The Dilaton and its many Faces

JavíSerra

with B.Bellazzini, C.Csaki, J.Hubisz, J.Terning arXiv:1209.3299 arXiv:1305.3919 arXiv:1312.0259
arXiv:14xx.xxxx

Séminaire Interactions fondamentales, Astroparticules et Cosmologie April 2, 2014
(quantum) Field Theory of order parameter describes many physical systems with phase transitions

Ferromagnetism

temperature

Superfluidity

(1) $\quad v \quad$ nov $j=J / U$ tunneling coupling

We have never seen the amplitude mode without tuning

$$
\begin{aligned}
& \text { only Goldstone modes }=\text { phases } \phi=e^{i \alpha}\left(\phi_{0}+\sigma\right) \\
& \qquad \mathcal{L}=(\partial \phi)^{2}+m^{2} \phi^{2}-\lambda \phi^{4}
\end{aligned}
$$

Fundamental scalars are unnatural

$$
m \sim\left(T-T_{C}\right),\left(j-j_{C}\right),\left(\Lambda-\Lambda_{Q}\right)
$$

They require tuning to hold up to $\Lambda \gg m$.

Motivations

We have never seen the amplitude mode without tuning

$$
\begin{aligned}
& \text { only Goldstone modes }=\text { phases } \phi=e^{i \alpha}\left(\phi_{0}+\sigma\right) \\
& \qquad \mathcal{L}=(\partial \phi)^{2}+m^{2} \phi^{2}-\lambda \phi^{4}
\end{aligned}
$$

Fundamental scalars are unnatural

$$
m \sim\left(T-T_{C}\right),\left(j-j_{C}\right),\left(\Lambda-\Lambda_{Q}\right)
$$

They require tuning to hold up to $\Lambda \gg m$.
Rychkov

Motivations

We have never seen the amplitude mode without tuning

$$
\begin{aligned}
& \text { only Goldstone modes }=\text { phases } \phi=e^{i \alpha}\left(\phi_{0}+\sigma\right) \\
& \qquad \mathcal{L}=(\partial \phi)^{2}+m^{2} \phi^{2}-\lambda \phi^{4}
\end{aligned}
$$

Fundamental scalars are unnatural

$$
m \sim\left(T-T_{C}\right),\left(j-j_{C}\right),\left(\Lambda-\Lambda_{Q}\right)
$$

They require tuning to hold up to $\Lambda \gg m$.

Rattazzi

We have never seen the amplitude mode without tuning

$$
\begin{aligned}
& \text { only Goldstone modes }=\text { phases } \phi=e^{i \alpha}\left(\phi_{0}+\sigma\right) \\
& \qquad \mathcal{L}=(\partial \phi)^{2}+m^{2} \phi^{2}-\lambda \phi^{4}
\end{aligned}
$$

Fundamental scalars are unnatural

$$
m \sim\left(T-T_{C}\right),\left(j-j_{C}\right),\left(\Lambda-\Lambda_{Q}\right)
$$

They require tuning to hold up to $\Lambda \gg m$.

Rattazzi

Let us entertain an interesting possibility

Scale (conformal) invariant dynamics

The Dilaton
explicit breaking

Scale (conformal) invariant sector
$\Lambda_{U V} \gg f$

$$
\begin{gathered}
x \rightarrow e^{\alpha} x, \Phi(x) \rightarrow e^{d_{\Phi} \alpha} \Phi\left(e^{\alpha} x\right) \\
\mathcal{S}_{C F T}=\sum_{\mathcal{O}} \int d^{4} x \mathcal{O}, d_{\mathcal{O}}=4
\end{gathered}
$$

- Irrelevant operators are unimportant at low energies.
- No relevant operators can be present.

Spontaneous breaking of scale invariance

$$
\langle\mathcal{O}(x)\rangle=f^{d_{\mathcal{O}}}
$$

1 GB (enough): $\mathrm{SO}(4,2) / \mathrm{SO}(3,1)$

$$
\begin{gathered}
\chi \equiv f e^{\sigma / f} \rightarrow e^{\alpha} \chi \\
\sigma \rightarrow \sigma+\alpha f
\end{gathered}
$$

explicit breaking

Scale (conformal) invariant sector
$\Lambda_{U V} \gg f$

$$
\begin{gathered}
x \rightarrow e^{\alpha} x, \Phi(x) \rightarrow e^{d_{\Phi} \alpha} \Phi\left(e^{\alpha} x\right) \\
\mathcal{S}_{C F T}=\sum_{\mathcal{O}} \int d^{4} x \mathcal{O}, d_{\mathcal{O}}=4
\end{gathered}
$$

- Irrelevant operators are unimportant at low energies.
- No relevant operators can be present.

Compositeness

$$
\mathcal{O}=\bar{\psi} \psi
$$

Supersymmetry
$\mathcal{O}=(\phi, \psi)$

Chiral symmetry is crucial in both cases
new states at

$$
\Lambda \sim 4 \pi f
$$

new states at
explicit breaking

Scale (conformal) invariant sector
$\Lambda_{U V} \gg f$

$$
\begin{gathered}
x \rightarrow e^{\alpha} x, \Phi(x) \rightarrow e^{d_{\Phi} \alpha} \Phi\left(e^{\alpha} x\right) \\
\mathcal{S}_{C F T}=\sum_{\mathcal{O}} \int d^{4} x \mathcal{O}, d_{\mathcal{O}}=4
\end{gathered}
$$

- Irrelevant operators are unimportant at low energies.
- No relevant operators can be present.

