summary

A	LAS SUSY Se	ATL	ATLAS Preliminary					
Sta	tus: EPS 2013			- miss			$\int \! \pounds dt = (4.4 - 22.9) \; {\rm fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$
	Model	e, μ, τ, γ	Jets	E	J£ dt[fl	⁻¹] Mass limit		Reference
le Searches	MSUGRA/CMSSM	0	2-6 jets	Yes	20.3	ā.ē 11	7 TeV m(a)=m(a)	ATLAS-CONE-2013-047
	MSUGRA/CMSSM	1 e.u	3-6 jets	Yes	20.3	ž 1.2 TeV	any m(g)	ATLAS-CONF-2013-062
	MSUGRA/CMSSM	0	7-10 jets	Yes	20.3	8 1.1 TeV	any m(g)	ATLAS-CONF-2013-054
	$\tilde{a}\tilde{a}$ $\tilde{a} \rightarrow a\tilde{v}^{0}$	0	2-6 jets	Yes	20.3	ã 740 GeV	m(x ²)=0 GeV	ATLAS-CONE-2013-047
	$\tilde{a}\tilde{a}$ $\tilde{a} \rightarrow a\tilde{a}\tilde{r}_{1}^{0}$	0	2-6 jets	Yes	20.3	8 1.3 TeV	m(S ⁰)=0 GeV	ATLAS-CONF-2013-047
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow a q \tilde{\chi}_{1}^{\dagger} \rightarrow a q W^{\pm} \tilde{\chi}_{1}^{0}$	1 e,µ	3-6 jets	Yes	20.3	8 1.18 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}_{1}^{+}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{\chi}))$	ATLAS-CONF-2013-062
	$\tilde{g}\tilde{g} \rightarrow aaaall(ll)\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0}$	2 e, µ (SS)	3 jets	Yes	20.7	ğ 1.1 TeV	m(²)<650 GeV	ATLAS-CONF-2013-007
	GMSB (Ĩ NLSP)	2 e,µ	2-4 jets	Yes	4.7	ğ 1.24 TeV	tan/s<15	1208.4688
	GMSB (Ž NLSP)	1-2 7	0-2 jets	Yes	20.7	ĝ 1.4 TeV	tanβ >18	ATLAS-CONF-2013-026
	GGM (bino NLSP)	2 y	ó	Yes	4.8	g 1.07 TeV	m(X1)>50 GeV	1209.0753
	GGM (wino NLSP)	$1 e, \mu + \gamma$	0	Yes	4.8	ğ 619 GeV	m($\tilde{\chi}_{1}^{0}$)>50 GeV	ATLAS-CONF-2012-144
	GGM (higgsino-bino NLSP)	γ	16	Yes	4.8	ğ 900 GeV	m(x1)>220 GeV	1211.1167
	GGM (higgsino NLSP)	2 e, µ (Z)	0-3 jets	Yes	5.8	ğ 690 GeV	m(Ĥ)>200 GeV	ATLAS-CONF-2012-152
	Gravitino LSP	0	mono-jet	Yes	10.5	F ^{1/2} scale 645 GeV	m(ĝ)>10 ⁻⁴ eV	ATLAS-CONF-2012-147
	$\bar{a} \rightarrow b \bar{b} \bar{v}^{0}$	0	3.6	Yee	20.1	ĝ 1.2 TeV	m ²⁰ , 600 GeV	ATLAS-CONE-2013-061
e e	$g \rightarrow bb(1)$ $\tilde{\sigma} \rightarrow t \tilde{\tau} \tilde{v}^{0}$	0	7-10 iets	Voc	20.1	8 1.2 TeV	m(r1)<600 GeV	ATLAS-CONF-2013-061
Ē	g-rect 1	0-1 e u	2.6	Vae	20.0	3 1 24 ToV	m(r1) <200 GeV	ATLAS.CONF.2013-054
b 0	$g \rightarrow t \bar{t} \bar{t}_1$ $\bar{a} \rightarrow b \bar{t} \bar{v}_1^+$	0-1 e.u	3.6	Yes	20.1	ž 1.3 TeV	m(²)<300 GeV	ATLAS-CONF-2013-061
_	5-0001						-4	
direct production	$b_1 b_1, b_1 \rightarrow b \chi_1^0$	0	2 b	Yes	20.1	b1 100-630 GeV	m(V1)<100 GeV	ATLAS-CONF-2013-053
	$b_1b_1, b_1 \rightarrow t\chi_1^-$	2 e, µ (SS)	0-3 b	Yes	20.7	b1 430 GeV	$m(\tilde{t}_{1}) \approx 2 m(\tilde{t}_{1})$	ATLAS-CONF-2013-007
	$\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow b \tilde{t}_1$	1-2 e, µ	1-2 b	Yes	4.7	t1 167 GeV	m(V1)=55 GeV	1208.4305, 1209.2102
	$\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow WbV_1$	2 e, µ	0-2 jets	Yes	20.3	t1 220 GeV	$m(\tilde{t}_1) = m(\tilde{t}_1) \cdot m(W) \cdot 50 \text{ GeV}, m(\tilde{t}_1) < < m(\tilde{t}_1)$	ATLAS-CONF-2013-048
	$t_1 t_1 (medium), t_1 \rightarrow t \ell_1$	2 e, µ	2 jets	Yes	20.3	t1 225-525 GeV	m(V1)+0 GeV	ATLAS-CONF-2013-065
	$t_1 t_1 (medium), t_1 \rightarrow b t_1$	0	2 b	Yes	20.1	t1 150-580 GeV	m(V ₁)<200 GeV, m(V ₁)-m(V ₁)=5 GeV	AILAS-CONF-2013-053
	$t_1 t_1$ (heavy), $t_1 \rightarrow t \chi_1$	1 <i>e</i> ,µ	1.6	Yes	20.7	t1 200-610 GeV	m(V1)=0 GeV	AILAS-CONF-2013-03/
	$t_1 t_1$ (heavy), $t_1 \rightarrow t \chi_1$	0	2 D Iono int/o tr	Yes	20.5	t1 320-660 GeV	m(V1)=0 GeV	ATLAS-CONF-2013-024
