
Pedro A N Machado

UM2 Dec-2014  On the renormalization of the EW chiral Lagrangian with a higgs  pedro.machado@uam.es

On the renormalization of the 
Electroweak chiral Lagrangian with a Higgs

in collaboration with
B Gavela, K Kanshin, S Saa, S Rigolin

arXiv:1409.1571

Thursday 18 December 14

mailto:pedro.machado@uam.es
mailto:pedro.machado@uam.es


What is this bump?

Is it the SM Higgs?
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What is this bump?

Is it the SM Higgs?
Is it an elementary particle?
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Are the Yukawas fundamental interactions?
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What is this bump?

Is it the SM Higgs?
Is it an elementary particle?

Whatever that is,
how can it be used 

to probe/understand
BSM physics?
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Are the Yukawas fundamental interactions?
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some problems and puzzles
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Hierarchy problem
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Thinking in terms of the running is much simpler
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Thinking in terms of the running is much simpler

New physics at high scale – Fine tuning

Is it a problem? Or is it a puzzle?
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Flavour puzzle

How can the same mechanism explain the top and the electron masses?

Moreover, flavour physics generically push up the scale of new physics a lot

some problems and puzzles
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Flavour puzzle

How can the same mechanism explain the top and the electron masses?

Are the Yukawas fundamental fields? Is there a flavour symmetry?

Moreover, flavour physics generically push up the scale of new physics a lot

some problems and puzzles
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Neutrino masses problem

Neutrinos oscillate, so they have mass

Mimicking the charged fermion sector, the right handed neutrino allows for a 
Majorana mass, which can lead to a see-saw mechanism

some problems and puzzles
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Neutrino masses problem

Neutrinos oscillate, so they have mass

The origin of neutrino masses and the nature of neutrinos is unknown

Mimicking the charged fermion sector, the right handed neutrino allows for a 
Majorana mass, which can lead to a see-saw mechanism

some problems and puzzles
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The hierarchy puzzle is present for any scalar particle 
and it is reflected on its mass, particularly the higgs mass

some problems and puzzles
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The hierarchy puzzle is present for any scalar particle 
and it is reflected on its mass, particularly the higgs mass

The flavour puzzle is a question about the higgs interactions with fermion

some problems and puzzles
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The hierarchy puzzle is present for any scalar particle 
and it is reflected on its mass, particularly the higgs mass

The flavour puzzle is a question about the higgs interactions with fermion

Neutrino masses might require new physics at very high scales
 that couples to the higgs (worsening the first puzzle)

some problems and puzzles
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The hierarchy puzzle is present for any scalar particle 
and it is reflected on its mass, particularly the higgs mass

The flavour puzzle is a question about the higgs interactions with fermion

Neutrino masses might require new physics at very high scales
 that couples to the higgs (worsening the first puzzle)

There is something special about scalars...

some problems and puzzles
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Why do we need a higgs?

some problems and puzzles

In WW scattering, the longitudinal modes amplitudes grow with energy
eventually violating unitarity

The SM higgs contribution moderate this growth
in such a way that unitarity is preserved
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Why do we need a higgs?

In WW scattering, the longitudinal modes amplitudes grow with energy
eventually violating unitarity

The SM higgs contribution moderate this growth
in such a way that unitarity is preserved

Deviations from the SM higgs may imply loss of unitarity, 
unless there is new physics to moderate the energy growth

some problems and puzzles

Thursday 18 December 14
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Vacuum stability

Having a scalar in the theory allows for a scalar potential
 which gets quantum corrections

In principle we can see up to which point 
we can extrapolate our theory
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Figure 2: Upper: RG evolution of � (left) and of �� (right) varying Mt, ↵3(MZ), Mh by
±3�. Lower: Same as above, with more “physical” normalisations. The Higgs quartic coupling
is compared with the top Yukawa and weak gauge coupling through the ratios sign(�)

p
4|�|/yt

and sign(�)
p

8|�|/g2, which correspond to the ratios of running masses mh/mt and mh/mW ,
respectively (left). The Higgs quartic �-function is shown in units of its top contribution, ��(top
contribution) = �3y4t /8⇡

2 (right). The grey shadings cover values of the RG scale above the
Planck mass MPl ⇡ 1.2⇥ 1019 GeV, and above the reduced Planck mass M̄Pl = MPl/

p
8⇡.