Compositeness

Supersymmetry

$\mathcal{O}=(\phi, \psi)$
Chiral symmetry is crucial in both cases
new states at
$\Lambda \sim 4 \pi f$
new states at
$g f$

The point is if there is a light amplitude mode when scale generates

$$
\mathcal{L}_{e f f}=\frac{1}{2}(\partial \chi)^{2}-a_{0} \chi^{4}+\frac{a_{2,4}}{\chi^{4}}(\partial \chi)^{4}+\cdots
$$

Non-zero potential allowed

$$
\begin{aligned}
& \text { standard GB: } \\
& V(\pi)=0
\end{aligned}
$$

Fubini '76

$\langle\chi\rangle \rightarrow \infty$
CFT/dS4
runaway

The point is if there is a light amplitude mode when scale generates

$$
\mathcal{L}_{e f f}=\frac{1}{2}(\partial \chi)^{2}-a_{0} \chi^{4}+\frac{a_{2,4}}{\chi^{4}}(\partial \chi)^{4}+\cdots
$$

Non-zero potential allowed

$$
\begin{aligned}
& \text { standard GB: } \\
& V(\pi)=0
\end{aligned}
$$

Fubini '76

$\langle\chi\rangle \rightarrow 0$
CFT/AdS4
runaway

CFT/dS4 runaway

TUNING
Flat directions are only natural in SUSY.

The point is if there is a light amplitude mode when scale generates

$$
\mathcal{L}_{e f f}=\frac{1}{2}(\partial \chi)^{2}-a_{0} \chi^{4}+\frac{a_{2,4}}{\chi^{4}}(\partial \chi)^{4}+\cdots
$$

Non-zero potential allowed

$$
\begin{aligned}
& \text { standard GB: } \\
& V(\pi)=0
\end{aligned}
$$

Fubini '76

CFT/dS4 runaway

WE WISH

We need to add a perturbation (explicit breaking)

$$
\left.\begin{array}{rl}
\mathcal{L}=\mathcal{L}_{C F T}+\lambda \mathcal{O} \quad[\mathcal{O}]= & 4-\beta / \lambda \quad \frac{d \lambda(\mu)}{d \log \mu}=\frac{\beta(\lambda)}{\lambda} \neq 0 \\
& \downarrow \mu \rightarrow \chi
\end{array}\right] \begin{aligned}
& V(\chi)= \chi^{4} F(\lambda(\chi)) \\
& F(\lambda(\chi))=a_{0}+\sum_{n} a_{n} \lambda^{n}(\chi)
\end{aligned}
$$

Quartic gets dependence on running coupling.

"Running" potential

Coleman, Weinberg '73

The dilation effectively scans the lanscape of quartics.

Minimum and dilaton mass

$$
\begin{gathered}
\langle\chi\rangle=f \\
V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))
\end{gathered}
$$

Minimum and dilaton mass

$$
\begin{gathered}
\langle\chi\rangle=f \\
V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))
\end{gathered}
$$

Dimensional Transmutation

$$
\begin{aligned}
& \lambda(\mu)=\lambda_{0}\left(\frac{\mu_{0}}{\mu}\right)^{\beta / \lambda} \mu \rightarrow \chi \\
& \lambda(f) \sim \sqrt{a_{0}} \quad \\
& f \sim \mu_{0}\left(\frac{\lambda_{0}}{\sqrt{a_{0}}}\right)^{\lambda / \beta} \quad \text { A hierarchy has } \\
& \text { been generated! }
\end{aligned}
$$

$$
a_{0} \text { still matters for the dilaton mass }
$$

$$
\begin{aligned}
V^{\prime} & =f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
m_{d}^{2} & \simeq 4 f^{2} \beta F^{\prime}(\lambda(f)) \stackrel{\downarrow}{=}-16 f^{2} F(\lambda(f))
\end{aligned}
$$

$$
a_{0} \text { still matters for the dilaton mass }
$$

$$
\begin{aligned}
V^{\prime} & =f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
m_{d}^{2} & \simeq 4 f^{2} \beta F^{\prime}(\lambda(f)) \stackrel{\downarrow}{=}-16 f^{2} F(\lambda(f))
\end{aligned}
$$

Generically there is NO small explicit breaking at f!
F is the vacuum energy (CC) in units of $f: \quad F(f) \sim a_{0} \sim \frac{\Lambda^{4}}{16 \pi^{2} f^{4}} \sim 16 \pi^{2}$

QCD-like

$$
m_{d}^{2} \sim 16 \pi^{2} f^{2} \sim \Lambda^{2}
$$

NO remnant of scaling symmetry NO dilaton in QCD-like theories Holdom, Terning '88

$$
a_{0} \text { still matters for the dilaton mass }
$$

$$
\begin{aligned}
V^{\prime} & =f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0 \\
m_{d}^{2} & \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))
\end{aligned}
$$