	$t_1 t_1, t_1 \rightarrow C t_1$	2 0 11/7	10110-180-0-18	ay res	20.3	C1 200 GeV	m(t1)-m(t1)<85 GeV	ATLAS-CONF-2013-008
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e. µ (Z)	1.6	Yes	20.7	1 500 GeV	m(7.)-m(2)/180 GeV	ATLAS-CONF-2013-025
-	a a a .e0	0						
	$\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell \chi_1$	2 e, µ	0	Yes	20.3	/ 85-315 GeV	m(V1)=0 GeV	ATLAS-CONF-2013-049
BC	$\chi_1 \chi_1, \chi_1 \rightarrow \ell v(\ell \bar{v})$	2 e, µ	0	Yes	20.3	X1 125-450 GeV	$m(\tilde{\chi}_1)=0$ GeV, $m(\ell, \tilde{\tau})=0.5(m(\tilde{\chi}_1)+m(\tilde{\chi}_1))$	AI LAS-CONF-2013-049
din	$\chi_1 \chi_1, \chi_1 \rightarrow \tau \nu(\tau \nu)$	27	0	Yes	20.7	21 29 COD CHV	$m(\chi_1)=0$ GeV, $m(\tau, \gamma)=0.5(m(\chi_1)+m(\chi_1))$	AI LAS-CONF-2013-028
	$\chi_1 \chi_2 \rightarrow \ell_1 \nu \ell_1 \ell(\nu \nu), \ell \nu \ell_1 \ell(\nu \nu)$ $\chi_1 \chi_2 \rightarrow \ell_1 \nu \ell_1 \ell(\nu \nu), \ell \nu \ell_1 \ell(\nu \nu)$	3 e. µ	0	Yes	20.7	21 20 215 CeV	$m(t_1)=m(t_2), m(t_1)=0, m(t, v)=0.5(m(t_1)+m(t_1))$	ATLAS-CONF-2013-035
_	$\chi_1\chi_2 \rightarrow W^*\chi_1 Z^*\chi_1$	5 e, µ	0	tes	20.7	315 Gev	m(1)=m(1), m(1)=0, steptons decoupled	ALLAS-CONF-2013-035
cles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$	Disapp. trk	1 jet	Yes	20.3	x̃ [±] 270 GeV	$m(\tilde{\chi}_{1}^{+})-m(\tilde{\chi}_{1}^{0})=160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{+})=0.2 \text{ ns}$	ATLAS-CONF-2013-065
	Stable, stopped g R-hadron	0	1-5 jets	Yes	22.9	8 857 GeV	m(ξ ⁱⁿ ₁)=100 GeV, 10 μs <r(g)<1000 s<="" td=""><td>ATLAS-CONF-2013-057</td></r(g)<1000>	ATLAS-CONF-2013-057
	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \tilde{\mu})$	e,μ) 1-2μ	0		15.9	X1 475 GeV	10 <tanβ<50< td=""><td>ATLAS-CONF-2013-058</td></tanβ<50<>	ATLAS-CONF-2013-058
ď,	GMSB, $\chi_1^{\circ} \rightarrow \gamma G$, long-lived χ_1°	2γ	0	Yes	4.7	X1 230 GeV	0.4 <r(x1)<2 ns<="" td=""><td>1304.6310</td></r(x1)<2>	1304.6310
_	$\chi_1^{\circ} \rightarrow qq\mu$ (RPV)	1μ	0	Yes	4.4	9 700 GeV	1 mm <cr<1 decoupled<="" g="" m,="" td=""><td>1210.7451</td></cr<1>	1210.7451
NdH	LFV $pp \rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e + \mu$	2 e, µ	0	-	4.6	ў _г 1.61	TeV J ₃₁₁ =0.10, J ₃₃₂ =0.05	1212.1272
	LFV $pp \rightarrow \tilde{v}_{\tau} + X$, $\tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	$1 e, \mu + \tau$	0	-	4.6	ν _τ 1.1 TeV	A311=0.10, A1(2)33=0.05	1212.1272
	Bilinear RPV CMSSM	1 e, µ	7 jets	Yes	4.7	9.8 1.2 TeV	$m(\hat{q})=m(\hat{g}), c\tau_{LSP}<1 mm$	ATLAS-CONF-2012-140
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow ee \tilde{v}_{\mu}, e \mu \tilde{v}$	ν _e 4 e,μ	0	Yes	20.7	<i>x</i> [±] 760 GeV	m(\$\vec{v}_1)>300 GeV, \$\lambda_{121}>0\$	ATLAS-CONF-2013-036
	$\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}$	3 e, μ + τ	0	Yes	20.7	x ₁ 350 GeV	m(\$\vec{v}_1)>80 GeV, A_{133}>0	ATLAS-CONF-2013-036
	ğ→qqq	0	6 jets	-	4.6	8 666 GeV		1210.4813
	$\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$	2 e, µ (SS)	0-3 b	Yes	20.7	8 880 GeV		ATLAS-CONF-2013-007
	Scalar gluon	0	4 jets	-	4.6	sgluon 100-287 GeV	incl. limit from 1110.2693	1210.4826
	WIMP interaction (D5, Dirac χ)	0	mono-jet	Yes	10.5	M" scale 704 GeV	m(_{\cap\cepsilon})<80 GeV, limit of<687 GeV for D8	ATLAS-CONF-2012-147
								J
	Ve - 7 TeV	Vs - 8 TeV	15-5	R ToV		10 ⁻¹ 1		
	ys = 7 TeV	vartial date	45 = 0	lata			Mass scale [TeV]	
	ruli data p	artiar Gata	TUILC	Jata				