18

Meta-stability region up to the Planck scale

It does not tell much...

Degrassi+ 2012

some problems and puzzles
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Experimental data
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Higgs couplings
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Linear effective field theory
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The higgs is the SM one

There is a gap between EW and new physics scales

New physics is supposed to be integrated out

Buchmuller Wyler 1986
Grzadkowski + 2010
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Linear effective field theory
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The higgs is the SM one

There is a gap between EW and new physics scales

New physics is supposed to be integrated out

As we do not know which new physics is there, we write all possible operators 
and suppress them using a dimensional counting

L = L4 +
1

⇤
L5 +

1

⇤2
L6 + . . .

Buchmuller Wyler 1986
Grzadkowski + 2010
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Linear effective field theory
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What is this counting?

The counting reflects which is the expansion we think it makes sense
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Linear effective field theory
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What is this counting?

The counting reflects which is the expansion we think it makes sense

>>>

ψψψψ/Λ2 (8 ψs)/Λ8

But there are other possibilities (low energy QCD, for instance)
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Non-linear higgsless theory
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We only need 3 degrees of freedom to give mass to W and Z

Non-linear sigma model with f = v

Fermion masses could come from a strong sector condensate

In fact, there is no need to have a doublet – EWSB could be realized non-linearly

Most simple technicolor is severely constrained by EWPT
Weinberg 1979, Susskind 1979,
Dimopoulos Susskind 1979,
Callan Coleman Wess Zumino 1980,
Kaplan Georgi 1984,
PeskinTakeuchi 1990,
Holdom Terning 1990,
Golden Randall 1991
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Comparison between linear and non-linear
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EW scale
v

NP scale
⇤

EW/GB scale

Strong scale
⇤

f = v

Energy
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Comparison between linear and non-linear
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EW scale
v

NP scale
⇤

EW scale

Strong scale
⇤

G/H breaking
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Energy

dynam
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explicit
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Comparison between linear and non-linear
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Strong sector
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Comparison between linear and non-linear
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Strong sector

global symmetry G [like SO(5)]
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Comparison between linear and non-linear
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Strong sector

global symmetry G [like SO(5)]

Dynamical break
 at a scale f

H can embed GSM H [like SO(4)]
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Strong sector

global symmetry G [like SO(5)]

Dynamical break
 at a scale f

Higgs doublet lives in G/H, but its potential vanishes at tree level

H [like SO(4)]H can embed GSM

Thursday 18 December 14

mailto:pedro.machado@uam.es
mailto:pedro.machado@uam.es


Comparison between linear and non-linear
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Strong sector

global symmetry G [like SO(5)]

Dynamical break
 at a scale f

External vector bosons
and fermions (SM)

Higgs doublet lives in G/H, but its potential vanishes at tree level

respect GSM but not G
generate a potential at loop level

couple to the higgs

H [like SO(4)]H can embed GSM
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Comparison between linear and non-linear

UM2 Dec-2014  On the renormalization of the EW chiral Lagrangian with a higgs  pedro.machado@uam.es

Strong sector

global symmetry G [like SO(5)]

Dynamical break
 at a scale f

External vector bosons
and fermions (SM)

Higgs doublet lives in G/H, but its potential vanishes at tree level

respect GSM but not G
generate a potential at loop level

Higgs potential breaks EW symmetry

couple to the higgs

H [like SO(4)]H can embed GSM

see Contino’s TASI lecture 1005.4269 for an introduction
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Non-linear higgsless theory
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Vµ = (DµU)U†
T = U⌧3U†

Defining the non-linear theory

UU† = U †U = 1 U ! LUR†

SU(2)L ⇥ U(1)Y

h is a singlet
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Non-linear higgsless theory
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Vµ = (DµU)U†
T = U⌧3U†

Defining the non-linear theory

UU† = U †U = 1 U ! LUR†

SU(2)L ⇥ U(1)Y

h is a singlet

U = exp(i~⇡ · ~⌧/f)
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Non-linear higgsless theory
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Vµ = (DµU)U†
T = U⌧3U†