We can get small explicit breaking at f by tuning
Start with small vacuum energy ~ flat direction.

tuned-QCD-like weak CFT perturbation

$$
\begin{aligned}
& \text { But there is an unorthodox way out } \\
& \text { CPR construction }
\end{aligned}
$$

Strong CFT perturbation but small breaking

$$
m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))=-16 V(f) / f^{2}
$$

without "TUNING" $m_{d}^{2} \ll \Lambda^{2}$

Let the dilation scan the lanscape of quartics but keep the slow running always.
Contino, Pomarol, Rattazzi, ‘'10
Bellazzini, Csaki, Hubisz, Terning, JS, '13

$$
\begin{aligned}
& \text { But there is an unorthodox way out } \\
& \text { CPR construction }
\end{aligned}
$$

Strong CFT perturbation but small breaking

$$
m_{d}^{2} \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))=-16 V(f) / f^{2}
$$

Let the dilaton scan the lanscape of quartics but keep the slow running always.
Contino, Pomarol, Rattazzi, ‘10
Bellazzini, Csaki, Hubisz, Terning, JS, '13

An Extra-D Computable Example

An amazing conjecture

type IIB string theory on $\mathrm{AdS}_{5} \times S^{5}$
$\mathcal{N}=4 \mathrm{SU}(\mathrm{N}) 4 \mathrm{D}$ gauge theory

$$
\frac{R_{A d S}^{4}}{l_{s}^{4}}=4 \pi g_{Y M}^{2} N
$$

> An amazing conjecture

$$
\begin{aligned}
& \text { type IIB string theory } \\
& \text { on } \mathrm{AdS}_{5} \times S^{5}
\end{aligned}
$$

$$
\frac{R_{A d S}^{4}}{l_{s}^{4}}=4 \pi g_{Y M}^{2} N
$$

that allows us to get predictions for strongly coupled theories

$$
\begin{gathered}
g_{Y M}^{2} N \gg 1 \\
N \gg 1
\end{gathered}
$$

weakly coupled 5D gravity AdS_{5}
strongly coupled
AD EFT
CFT_{4}

$\mathrm{AdS}_{5} \longleftrightarrow \mathrm{CFT}_{4}$

5D field - 4D operator connection:

Generating functional:

$$
\begin{gathered}
Z\left[\phi_{0}\right]=\int \mathcal{D} \phi_{C F T} e^{-S_{C F T}\left[\phi_{C F T}\right]-\int d^{4} x \phi_{0} \mathcal{O}}=\int_{\phi_{0}} \mathcal{D} \phi e^{-S_{\text {bulk }}[\phi]} \equiv e^{i S_{e f f}\left[\phi_{0}\right]} \\
\langle\mathcal{O} \ldots \mathcal{O}\rangle=\frac{\delta^{n} S_{e f f}}{\delta \phi_{0} \ldots \delta \phi_{0}}
\end{gathered}
$$

$\mathrm{AdS}_{5} \longleftrightarrow \mathrm{CFT}_{4}$

5D field - 4D operator connection:

Generating functional:

$$
\begin{gathered}
Z\left[\phi_{0}\right]=\int \mathcal{D} \phi_{C F T} e^{-S_{C F T}\left[\phi_{C F T}\right]-\int d^{4} x \phi_{0} \mathcal{O}}=\int_{\phi_{0}} \mathcal{D} \phi e^{-S_{\text {bulk }}[\phi]} \equiv e^{i S_{e f f}\left[\phi_{0}\right]} \\
\langle\mathcal{O} \ldots \mathcal{O}\rangle=\frac{\delta^{n} S_{e f f}}{\delta \phi_{0} \ldots \delta \phi_{0}}
\end{gathered}
$$

This correspondence has found many applications:

+ Quantum gravity
+ Electroweak hierarchy problem
+ Quark-gluon plasma
+ Superconductors, superfluid
and still offers many avenues for investigation.

Randall \& Sundrum solved a hierarchy problem with a slice of AdS

UV brane $d s^{2}=e^{-2 k y} d x^{2}-d y^{2}$

5D gravitational action

$$
S=-\int_{y=y_{0}} d x^{4} \sqrt{g_{0}} \Lambda_{0}-\int \sqrt{g}\left(\frac{1}{2 \kappa^{2}} \mathcal{R}+\Lambda_{(5)}\right)-\int_{y=y_{1}} d x^{4} \sqrt{g_{1}} \Lambda_{1}
$$

Effective potential

$$
k=\sqrt{\frac{-\Lambda_{(5)} \kappa^{2}}{6}}
$$

$$
V(\chi)=\left(\Lambda_{0}+\Lambda_{(5)} / k\right) \mu_{0}^{4} / k^{4}+\left(\Lambda_{1}-\Lambda_{(5)} / k\right) \chi^{4}
$$

$$
\Lambda_{(4)}^{U V}=0
$$

5D gravitational action

$S=-\int_{y=y_{0}} d x^{4} \sqrt{g_{0}} \Lambda_{0}-\int \sqrt{g}\left(\frac{1}{2 \kappa^{2}} \mathcal{R}+\Lambda_{(5)}\right)-\int_{y=y_{1}} d x^{4} \sqrt{g_{1}} \Lambda_{1}$

Effective potential

$$
k=\sqrt{\frac{-\Lambda_{(5)} \kappa^{2}}{6}}
$$

$$
V(\chi)=(\underbrace{+\Lambda_{(5)}}_{\Lambda_{(4)}^{U V}=0} / k) \mu_{0}^{4} / k^{4}+(\underbrace{\Lambda_{1}-\Lambda_{(5)}}_{a_{0}=0} / k) \chi^{4}
$$

2 TUNINGS! Vanishing cosmological constant and dilator flat direction.

Raman-Sundrum and followers tuned brane tension. Brane distance is free.
This solution is not stable under perturbations.