CMS Summary

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty

EFTs and the composite option

• Large mass gap + small coupling deviations from SM:

An appropriate tool \rightarrow Effective theories:

Non-linear "Chiral" Lagrangians

w/ EW Goldstones +Higgs

• Strongly interacting models? Composite states?

...

Technicolor (and relatives) Composite Higgs [e.g., SO(5)/SO(4)] Extra Dimensions (also)

Tower of composite resonances* (QCD-like)

- * Arkani-Hamed et al. '01
- * Csaki et al. '04
- * Cacciapaglia et al. '04
- * Agashe,Contino,Pomarol '05
- * Hirn,Sanz '06 ...

EW Chiral Lagrangian + Higgs (ECLh): Low-energy EFT

J.J. Sanz Cillero

•EFT assumptions:

- 1. "SM" content: EW Golsdtones+gauge bosons + h
- 2. Applicability: $E << \Lambda_{ECLh} = \min\{ 4\pi v, M_R \}$
- 3. Landau gauge(for convenience; R_ξ renormalizable in any case)
- 4. Equivalence Theorem: $m_{W,Z} \ll E$

Pheno $\rightarrow m_h \sim m_{W,Z} \ll E$ (full calculation also possible)

5. Custodial symmetry: $SU(2)_{L} \otimes SU(2)_{R}/SU(2)_{L+R}$ pattern

•Building blocks:

$$\begin{split} U(w^{\pm},z) &= 1 + iw^{a}\tau^{a}/v + \mathcal{O}(w^{2}) \in SU(2)_{L} \times SU(2)_{R}/SU(2)_{L+R}, \\ \mathcal{F}(h) &= 1 + 2a\frac{h}{v} + b\left(\frac{h}{v}\right)^{2} + \dots, \\ D_{\mu}U &= \partial_{\mu}U + i\,\hat{W}_{\mu}\,U - i\,U\,\hat{B}_{\mu}\,, \\ \hat{W}_{\mu\nu} &= \partial_{\mu}\hat{W}_{\nu} - \partial_{\nu}\hat{W}_{\mu} + i[\hat{W}_{\mu},\hat{W}_{\nu}] , \quad \hat{B}_{\mu\nu} = \partial_{\mu}\hat{B}_{\nu} - \partial_{\nu}\hat{B}_{\mu}\,, \\ \hat{W}_{\mu} &= g\,\vec{W}_{\mu}\vec{\tau}/2 \,, \quad \hat{B}_{\mu} = g'\,B_{\mu}\tau^{3}/2\,, \\ V_{\mu} &= (D_{\mu}U)\,U^{\dagger} \,, \quad \mathcal{T} = U\,\tau^{3}\,U^{\dagger}\,, \end{split}$$

•"Chiral" counting*: $\partial_{\mu}, m_{W}, m_{Z}, m_{h} \sim \mathcal{O}(p)$ $D_{\mu}U, V_{\mu}, g'v \mathcal{T}, \hat{W}_{\mu}, \hat{B}_{\mu} \sim \mathcal{O}(p),$ $\hat{W}_{\mu\nu}, \hat{B}_{\mu\nu} \sim \mathcal{O}(p^{2}).$

also notice the subtlety^{*,**} $g^{(')} \sim m_{W,Z}^{}/v \sim p/v$

* Buchalla,Catà,Krause '13

* Hirn,Stern '05

* Delgado,Dobado,Herrero,SC [in prep.] ** Urech '95

J.J. Sanz Cillero

•EFT Lagrangian up to NLO [i.e. up to $O(p^4)$]: $\mathcal{L}_{ECLh} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_{GF} + \mathcal{L}_{FP}$

→LO Lagrangian^{*,**}:

$$\mathcal{L}_{2} = -\frac{1}{2g^{2}} \operatorname{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - \frac{1}{2g^{\prime 2}} \operatorname{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \frac{v^{2}}{4} \left(1 + 2a\frac{h}{v} + b\left(\frac{h^{2}}{v^{2}}\right)\right) \operatorname{Tr}(D^{\mu}U^{\dagger}D_{\mu}U) + \frac{1}{2}\partial^{\mu}h\partial_{\mu}h + \dots$$

→NLO Lagrangian^{*,**}:

$$\mathcal{L}_{4} = a_{1} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}\hat{W}^{\mu\nu}) + i a_{2} \operatorname{Tr}(U\hat{B}_{\mu\nu}U^{\dagger}[V^{\mu}, V^{\nu}]) - i a_{3} \operatorname{Tr}(\hat{W}_{\mu\nu}[V^{\mu}, V^{\nu}]) \\ - c_{W} \frac{h}{v} \operatorname{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - c_{B} \frac{h}{v} \operatorname{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \dots \\ - \frac{c_{\gamma}}{2} \frac{h}{v} e^{2} A_{\mu\nu}A^{\mu\nu} + \dots$$