Defining the non-linear theory

UU† = U †U = 1 U ! LUR†

SU(2)L ⇥ U(1)Y

h is a singlet

U =
p

1� ⇡2/f2 + i~⇡ · ~⌧/f)
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Non-linear higgsless theory
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Vµ = (DµU)U†
T = U⌧3U†

Defining the non-linear theory

UU† = U †U = 1 U ! LUR†

SU(2)L ⇥ U(1)Y

h is a singlet

A. Manohar, H. Georgi / Chiral quarks 195 

where I N and I~ are the number of internal pion and quark lines respectively. We 
have picked out that part of the diagram which has D derivatives acting on external 
lines (denoted by p). The remaining derivatives all act on internal lines and are 
denoted by k. All the other factors are trivial. For example, consider powers o f f .  We 
put together V vertices of the form (2.29) so the net "f-factor" is 

f r<A,+e,)+zv (2.31) 

which is the same as the "f-factor" 

/-A-.+2[fA+.+2V 2 (2.32) 

in (2.30). We now proceed to evaluate the diagram using naive dimensional analysis. 
The identities 

(conservation of ends), and 

2A i = A + 2I~, (2.33) 

2B, = B + 2I~, (2.34) 

2JC, = C, (2.35) 

L = I -  V + I  (2.36) 

= I,~ + I~ - V + 1, (2.37) 

(L  = number of loops) will be required. We first use (2.33)-(2.37) to simplify the 
exponents of f and A: 

-t - 

f 2LAD+2V 2 I~-ZD,(2w)4(v-1)[8(n)(~,pi)]v 1 

k ~°' PSI dak 1]~"S[ d4k ¼]'+. 
(2~r) 4 k2 (2~)  4 (2.38) 

There are a total of I N + I v - ( V -  1) = L loop integrals to be performed. Each of 
these produces a factor 

1 1 
1 6 ~ 2  - -  ( 4 ~ r )  2 " (2.39) 

Georgi Manohar 1984
f < ⇤ < 4⇡f
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Non-linear higgsless theory
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Vµ = (DµU)U†
T = U⌧3U†

Defining the non-linear theory

UU† = U †U = 1 U ! LUR†

SU(2)L ⇥ U(1)Y

Write down all invariant operators, expand in derivatives

h is a singlet

A. Manohar, H. Georgi / Chiral quarks 195 

where I N and I~ are the number of internal pion and quark lines respectively. We 
have picked out that part of the diagram which has D derivatives acting on external 
lines (denoted by p). The remaining derivatives all act on internal lines and are 
denoted by k. All the other factors are trivial. For example, consider powers o f f .  We 
put together V vertices of the form (2.29) so the net "f-factor" is 

f r<A,+e,)+zv (2.31) 

which is the same as the "f-factor" 

/-A-.+2[fA+.+2V 2 (2.32) 

in (2.30). We now proceed to evaluate the diagram using naive dimensional analysis. 
The identities 

(conservation of ends), and 

2A i = A + 2I~, (2.33) 

2B, = B + 2I~, (2.34) 

2JC, = C, (2.35) 

L = I -  V + I  (2.36) 

= I,~ + I~ - V + 1, (2.37) 

(L  = number of loops) will be required. We first use (2.33)-(2.37) to simplify the 
exponents of f and A: 

-t - 

f 2LAD+2V 2 I~-ZD,(2w)4(v-1)[8(n)(~,pi)]v 1 

k ~°' PSI dak 1]~"S[ d4k ¼]'+. 
(2~r) 4 k2 (2~)  4 (2.38) 

There are a total of I N + I v - ( V -  1) = L loop integrals to be performed. Each of 
these produces a factor 

1 1 
1 6 ~ 2  - -  ( 4 ~ r )  2 " (2.39) 

Georgi Manohar 1984
f < ⇤ < 4⇡f
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Non-linear higgs EFT
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doublet.
The focus of the analysis will be set on the physics of the longitudinal components of

the gauge bosons (denoted below as “pions” fi) and the h scalar. Their Lagrangian will be
decomposed as

L = L0 + L2 + L4 , (2.1)
where the Li subindex indicates number of derivatives:

L0 = ≠ V (h) (2.2)