Explicit breaking perturbation in AdS/CFT

$$
S=\int d^{5} x \sqrt{g}\left(-\frac{1}{2 \kappa^{2}} \mathcal{R}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi-V(\phi)\right)-\int d^{4} x \sqrt{g_{0}} V_{0}(\phi)-\int d^{4} x \sqrt{g_{1}} V_{1}(\phi)
$$

$\mathrm{AdS}_{5} \longleftrightarrow \mathrm{CFT}_{4}$
radion \longleftrightarrow dilaton

$$
\begin{gathered}
V(\phi)=\Lambda_{(5)} \quad \phi \longleftrightarrow \mathcal{O} \quad \text { exactly marginal } \\
V^{\prime}(\phi)=d V / d \phi \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu \quad \text { running } \\
\left.(\partial \phi)\right|_{y=y_{0}}=\left.0 \quad \phi\right|_{y=y_{0}} \longleftrightarrow \lambda_{0} \\
\mathcal{L}=\mathcal{L}_{C F T}+\lambda \mathcal{O}
\end{gathered}
$$

A simple example, scalar with bulk mass

$$
V(\phi)=\Lambda_{(5)}+m^{2} \phi^{2}
$$

Scaling dimension of operator:

$$
d_{\mathcal{O}}=2+\sqrt{4+m^{2} / k^{2}}
$$

Scalar solution of E.O.M. in RS:

$$
\begin{aligned}
& \phi(y)=\underbrace{\phi_{0} e^{-k y\left(4-d_{\mathcal{O}}\right)}}_{\underbrace{}_{0}}+\underbrace{\phi_{1} e^{-k y d_{\mathcal{O}}}}_{\text {condensate }} \\
& \frac{d \lambda}{d \log \mu} \equiv \beta(\lambda)=\left(4-d_{\mathcal{O}}\right) \lambda \\
& \phi_{0}=\lim _{\mu_{0} \rightarrow \infty} \mu_{0}^{4-d_{\mathcal{O}}} \lambda_{0}
\end{aligned} \quad \phi_{1}=\frac{\langle\mathcal{O}\rangle}{2 d_{\mathcal{O}}-4},
$$

The more general stabilized RS is this:

$$
S=\int d^{5} x \sqrt{g}\left(-\frac{1}{2 \kappa^{2}} \mathcal{R}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi-V(\phi)\right)-\int d^{4} x \sqrt{g_{0}} V_{0}(\phi)-\int d^{4} x \sqrt{g_{1}} V_{1}(\phi)
$$

Bellazzini, Csaki, Hubisz, Terning, JS, '13

UV brane

$$
d s^{2}=e^{-2 A(y)} d x^{2}-d y^{2} \quad \text { IR brane }
$$

$$
\longrightarrow y
$$

flat metric ansatz
good approximation
bulk E.O.M.

$$
\begin{aligned}
4 A^{\prime 2}-A^{\prime \prime} & =-\frac{2 \kappa^{2}}{3} V(\phi) \\
A^{\prime 2} & =\frac{\kappa^{2} \phi^{\prime 2}}{12}-\frac{\kappa^{2}}{6} V(\phi) \\
\phi^{\prime \prime} & =4 A^{\prime} \phi^{\prime}+\frac{\partial V}{\partial \phi} .
\end{aligned}
$$

boundary conditions
$\left.2 A^{\prime}\right|_{y=y_{0}, y_{1}}= \pm\left.\frac{\kappa^{2}}{3} V_{0,1}(\phi)\right|_{y=y_{0}, y_{1}}$
$\left.2 \phi^{\prime}\right|_{y=y_{0}, y_{1}}= \pm\left.\frac{\partial V_{0,1}}{\partial \phi}\right|_{y=y_{0}, y_{1}}$,

We derived the effective potential integrating over the extra-d

$$
\begin{gathered}
\int_{y_{0}}^{y_{1}} d y \mathcal{L}_{\text {bulk }}+\mathcal{L}_{\text {boundary }}\left(y_{0,1}\right) \\
V_{\text {eff }}=V_{U V}+V_{I R} \\
V_{U V / I R}=e^{-4 A\left(y_{0,1}\right)}\left[V_{0,1}\left(\phi\left(y_{0,1}\right)\right) \mp \frac{6}{\kappa^{2}} A^{\prime}\left(y_{0,1}\right)\right]
\end{gathered}
$$