* Apelquist,Bernard '80

* Longhitano '80, '81

** \mathcal{I}_4 conventions from Brivio et al. '13

J.J. Sanz Cillero

Counting,

loops & renormalization

•In general, the O(p^d) Lagrangian has the symbolic form $(\chi=W,B,\pi,h)$,

$$\mathcal{L}_d = \sum_k f_k^{(d)} p^d \left(\frac{\chi}{v}\right)^k$$

leading to a general scaling* of a diagram with $\begin{array}{c} \bullet L \ loops \\ \bullet E \ external \ legs \\ \bullet \ N_d \ vertices \ of \ \mathcal{I}_d \end{array}$ $\mathcal{M} \sim \left(rac{\mathbf{p}^2}{\mathbf{v}^{\mathbf{E}-2}}
ight) \left(rac{\mathbf{p}^2}{\mathbf{16}\pi^2\mathbf{v}^2}
ight)^{\mathbf{L}} \prod \left(rac{\mathbf{f}_k^{(d)}\mathbf{p}^{(d-2)}}{\mathbf{v}^2}
ight)^{\mathbf{N}_d}$

[scaling of individual diagrams; cancellations & higher suppressions for the total amplitude]

• $O(p^d)$ loop divergence + $O(p^d)$ chiral coupling = UV-finite

* Weinberg '79 * Urech '95 **<u>E.g. W_LW_L-scat**:</u>** LO $O(p^2) \rightarrow \frac{p^2}{r^2}$ (tree) * Buchalla, Catà, Krause '13 * Hirn.Stern '05 * Delgado, Dobado, Herrero, SC [in prep.] NLO O(p⁴) \rightarrow a_i $\frac{\mathbf{p}^4}{\mathbf{v}^4}$ (tree) + $\frac{\mathbf{p}^4}{\mathbf{16}\pi^2\mathbf{v}^4}\left(\frac{1}{\epsilon} + \log\right)$ (1-loop) ** Espriu, Mescia, Yencho '13 ** Delgado, Dobado '13 J.J. Sanz Cillero

Example: S & T parameters at O(p⁴)

•Do oblique parameters exclude strongly-coupled models?

The EWPO Oblique Parameters

don't exclude them at all

- Dangerous naïve cut-offs at some $\Lambda^{"phys"}$ -

(ALWAYS!!!)

* Peskin, Takeuchi '92

More complicated/interesting examples coming soon [Delgado,Dobado,Herrero,SC 'in preparation]

\rightarrow W³B correlator*

* Dobado et al. '99

* Pich, Rosell, SC '12, '13

* Delgado, Dobado, Herrero, SC [in prep]

J.J. Sanz Cillero

• More observables* can over-constrain the $a_i(\mu)$ BUT not (S,T) alone!!!

• Taking just tree-level is incomplete
$$\longrightarrow \begin{bmatrix} S = -16\pi a_1(\mu?), & T = \frac{8\pi}{c_W^2}a_0(\mu?) \end{bmatrix}$$

and similar if only loops $\longrightarrow \begin{bmatrix} S = \frac{(1-a^2)}{12\pi}\ln\frac{\mu^2}{m_h^2}, & T = -\frac{3(1-a^2)}{16\pi c_W^2}\ln\frac{\mu^2}{m_h^2} \end{bmatrix}$

•Otherwise, one may resource to models**:

 $\rightarrow \text{Resonances} \qquad (lightest V + A)$

→ UV-completion assumptions (high-energy constraints)

* Delgado, Dobado, Herrero, SC [in prep.] ** Pich, Rosell, SC '12, '13

Deviations from SM: BSM's

✤ Different models → Different deviations from SM

 $(a = \kappa_W = \kappa_V)$

•O(p²) Lagrangian in particular models:

$$a^{2} = b = 0$$

$$a^{2} = b = 1$$

$$a^{2} = 1 - \frac{v^{2}}{f^{2}}, \quad b = 1 - \frac{2v^{2}}{f^{2}}$$

$$a^{2} = b = \frac{v^{2}}{\hat{f}^{2}},$$

(Higgsless ECL) (SM), (SO(5)/SO(4) MCHM),

•O(p⁴) Lagrangian in particular models: $c_W = c_B = c_\gamma = ... = 0$ $a_i = c_W = c_B = c_\gamma = ... = 0$

(Higgsless ECL), (SM),

EW Chiral Lagrangian + h + V + A: Models, assumptions, completions...

Inspired/similar to SM and the QCD sector:

EW & leptons 🗇 quarks & gluons

• However, it can't be just a copy of QCD:

J.J. Sanz Cillero

EW chiral Lagrangians and the Higgs properties at the one-loop level

Oblique EWPO's

✓ Universal oblique corrections via the EW boson self-energies (transverse in the Landau gauge) * , +

$$\mathcal{L}_{\text{vac-pol}} = -\frac{1}{2} W_{\mu}^{3} \Pi_{33}^{\mu\nu}(q^{2}) W_{\nu}^{3} - \frac{1}{2} B_{\mu} \Pi_{00}^{\mu\nu}(q^{2}) B_{\nu} - W_{\mu}^{3} \Pi_{30}^{\mu\nu}(q^{2}) B_{\nu} - W_{\mu}^{+} \Pi_{WW}^{\mu\nu}(q^{2}) W_{\nu}^{-},$$
with the subtracted definition,

$$\Pi_{30}(q^{2}) = q^{2} \widetilde{\Pi}_{30}(q^{2}) + \frac{q^{2} \tan \theta_{W}}{4} v^{2}$$