L2 =1
2ˆµhˆµh FH(h) ≠ v2

4 Tr[VµVµ] FC(h) (2.3)

L4 =
ÿ

i

ciPi (2.4)

The operators of interest of L4 are shown explicitly in table 1. In these equations Vµ © (DµU) U†,
with U(x) being the customary dimensionless unitary matrix describing the longitudinal
degrees of freedom of the EW gauge bosons:

U(x) = ei‡afia(x)/v , U(x) æ L U(x)R† , (2.5)

where L, R denotes SU(2)L,R global transformations, respectively. Vµ is thus a vector
chiral field belonging to the adjoint of the global SU(2)L symmetry, and the covariant
derivative can be taken in what follows as given by its pure kinetic term Dµ = ˆµ, since
the transverse gauge field components will not play a role in the analysis 1. V (h) denotes
a generic potential for the h scalar,

V = ⁄1v
3h + 1

2m2
hh2 + ⁄3

3! vh3 + ⁄4
4! h4 . (2.6)

Two well known facts that will be relevant. First, on-shell quantities are independent of
the choice of parametrization for the U matrix [9]. Second, the renormalization of the non-
linear ‡ model displays divergencies which are apparently noninvariant under the original
nonlinear chiral symmetry [10, 16–19]. It has been shown by Appelquist and Bernard [6]
that these noninvariant divergencies also do not contribute to on-shell quantities, and there-
fore they are not physical. To make the first point explicit, we will analyse the freedom
in defining the U matrix, and work with a general parametrization up to some order in
fi/v. The second fact needs to be taken care of more carefully. We will show that all the
chiral noninvariant divergencies depend on the U matrix parametrization, even when one
includes a light dynamical Higgs boson to the nonlinear ‡ model, and we will get rid of
them by a nonlinear pion field redefinition, involving derivatives and the h field.

1Our Lagrangian slightly di�ers from that in Ref. [15]. For simplicity, we have eliminated redundant
parameters by the following substitutions ˆµFi(h) æ ˆµh Fi(h), ˆµFi(h)ˆ‹F̃i(h) æ ˆµhˆ‹h Fi(h), and
⇤Fi(h) æ ⇤h Fi(h), we adopt FH,C(h) = 1 + 2aH,Ch/v + bH,Ch

2
/v

2, and ciFi(h) = ci + 2aih/v + bih
2
/v

2

for all other F ’s.

4

doublet.
The focus of the analysis will be set on the physics of the longitudinal components of

the gauge bosons (denoted below as “pions” fi) and the h scalar. Their Lagrangian will be
decomposed as

L = L0 + L2 + L4 , (2.1)
where the Li subindex indicates number of derivatives:

L0 = ≠ V (h) (2.2)

L2 =1
2ˆµhˆµh FH(h) ≠ v2

4 Tr[VµVµ] FC(h) (2.3)

L4 =
ÿ

i

ciPi (2.4)

The operators of interest of L4 are shown explicitly in table 1. In these equations Vµ © (DµU) U†,
with U(x) being the customary dimensionless unitary matrix describing the longitudinal
degrees of freedom of the EW gauge bosons:

U(x) = ei‡afia(x)/v , U(x) æ L U(x)R† , (2.5)

where L, R denotes SU(2)L,R global transformations, respectively. Vµ is thus a vector
chiral field belonging to the adjoint of the global SU(2)L symmetry, and the covariant
derivative can be taken in what follows as given by its pure kinetic term Dµ = ˆµ, since
the transverse gauge field components will not play a role in the analysis 1. V (h) denotes
a generic potential for the h scalar,

V = ⁄1v
3h + 1

2m2
hh2 + ⁄3

3! vh3 + ⁄4
4! h4 . (2.6)