Useful identification:

$$
\begin{aligned}
& e^{-A\left(y_{0}\right)} \rightleftarrows \mu_{0} \\
& e^{-A\left(y_{1}\right)} \longleftrightarrow \chi
\end{aligned}
$$

We obtain just what we expected, again.

$$
V_{U V}=\mu_{0}^{4} F\left(\lambda\left(\mu_{0}\right)\right) \quad V_{I R}=\chi^{4} F(\lambda(\chi))
$$

Generalized Randall-Sundrum

UV vacuum energy

$$
V_{U V}=\mu_{0}^{4}\left[\Lambda_{0}+\frac{\Lambda_{(5)}}{k}\right]
$$

Modulated, slowly running, dilator quartic, with no TUNING!

$$
\begin{gathered}
V_{I R}=\chi^{4}\left[\Lambda_{1}-\frac{\Lambda_{(5)}}{k} \cosh \left(\frac{2 \kappa}{\sqrt{3}}\left(v_{1}-v_{0}\left(\mu_{0} / \chi\right)^{\epsilon}\right)^{4}\right)\right] \\
m^{2}=-2 \epsilon k^{2} \quad \epsilon \ll 1 \quad d_{\mathcal{O}} \approx 4-\epsilon
\end{gathered}
$$

As announced in the 4D effective Lagrangian analisys, this potential yields a large hierarchy, a light dilaton, and a small cosmological constant
NATURAL \& CORRELATED

The large hierarchy

$$
\begin{aligned}
& \langle\chi\rangle=f \quad \frac{f}{\mu_{0}}=\left(\frac{v_{0}}{v_{1}-\operatorname{sign}(\epsilon) \frac{\sqrt{3}}{2 \kappa} \operatorname{arcsech}\left(\Lambda_{(5)} / k \Lambda_{1}\right)}\right)^{0.4} 0 . e_{\chi=e^{-k, 1}}^{0.6} \\
& \quad \text { Thanks to slow running for long time. }
\end{aligned}
$$

Generalized Randall-Sundrum

The light dilator

$$
m_{\chi}^{2} \sim \epsilon \frac{32 \sqrt{3} k v_{0}}{\kappa} \tanh \left(\frac{\kappa}{\sqrt{3}}\left(v_{1}-v_{0}\left(\mu_{0} / f\right)^{\epsilon}\right)\right) f^{2}\left(\mu_{0} / f\right)^{\epsilon}
$$

Thanks to slow running at the minimum.

The small cosmological constant

$V_{I R}^{\min }=-\epsilon \frac{2 \sqrt{3} k v_{0}}{\kappa} \tanh \left(\frac{\kappa}{\sqrt{3}}\left(v_{1}-v_{0}\left(\mu_{0} / f\right)^{\epsilon}\right)\right) f^{4}\left(\mu_{0} / f\right)^{\epsilon}$
Thanks to slow running at the minimum.

1) Small CC and light dilator signal the approximate scale invariance at the condensation scale:

$$
V^{\prime}(\phi)=d V / d \phi \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13

1) Small CC and light dilaton signal the approximate scale invariance at the condensation scale:

$$
V^{\prime}(\phi)=d V / d \phi \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13
2) The suppression is parametrically better than in SUSY:

SUSY

$\Lambda_{(4)}=c\left(m_{b}^{4}-m_{f}^{4}\right) \simeq c\left(m_{b}^{2}+m_{f}^{2}\right) g_{s}^{2} F_{s}^{2}$

CFT

$$
\Lambda_{(4)}=\tilde{c} \epsilon(4 \pi)^{2} f^{4} \simeq \tilde{c} \epsilon \Lambda^{2} f^{2}
$$

1) Small CC and light dilator signal the approximate scale invariance at the condensation scale:

$$
V^{\prime}(\phi)=d V / d \phi \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13
2) The suppression is parametrically better than in SUSY:

SUSY

EFT

$$
\Lambda_{(4)}=c\left(m_{b}^{4}-m_{f}^{4}\right) \simeq c\left(m_{b}^{2}+m_{f}^{2}\right) g_{s}^{2} F_{s}^{2}
$$

$$
\Lambda_{(4)}=\tilde{c} \epsilon(4 \pi)^{2} f^{4} \simeq \tilde{c} \in \Lambda^{2} f^{2}
$$

3) Our result is consistent with Weinberg's no-go theorem:
$\epsilon=0$ can remove the $C C$, but $\epsilon \neq 0$ is required for a unique vacuum
The requirement is that a very light state must be in the spectrum!
4) Small CC and light dilator signal the approximate scale invariance at the condensation scale:

$$
V^{\prime}(\phi)=d V / d \phi \longleftrightarrow \beta(\lambda)=d \lambda / d \log \mu
$$

Change the bulk potential, change the running.
Chacko, Mishra, Stolarski '13
2) The suppression is parametrically better than in SUSY:

BUSY

CFO

$$
\Lambda_{(4)}=c\left(m_{b}^{4}-m_{f}^{4}\right) \simeq c\left(m_{b}^{2}+m_{f}^{2}\right) g_{s}^{2} F_{s}^{2}
$$

$$
\Lambda_{(4)}=\tilde{c} \epsilon\left(\overline{(4 \pi)^{2} f^{4}} \simeq \tilde{c} \epsilon \Lambda^{2} f^{2}\right.
$$

3) Our result is consistent with Weinberg's no-go theorem:
$\epsilon=0$ can remove the $C C$, but $\epsilon \neq 0$ is required for a unique vacuum
The requirement is that a very light state must be in the spectrum!
4) UV contribution to the CC?