$$\mathbf{e}_{1} = \frac{1}{m_{W}^{2}} \left(\Pi_{33}(\mathbf{0}) - \Pi_{WW}(\mathbf{0}) \right) \quad \stackrel{**}{=} \frac{\mathbf{Z}^{(+)}}{\mathbf{Z}^{(0)}} - 1$$

$$\mathbf{e}_{3} = \frac{1}{\tan \theta_{W}} \widetilde{\Pi}_{30}(\mathbf{0})$$

$$\overline{\epsilon_{1}^{8M}} \approx -\frac{3g^{2}}{32\pi^{2}} \log \frac{M_{H}}{M_{Z}} + \text{const}, \quad \underline{\epsilon_{3}^{8M}} \approx \frac{g^{2}}{96\pi^{2}} \log \frac{M_{H}}{M_{Z}} + \text{const}'$$

$$\overline{T} = \frac{4\pi}{g'^{2} \cos^{2} \theta_{W}} \left(e_{1} - e_{1}^{SM} \right)$$

$$S = \frac{16\pi}{g^{2}} \left(e_{3} - e_{3}^{SM} \right),$$

$$\stackrel{* \text{Peskin and Takeuchi '91, '92} \qquad \stackrel{* \text{Gifter}}{= \text{LEP EWWG}}$$

J.J. Sanz Cillero

S-parameter sum-rule *

✓ In this work, dispersive representation introduced by Peskin and Takeuchi*.

$$S = \frac{16}{g^2 \tan \theta_W} \int_0^\infty \frac{\mathrm{dt}}{t} \left(\mathrm{Im}\widetilde{\Pi}_{30}(t) - \mathrm{Im}\widetilde{\Pi}_{30}(t)^{\mathrm{SM}} \right)$$
$$= \int_0^\infty \frac{\mathrm{dt}}{t} \left(\frac{16}{g^2 \tan \theta_W} \mathrm{Im}\widetilde{\Pi}_{30}(t) - \frac{1}{12\pi} \left[1 - \left(1 - \frac{m_{H,ref}^2}{t} \right)^3 \theta(t - m_{H,ref}^2) \right] \right)$$

- \rightarrow The convergence of the integral requires $ho_{f S}(t)\equiv {1\over \pi}{
 m Im}\widetilde{\Pi}_{30}(t)$ ${t
 ightarrow \infty}$ 0
- \rightarrow S-parameter defined for an arbitrary reference value m_{H,ref}
- \rightarrow Higher threshold cuts in Im Π_{30} will be suppressed in the dispersive integral

→ At tree-level:
$$S_{\rm LO} = 4\pi \left(\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_A^2} \right)$$

* Peskin and Takeuchi '92.

$SU(2)_L \otimes SU(2)_R / SU(2)_{L+R}$ Resonance Theory

$$\mathcal{L} \,=\, \mathcal{L}_{ ext{EW}}^{(2)} + \mathcal{L}_{ ext{GF}} + \mathcal{L}_V + \mathcal{L}_A + \mathcal{L}_{VV}^{ ext{kin}} + \mathcal{L}_{AA}^{ ext{kin}} + .$$
 ...

L

w/ field content:

 $SU(2)_{L} \otimes SU(2)_{R}/SU(2)_{L+R}$ EW Goldstones + SM gauge bosons

- + one SU(2)_L \otimes SU(2)_R singlet Higgs-like scalar S₁ with m_{S1}=126 GeV ***
- + lightest V and A resonances -triplets- (antisym. tensor formalism) (x)

•Relevant resonance Lagrangian ^{(x),} **

 $\boldsymbol{\omega} = \mathbf{a} = \kappa_{\mathbf{W}} = \kappa_{\mathbf{Z}}$

$$= \left\{ \frac{v^2}{4} + \kappa_W \frac{v}{2} S_1 \right\} \langle u_\mu u^\mu \rangle \xleftarrow{h + \pi \text{ sector}} \\ + \frac{F_V}{2\sqrt{2}} \langle V_{\mu\nu} f_+^{\mu\nu} \rangle + \frac{i G_V}{2\sqrt{2}} \langle V_{\mu\nu} [u^\mu, u^\nu] \rangle \xleftarrow{V + \pi \text{ sector}} \\ + \frac{F_A}{2\sqrt{2}} \langle A_{\mu\nu} f_-^{\mu\nu} \rangle + \sqrt{2} \lambda_1^{SA} \partial_\mu S_1 \langle A^{\mu\nu} u_\nu \rangle \qquad A + h + \pi \text{ sector}$$

We will have 7 resonance parameters:

 $F_V,~G_V,~F_{AW},~\kappa_W,~\lambda_1{}^{SA},~M_V~and~M_A$

High-energy constraints will be crucial

** Appelquist, Bernard '80

- ** Longhitano '80 '81
 - ** Dobado, Espriu, Herrero '91
 - ** Dobado et al. '99

** Espriu,Matias '95 ...

*** Alonso et al. '13

- *** Manohar et al. '13
- *** Elias-Miro et al. '13...

J.J. Sanz Cillero

(x) SD constraints: Ecker et al. '89

(x) EoM simplifications: Georgi '91

(x) EoM simplifications: Xiao, SC '07

(x) EoM simplification: Pich, Rosell, SC '13

High-energy constraints

- ✓ We will have 7 resonance parameters: F_V , G_V , F_A , κ_W , λ_1^{SA} , M_V and M_A .
- ✓ The number of unknown couplings can be reduced by using short-distance information.
- ✓ In contrast with the QCD case, we ignore the underlying dynamical theory.

0) Once-subtracted dispersion* relation for
$$\Pi_{30}(s) = \frac{g^2 \tan \theta_W}{4} s \left[\Pi_{VV}(s) - \Pi_{AA}(s) \right]$$

✓ Once-subtract. dispersive relation from tree+1-loop spectral function** $\pi\pi$, $h\pi$... (higher cuts suppressed) $\Pi_{30}(s) = \Pi_{30}(0) + \frac{s}{\pi} \int_0^\infty \frac{\mathrm{d}t}{t (t-s)} \mathrm{Im}\Pi_{30}(t)$

 \checkmark F_R^r and M_R^r are *renormalized* couplings which define the resonance poles at the one-loop level.

$$|\Pi_{30}(s)|_{\rm NLO} = \frac{g^2 \tan \theta_W}{4} s \left(\frac{v^2}{s} + \frac{F_V^{r\,2}}{M_V^{r\,2} - s} - \frac{F_A^{r\,2}}{M_A^{r\,2} - s} + \overline{\Pi}(s)\right)$$

* Peskin, Takeuchi '90, '91

** Pich, Rosell, SC '08

J.J. Sanz Cillero

i) Weinberg Sum Rules (WSR)*
$$\Pi_{30}(s) = \frac{g^2 \tan \theta_W s}{4} [\Pi_{VV}(s) - \Pi_{AA}(s)]$$

 $= \frac{g^2 v^2 \tan \theta_W}{4} + s \widetilde{\Pi}_{30}(s)$

EW chiral Lagrangians and the Higgs properties at the one-loop level

J.J. Sanz Cillero

* Weinberg'67 * Bernard et al.'75.

** Pich, Rosell, SC '08

J.J. Sanz Cillero

ii) Additional short-distance constraints

ii.iii) $W_L W_L \rightarrow W_L W_L$ scattering*

(NOT CONSIDERED HERE, studied in a previous work***)

 $[\kappa_W > 0 + WSRs + VFF] \rightarrow M_V/M_A > 0.8$

$$\frac{3\mathrm{G}_{\mathrm{V}}^2}{\mathrm{v}^2} + \kappa_{\mathrm{W}}^2 = 1$$

** Ecker et al.'89

*** Pich, Rosell, SC '12

* Barbieri et al.'08 * Guo, Zheng, SC '07

2 * Pich, Rosell, SC '11

J.J. Sanz Cillero

These are my principles. If you don't like them, I have others

S and T at LO

S-parameter *

* New physics in the difference between the Z self-energies at $q^2=M_Z^2$ and $q^2=0$.

T-parameter *

* It parametrizes the Custodial Symmetry breaking $(W^+W^- vs. ZZ)$

* Peskin and Takeuchi '92.

S and T at NLO

 \rightarrow <u>W³B correlator</u>*

→<u>NGB self-energy</u> *

- * Barbieri et al.'08
- * Cata and Kamenik '10
- * Orgogozo, Rychkov '11, '12

J.J. Sanz Cillero

High-energy constraints + Dispersion relations

 \rightarrow <u>W³B correlator</u> \rightarrow S-parameter sum-rule (+)

$$S = \frac{16}{g^2 \tan \theta_W} \int_0^\infty \frac{\mathrm{dt}}{t} \left[\rho_S(t) - \rho_S(t)^{\mathrm{SM}} \right]$$

(33)

`*

$$\rho_{\mathbf{S}}(\mathbf{s}) = \frac{1}{\pi} \mathrm{Im} \widetilde{\Pi}_{30}(\mathbf{s}) \begin{bmatrix} \rho_{S}|_{\pi\pi} = \frac{gg'\,\theta(s)}{192\pi} \left(1 + \frac{F_{V}G_{V}}{v^{2}} \frac{s}{M_{V}^{2} - s}\right)^{2} & \stackrel{\text{VFF} +}{\longrightarrow} & \frac{gg'\,\theta(s)}{192\pi} \left(\frac{M_{V}^{2}}{M_{V}^{2} - s}\right)^{2} \\ \rho_{S}|_{S\pi} = -\frac{gg'\,\kappa_{W}^{2}\,\sigma_{S\pi}^{3}\theta(s - m_{S}^{2})}{192\pi} \left(1 + \frac{F_{A}\lambda_{1}^{SA}}{\kappa_{W}v} \frac{s}{M_{A}^{2} - s}\right)^{2} & \stackrel{\text{VFF} +}{\longrightarrow} & -\frac{gg'\,\kappa_{W}^{2}\,\sigma_{S\pi}^{3}\theta(s - m_{S}^{2})}{192\pi} \left(\frac{M_{A}^{2}}{M_{A}^{2} - s}\right)^{2} \end{bmatrix}$$

→<u>NGB self-energies</u> → Convergent dispersion relation for T ^(x) for the lightest absorptive diagrams with $B\pi + BS$

$$T = \frac{4}{g^{\prime 2} \cos^2 \theta_W} \int_0^\infty \frac{\mathrm{dt}}{t^2} \left[\rho_T(t) - \rho_T(t)^{\mathrm{SM}} \right]$$

$$\rho_{\mathbf{T}}(\mathbf{s}) = \frac{1}{\pi} \mathrm{Im} \left[\mathbf{\Sigma}(\mathbf{s})^{(0)} - \mathbf{\Sigma}(\mathbf{s})^{(+)} \right] \begin{bmatrix} \rho_{\mathbf{T}}(\mathbf{s})|_{\mathbf{B}\pi} & \xrightarrow{\mathbf{s} \to \infty} & -\frac{3\mathbf{g}^{\prime 2}\mathbf{s}}{64\pi^2} \left(1 - \frac{\mathbf{F}_{\mathbf{V}}\mathbf{G}_{\mathbf{V}}}{\mathbf{v}^2}\right)^2 + \mathcal{O}(\mathbf{s}^0) \\ + \mathrm{Peskin}, \mathrm{Takeuchi} \, ^{92} \mathbf{x} \mathrm{Pich}, \mathrm{Rosell}, \mathrm{SC} \, ^{\prime 13} \\ \times \mathrm{Pich}, \mathrm{Rosell}, \mathrm{SC} \, ^{\prime 13} \\ * \, \mathrm{Orgogozo}, \mathrm{Rychkov} \, ^{\prime 11} \end{bmatrix}$$