Phenomenological Aplications

1) A Higgs-like Dilaton

Why are particles (nearly) massless relative to
Planckian scales? $v \ll M_{p}$

How is that things are big?

What protects the Wigs from getting a huge mass from quantum effects?

The answer pursued in this talk is
COMPOSITENESS

LHC Highs Discovery
We observed the phase modes long ago = longitudinal components of ω and Z

But now we have observed the amplitude mode!

and nothing else!
We have never encountered something like this in particle physics

LHC Highs Discovery
We observed the phase modes long ago = longitudinal components of ω and Z

But now we have observed the amplitude mode!

and nothing else!
We have never encountered something like this in particle physics

LHC Higgs Data: Couplings

ATLAS Preliminary is $=7 \mathrm{TeV}, \int \mathrm{Ldt}=4.6-4.8 \mathrm{fb} \mathrm{b}^{-1}$ $\pm \mathbf{1 \sigma} \quad \pm \mathbf{2 \sigma} \quad$ is $=8 \mathrm{TeV}, \mathrm{Ldt}=13-20.7 \mathrm{fb} \mathrm{fb}^{-1}$

LHC Higgs Data: Couplings

customary parametrization of Wigs couplings
0-derivatives:

$$
\mathcal{L}_{(0)}=\frac{h}{v}\left[c_{V}\left(2 m_{W}^{2} W_{\mu}^{\dagger} W^{\mu}+m_{Z}^{2} Z_{\mu} Z^{\mu}\right)-c_{t} \sum_{\psi=u, c, t} m_{\psi} \bar{\psi} \psi-c_{b} \sum_{\psi=d, s, b} m_{\psi} \bar{\psi} \psi-c_{\tau} \sum_{\psi=e, \mu, \tau} m_{\psi} \bar{\psi} \psi\right]
$$

2-derivatives:

$$
\mathcal{L}_{(2)}=-\frac{h}{4 v}\left[2 c_{W W} W_{\mu \nu}^{\dagger} W^{\mu \nu}+c_{Z Z} Z_{\mu \nu} Z^{\mu \nu}+2 c_{Z \gamma} A_{\mu \nu} Z^{\mu \nu}+c_{\gamma \gamma} A_{\mu \nu} A^{\mu \nu}-c_{g g} G_{\mu \nu}^{a} G_{\mu \nu}^{a}\right]
$$

Standard Model

$$
\begin{gathered}
c_{V}=c_{t}=c_{b}=c_{\tau}=1 \\
c_{\gamma \gamma}=c_{Z \gamma}=c_{g g}=0
\end{gathered}
$$

Dilator

Couplings to SM fields dictated by scale invariance and its breaking

Dilaton Couplings to the Standard Model

Dilaton

Couplings to SM fields dictated by scale invariance and its breaking

Scale invariance

$$
\sum_{i}\left\langle\mathcal{O}_{i}\right\rangle \equiv f \rightarrow \chi
$$

Electroweak symmetry breaking

$$
\begin{aligned}
& \left\langle\mathcal{O}_{H}\right\rangle=v \\
& v \rightarrow \frac{v}{f} \chi
\end{aligned}
$$

Dilaton Couplings to the Standard Model

Dilaton

Couplings to SM fields dictated by scale invariance and its breaking

Scale invariance

$$
\sum_{i}\left\langle\mathcal{O}_{i}\right\rangle \equiv f \rightarrow \chi
$$

Electroweak symmetry breaking

$$
\left\langle\mathcal{O}_{H}\right\rangle=v
$$

$$
v \rightarrow \frac{v}{f} \chi
$$

Scale explicit breaking
Gauge couplings

$$
A_{\mu}^{i} \mathcal{J}^{\mu i}
$$

$$
d\left(A_{i}\right)=1-\frac{b_{U V}^{i}}{8 \pi^{2}}+\frac{b_{I R}^{i}}{8 \pi^{2}}
$$

Dilaton Couplings to the Standard Model

Dilaton

Couplings to SM fields dictated by scale invariance and its breaking

Scale invariance

$$
\sum_{i}\left\langle\mathcal{O}_{i}\right\rangle \equiv f \rightarrow \chi
$$

Electroweak symmetry breaking

$$
\begin{array}{r}
\left\langle\mathcal{O}_{H}\right\rangle=v \\
v \rightarrow \frac{v}{f} \chi
\end{array}
$$

Scale explicit breaking
Gauge couplings

$$
A_{\mu}^{i} \mathcal{J}^{\mu i}
$$

$$
d\left(A_{i}\right)=1-\frac{b_{U V}^{i}}{8 \pi^{2}}+\frac{b_{I R}^{i}}{8 \pi^{2}}
$$