J.J. Sanz Cillero

1st + 2nd WSR determination:

- ✓ 7 parameters (only lowest cuts $\pi\pi$ +h π): $M_V, M_A, F_V, F_A \& G_V, \kappa_W, \lambda_1^{SA}$
- ✓ 2 + 2 + 1 constraints: F_V , F_A & M_A , (F_VG_V) , $(F_A\lambda_1^{SA})$ = 2 free parameters: M_V , κ_W

Only 1st WSR lower bound for M_V<M_A:

- 6 parameters (only lowest cuts $\pi\pi$ +h π / B π +Bh): M_V, M_A, F_V & (F_VG_V), κ_W , (F_A λ_1 ^{SA})
- ✓ 1 + 1 + 1 constraints: $F_V \& (F_V G_V), (F_A \lambda_1^{SA})$

 \longrightarrow 3 free parameters: M_v , M_A , κ_W

LO results***

i.i) 1st and 2nd WSRs **

$$S_{\rm LO} = \frac{4\pi v^2}{M_V^2} \left(1 + \frac{M_V^2}{M_A^2} \right)$$
$$\frac{4\pi v^2}{M_V^2} < S_{\rm LO} < \frac{8\pi v^2}{M_V^2}$$

$$S_{\rm LO} = 4\pi \left(\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_A^2} \right) , \qquad T_{\rm LO} = 0$$

i.ii) Only 1st WSR *** (lower bound for $M_A > M_V$)

$$S_{\rm LO} = 4\pi \left\{ \frac{v^2}{M_V^2} + F_A^2 \left(\frac{1}{M_V^2} - \frac{1}{M_A^2} \right) \right\}$$
$$S_{\rm LO} > \frac{4\pi v^2}{M_V^2}$$

- * Gfitter
- * LEP EWWG
- * Zfitter

** Peskin and Takeuchi '92. *** Pich, Rosell, SC '12

(*M_V* > 3.6 TeV if *T_{LO}*=0 also considered)

EW chiral Lagrangians and the Higgs properties at the one-loop level

J.J. Sanz Cillero

NLO results:* 1st and 2nd WSRs in Π_{30}

(asymptotically-free theories)

* Pich,Rosell,SC '12, '13

J.J. Sanz Cillero

NLO Results:* Only 1st WSRs in Π_{30}

(walking & conformal TC, extra dimensions,...)**

$$T = \frac{3}{16\pi\cos^2\theta_W} \left[1 + \log\frac{m_H^2}{M_V^2} - \kappa_W^2 \left(1 + \log\frac{m_{S_1}^2}{M_A^2} \right) \right]$$

$$S > \left[\frac{4\pi v^2}{M_V^2} + \frac{1}{12\pi} \left[\left(\ln\frac{M_V^2}{m_H^2} - \frac{11}{6} \right) - \kappa_W^2 \left(\log\frac{M_A^2}{m_{S_1}^2} - \frac{17}{6} + \frac{M_A^2}{M_V^2} \right) \right]$$

[terms $O(m_s^2/M_{V,A}^2)$ neglected]

✓ **Assumption** $M_A > M_V$ for the S lower-bound

• Only 1st WSR at LO and NLO + $\pi\pi$ -VFF:

 \rightarrow Free parameters: M_V, M_A and κ_W

* Pich,Rosell,SC '12, '13

** Orgogozo, Rychkov '11

J.J. Sanz Cillero

NLO Results:* Only 1st WSRs in Π_{30}

very different from the SM if one requires large (unnatural) splittings

* Pich,Rosell,SC '12, '13

** Orgogozo, Rychkov '11

J.J. Sanz Cillero

NLO Results:* Only 1st WSRs in Π_{30}

J.J. Sanz Cillero

** Orgogozo,Rychkov '11

BACKUP PLOTS

J.J. Sanz Cillero

BACKUP PLOTS

Further comments:

- ✓ 1< M_A/M_V < 2 yields M_V > 1.5 TeV, κ_W ∈ [0.84, 1.30]
- ✓ The limit $\kappa_W \rightarrow 0$ only reached for $M_V/M_A \rightarrow 0$

 κ_{W} =0 incompatible with data (independently of whether 1st+2nd WSR's or just 1st WSR)

 $\checkmark \text{ Predictions for ECLh low-energy couplings} \\ 1^{\text{st}+2^{\text{nd}}} \text{WSRs} \checkmark a_1(\mu) = \left(-\frac{v^2}{4} \left(\frac{1}{M_V^2} + \frac{1}{M_A^2} \right) \right) + \frac{1}{192\pi^2} \left(\frac{8}{3} + \ln \frac{\mu^2}{M_V^2} \right) - \frac{\kappa_W^2}{192\pi^2} \left(\frac{8}{3} + \ln \frac{\mu^2}{M_A^2} \right) + \kappa_W \ln \kappa_W^2 \\ a_0(\mu) = \frac{3}{128\pi^2} \left(\frac{11}{6} + \ln \frac{\mu^2}{M_V^2} \right) - \frac{3\kappa_W^2}{128\pi^2} \left(\frac{11}{6} + \ln \frac{\mu^2}{M_A^2} \right)$

✓ Calculation valid for particular models with this symmetry:

E.g., in SO(5)/SO(4) with $\kappa_W = \cos\theta < 1$ *

- * Agashe, Contino, Pomarol '05
- * Barbieri et al '12
- * Marzocca, Serone, Shu '12 ...

J.J. Sanz Cillero

Conclusions

Framework (I): - SU(2)_L⊗SU(2)_R / SU(2)_{L+R} EFT w/ NGB's + <u>Higgs</u> (ECLh)

- Power counting for individual contributions (loops + tree)

- Important cancellations in the full amplitude (stronger suppression $4\pi f$)

Framework (II): - NGB's + Higgs + Resonances

- High-energy constraints + 1 loop dispersive calculation

✓1st + 2nd WSR's:Tiny splitting (68% CL)0.97 < (M_V/M_A) 2 = κ_W < 1,</th>M_V > 5.4 TeV✓Only 1st WSR:For a moderate mass splitting M_A ~ M_V (lighter) , κ_W ~ 1,M_V > 1 TeV

FINAL CONCLUSIONS:

- Resonances perfectly allowed by S & T at $M_R \sim 4\pi v \approx 3$ TeV
- Resonances perfectly compatible with LHC $\kappa_W \approx 1$
- Only some slight issues below TeV (large splitting, inv. hierarchy...)
- Conclusions applicable to more specific models (e.g. SO(5)/SO(4) MCHM)

BACKUP SLIDES

• Field content of the theory:

 $SU(2)_{L} \otimes SU(2)_{R} / SU(2)_{L+R} EW Goldstones + SM gauge bosons$

+ one $SU(2)_L \otimes SU(2)_R$ singlet scalar S_1

+ lightest resonances (e.g., V and A; optional)

• Building blocks: $SU(2)_{L} \otimes SU(2)_{R}$ transformation properties

$$\begin{aligned} u(\varphi) &\longrightarrow g_L \, u(\varphi) \, h^{\dagger}(\varphi, g) \,=\, h(\varphi, g) \, u(\varphi) \, g_R^{\dagger} \\ \hat{W}^{\mu} &\to g_L \, \hat{W}^{\mu} g_L^{\dagger} + i \, g_L \, \partial^{\mu} g_L^{\dagger} \,, \qquad \hat{B}^{\mu} \to g_R \, \hat{B}^{\mu} g_R^{\dagger} + i \, g_R \, \partial^{\mu} g_R^{\dagger} \\ R &\longrightarrow h(\varphi, g) \, R \, h^{\dagger}(\varphi, g) \,, \qquad \qquad R_1 \longrightarrow R_1 \end{aligned}$$

NOTATION:

$$U = u^{2} = \exp\{i\vec{\sigma}\vec{\pi}/v\}$$

$$f_{\pm}^{\mu\nu} = u^{\dagger}\hat{W}^{\mu\nu}u \pm u\hat{B}^{\mu\nu}u^{\dagger} \qquad \hat{W}^{\mu} = -g\frac{\vec{\sigma}}{2}\vec{W}^{\mu}, \qquad \hat{B}^{\mu} = -g'\frac{\sigma_{3}}{2}B^{\mu}$$

$$\hat{W}^{\mu\nu} = \partial^{\mu}\hat{W}^{\nu} - \partial^{\nu}\hat{W}^{\mu} - i[\hat{W}^{\mu}, \hat{W}^{\nu}], \qquad \hat{B}^{\mu\nu} = \partial^{\mu}\hat{B}^{\nu} - \partial^{\nu}\hat{B}^{\mu} - i[\hat{B}^{\mu}, \hat{B}^{\nu}],$$

$$u^{\mu} = iuD^{\mu}U^{\dagger}u = -iu^{\dagger}D^{\mu}Uu^{\dagger} = u^{\mu\dagger}, \qquad D^{\mu}U = \partial^{\mu}U - i\hat{W}^{\mu}U + iU\hat{B}^{\mu}.$$

•Higgs decay through a top loop $g \circ_{\mathcal{O}}$ 00 H b, c, \ldots t, b(mainly enhanced by $H \rightarrow tt$ coupling; prop. to m_t) b, c, τ $g \cup \mathcal{Q}$ 00 Events / GeV 4500 $Ldt = 4.83 \text{ fb}^{-1}$ √s = 7 TeV Nov 3, 2011 4000 √s = 8 TeV $Ldt = 20.65 \text{ fb}^{-1} \text{ Dec } 9,2012$ 3500 ATLAS Preliminary $H \rightarrow \gamma \gamma$ channel 3000 2500 γ₁= 86 GeV 2000 1500 🔶 Data 1000 Background-only Sig.+Bkg. (m_=126.8 GeV) 500 Data - Fit 200 γ_2 =56 GeV Signature: 2 energetic, isolated γ , -200 120 130 150 160 Μ_{γγ} [GeV] 100 110 140 a narrow mass peak on top of a steeply falling spectrum

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults#Animations]

 $H \rightarrow ZZ^* \rightarrow 4\ell$

Very clean final state:

- 4 leptons of high $\ensuremath{p_{\text{T}}}\xspace$,
- isolated
- coming from the primary vertex

But a clear Very tiny cross section \rightarrow distintinctive signal

[https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults#Animations]

J.J. Sanz Cillero