Yukawa couplings

$$
\psi \mathcal{O}_{\psi}
$$

$$
d\left(\mathcal{O}_{\psi}\right)=3 / 2-\gamma_{\psi}
$$

Dilaton

$$
\begin{gathered}
c_{V}=\frac{v}{f} \\
c_{f}=\frac{v}{f}\left(1+\gamma_{f}\right) \\
c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(E M, 3)}-b_{U V}^{(E M, 3)}\right) \\
c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(2)}-b_{U V}^{(2)}\right)
\end{gathered}
$$

Dilaton
<1 (model independent)

Dilaton

$$
\begin{gathered}
c_{V}=\frac{v}{f} \quad \begin{array}{c}
\text { scaling anomalies } \\
<\mathbf{1},>1 \text { (model dependent) }
\end{array} \\
c_{f}=\frac{v}{f}\left(1+\gamma_{f}\right) \\
c_{\gamma \gamma, g g}=\frac{\left(g^{\prime 2}, g_{S}^{2}\right)}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(E M, 3)}-b^{(E M, 3)}\right) \\
c_{Z \gamma} \sim \frac{g^{2}}{16 \pi^{2}} \frac{v}{f}\left(b_{I R}^{(2)}-b_{U V}^{(2)}\right)
\end{gathered}
$$

Contrasting with Higgs Data

Bellazzini, Csaki, Hubisz, Terning, JS, '12

$$
\gamma_{\psi}=0
$$

Bellazzini, Csaki, Hubisz, Terning, JS, '12

$$
\gamma_{\psi}=0
$$

Consistency with data requires:
vector boson fusion to bottoms $q q \rightarrow j j h \rightarrow j j b \bar{b}$
gluon fusion to Z's
$g g \rightarrow h \rightarrow Z Z^{*}$

$$
\begin{gathered}
\frac{v}{f} \simeq 1 \\
b^{(i)}, \gamma_{f} \lesssim O(1)
\end{gathered}
$$

$$
\text { consistent with } m_{\chi} \ll 4 \pi f
$$

The genuine effect of compositeness is the growth of scattering amplitudes with energy

WW scattering

$$
\text { Partial unitarization only. There is a } O(5) \text { growth }
$$

Phenomenological Lagrangian

$$
\begin{gathered}
\mathcal{L}_{(0)}^{h^{2}}=\frac{h^{2}}{v^{2}}\left[\frac{d_{V}}{2}\left(2 m_{W}^{2} W_{\mu}^{\dagger} W^{\mu}+m_{Z}^{2} Z_{\mu} Z^{\mu}\right)-d_{\psi} m_{\psi} \bar{\psi} \psi\right] \\
\mathcal{L}_{(2)}^{h^{2}}=\frac{h^{2}}{v^{2}}\left[\frac{d_{g g}}{2} G_{\mu \nu}^{a} G^{\mu \nu a}+\cdots\right] \quad \mathcal{L}_{(0)}^{h^{3}}=-c_{3} \frac{1}{6}\left(\frac{3 m_{h}^{2}}{v}\right) h^{3}
\end{gathered}
$$

Standard Model

$$
\begin{gathered}
d_{V}=c_{3}=1 \\
d_{\psi}=d_{g g}=0
\end{gathered}
$$

Dilaton

$$
\begin{gathered}
d_{V}=\frac{v^{2}}{f^{2}} \\
d_{\psi}=\frac{1}{2} \frac{v^{2}}{f^{2}} \gamma_{\psi} \\
d_{g g}=-\frac{g_{s}^{2}}{32 \pi^{2}}\left(b_{I R}^{(3)}-b_{U V}^{(3)}\right) \\
c_{3}=\frac{1}{3} \frac{v}{f}\left(5+\alpha \frac{m_{\chi}^{2}}{(4 \pi f)^{2}}\right)
\end{gathered}
$$

The genuine effect of compositeness is the growth of scattering amplitudes with energy, in particular ω_{L} and h

WW to hb scattering
There is NO OAs) growth, but O $\left(s^{2}\right)$!

$$
\begin{aligned}
& \mathcal{A}(s) \simeq \frac{s}{v^{2}}\left(d_{V}-c_{V}^{2}\right) \simeq 0+O\left(s^{2} / f^{4}\right) \\
& \sqrt{d_{V}}=c_{V}=\frac{v}{f} \quad \varliminf_{\frac{a_{2,4}}{(4 \pi)^{2}} \frac{(\partial \chi)^{4}}{\chi^{4}} \quad \text { in the dilation }}^{\text {"chiral" Lagrangian }}
\end{aligned}
$$

Differential feature w.r.t. composite Hings: dilation is NOT part of SU(2) doublet

$$
\begin{gathered}
\mathcal{A}(W W \rightarrow W W) \neq \mathcal{A}(W W \rightarrow \chi \chi) \\
s \rightarrow \infty
\end{gathered}
$$

There is one differential feature w.r.t the SM Higgs even if $v / f \sim 1$ and no anomalous dimensions!

dilaton

Frederix et al '14

Phenomenological Aplications
2) Cosmological Phase Transitions

Spontaneous Breaking of Scale Invariance
There is one very important consequence of a true spontaneous breaking of scale invariance

$$
\Lambda_{e f f}=V(\langle\chi\rangle) \sim \epsilon\langle\chi\rangle^{4}
$$

Could this ocurr in any of the known phase transitions?
This is a very speculative idea, but the next question per se is very interesting:

How can we learn anything about the CC?

Phase Transitions in the Early Universe
As the Universe expands, it cools off, and phase transitions take place (QCD, Electroweak,...)

Second order PT

Restoration of symmetry at high Temperature.

The energy densities change during PTS

Early Universe Evolution

Homogeneous \& isotropic (flat) Universe

$$
d s^{2}=-d t^{2}+a^{2}(t) d x_{i}^{2}
$$

Einstein equations $G_{\mu \nu}=T_{\mu \nu}$

$$
\begin{gathered}
\text { Assuming a perfect fluid: } T_{\nu}^{\mu}=\left(\begin{array}{cccc}
\rho & 0 & 0 & 0 \\
0 & -p & 0 & 0 \\
0 & 0 & -p & 0 \\
0 & 0 & 0 & -p
\end{array}\right) \\
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{1}{3} \rho \\
\frac{\ddot{a}}{a}=-\frac{1}{6}(\rho+3 p)
\end{gathered}
$$

Radiation domination

$$
\begin{aligned}
& \rho(a) \sim a^{-4} \\
& a(t) \sim t^{1 / 2}
\end{aligned}
$$

Matter domination

$$
\begin{aligned}
& \rho(a) \sim a^{-3} \\
& a(t) \sim t^{2 / 3}
\end{aligned}
$$

CC domination

$$
\begin{gathered}
\rho(a) \sim a^{0} \\
a(t) \sim e^{H t}
\end{gathered}
$$

Early Universe Evolution

Homogeneous \& isotropic (flat) Universe

$$
d s^{2}=-d t^{2}+a^{2}(t) d x_{i}^{2}
$$

Einstein equations $G_{\mu \nu}=T_{\mu \nu}$
By measuring energy densities today,
we obtain a beautiful picture for the HOT early Universe

Early Universe Evolution
Homogeneous \& isotropic (flat) Universe

$$
d s^{2}=-d t^{2}+a^{2}(t) d x_{i}^{2}
$$

Einstein equations $G_{\mu \nu}=T_{\mu \nu}$

By measuring energy densities today, we obtain a beautiful picture for the HOT early Universe

But we are interested in what happens outside here!

Early Universe Evolution
Actually, what happens in the very early Universe is similar to this:

The CC jumps at each phase transition!

To end up at the very small value we observe today

Early Universe Evolution
Actually, what happens in the very early Universe is similar to this:

The CC jumps at each phase transition!
To end up at the very small value we observe today

$$
\begin{gathered}
V(\phi)=V_{0}-m^{2} \phi^{2}+\lambda \phi^{4} \\
T_{P T} \sim-\langle\phi\rangle \sim \frac{m}{\sqrt{g}} \quad \text { and } \quad V(\langle\phi\rangle) \sim 0 \Rightarrow V_{0} \sim \frac{m^{4}}{g}
\end{gathered}
$$

At the PT, radiation and CC are closest

$$
\rho_{c c} \sim V_{0} \lesssim \rho_{\text {radiation }} \sim T_{P T}^{4} \sim \frac{m^{4}}{g^{2}}
$$

Early Universe Evolution
Actually, what happens in the very early Universe is similar to this:

The CC jumps at each phase transition!

To end up at the very small value we observe today

$$
V(\langle\phi\rangle) \sim V_{0} \sim 0
$$

How could we tell if there has been a jump or NOT?
certainly gravitational waves will be affected and will reach us later PT

The Free energy is continuous (decreasing) \& $\mathcal{F}=p$

Pressure ansatz:
Matches well lattice simulations

The number of degrees of freedom changes

The CC disappears

The Free energy is continuous (decreasing) \& $\mathcal{F}=p$

Pressure ansatz:
Matches well lattice simulations
$p_{\text {total }}\left(\right.$ (blue) $, p_{\text {radiation }}($ red $), p_{\text {cc }}($ green $)$

The number of degrees of freedom changes

The CC disappears

$$
\text { Entropy is conserved: } \frac{d p}{d T}=\frac{p+\rho}{T}
$$

Energy density:

We wish to compute the power spectrum

$$
\left.\Delta_{t}^{2}(\tau, k)=\left.\frac{2 k^{3}}{2 \pi^{2}}\langle | h_{k}(\tau)\right|^{2}\right\rangle
$$

Wave equation

$$
\left(a h_{k}\right)^{\prime \prime}+\left(k^{2}-\frac{a^{\prime \prime}}{a}\right)\left(a h_{k}\right)=0
$$

de Sitter space

$$
a^{\prime \prime} / a=2 / \tau^{2}
$$

Unfortunately, for the QCD phase transition, experiments are not very sensitive

But who knows in the future?! Or other PT S?!

Approximate spontaneous breaking of scale invariance offers a NATURAL way to obtain a light scalar and to suppress the Cosmological Constant

Is this possibility realized in Nature?

A Higgs-like Dilation Dilation in Phase Transitions QED?

We just have to wait and see

Thank you for your attention