Two well known facts that will be relevant. First, on-shell quantities are independent of
the choice of parametrization for the U matrix [9]. Second, the renormalization of the non-
linear ‡ model displays divergencies which are apparently noninvariant under the original
nonlinear chiral symmetry [10, 16–19]. It has been shown by Appelquist and Bernard [6]
that these noninvariant divergencies also do not contribute to on-shell quantities, and there-
fore they are not physical. To make the first point explicit, we will analyse the freedom
in defining the U matrix, and work with a general parametrization up to some order in
fi/v. The second fact needs to be taken care of more carefully. We will show that all the
chiral noninvariant divergencies depend on the U matrix parametrization, even when one
includes a light dynamical Higgs boson to the nonlinear ‡ model, and we will get rid of
them by a nonlinear pion field redefinition, involving derivatives and the h field.
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doublet.
The focus of the analysis will be set on the physics of the longitudinal components of

the gauge bosons (denoted below as “pions” fi) and the h scalar. Their Lagrangian will be
decomposed as

L = L0 + L2 + L4 , (2.1)
where the Li subindex indicates number of derivatives:

L0 = ≠ V (h) (2.2)

L2 =1
2ˆµhˆµh FH(h) ≠ v2

4 Tr[VµVµ] FC(h) (2.3)

L4 =
ÿ

i

ciPi (2.4)

The operators of interest of L4 are shown explicitly in table 1. In these equations Vµ © (DµU) U†,
with U(x) being the customary dimensionless unitary matrix describing the longitudinal
degrees of freedom of the EW gauge bosons:

U(x) = ei‡afia(x)/v , U(x) æ L U(x)R† , (2.5)

where L, R denotes SU(2)L,R global transformations, respectively. Vµ is thus a vector
chiral field belonging to the adjoint of the global SU(2)L symmetry, and the covariant
derivative can be taken in what follows as given by its pure kinetic term Dµ = ˆµ, since
the transverse gauge field components will not play a role in the analysis 1. V (h) denotes
a generic potential for the h scalar,

V = ⁄1v
3h + 1

2m2
hh2 + ⁄3

3! vh3 + ⁄4
4! h4 . (2.6)
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in defining the U matrix, and work with a general parametrization up to some order in
fi/v. The second fact needs to be taken care of more carefully. We will show that all the
chiral noninvariant divergencies depend on the U matrix parametrization, even when one
includes a light dynamical Higgs boson to the nonlinear ‡ model, and we will get rid of
them by a nonlinear pion field redefinition, involving derivatives and the h field.
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L0 = ≠V (h) (2.2)

L2 = 1
2ˆµhˆµh FH(h) ≠ v2

4 Tr[VµVµ] FC(h) (2.3)

L4 = (Tr[VµVµ])2 c6F6(h) + (Tr[VµV‹ ])2 c11F11(h) + Tr[DµVµD‹V‹ ]c9F9(h) +

+ Tr[V‹DµVµ]ˆ
‹h

v
c10F10(h) +

+ Tr[VµVµ]
A
⇤h

v
c7F7(h) + ˆ‹hˆ‹h

v2 c20F20(h)
B

+ Tr[VµV‹ ]ˆ
µhˆ‹h

v2 c8F8(h) +

+ ⇤h⇤h

v2 c⇤HF⇤H(h) + ⇤hˆµhˆµh

v3 ch2Fh2(h) + (ˆµhˆµh)2

v4 cDHFDH(h), (2.4)

where Vµ © (DµU)U†, and Dµ = ˆµ, since we are not considering the gauge sym-
metries1. U satisties the usual nonlinear constraint

UU† = U†U = 1. (2.5)

There are two long known facts that will be of importance for us. First, on-shell
quantities are independent of the choice of parametrization for the U matrix CITE.
Second, the renormalization of the nonlinear ‡ model displays divergencies which are
apparently noninvariant under the original nonlinear chiral symmetry [5, 15–18]. It
has been shown by Appelquist and Bernard [1] that these noninvariant divergencies
also do not contribute to on-shell quantities, and therefore they are not physical. To
make the first point explicit, we will analyse the freedom in defining the U matrix,
and work with a general parametrization up to some order in fi/v. The second fact
needs to be taken care of more carefully. We will show that all the chiral noninvariant
divergencies depend on the U matrix parametrization, even when one includes a light
dynamical Higgs boson to the nonlinear ‡ model, and we will get rid of them by a
nonlinear pion field redefinition, involving derivatives and the h field.

2.1 Lagrangian and counterterms in a general U parametrization

The nonlinear ‡ model can be written as [4]

LNL = 1
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where Dµ is a “covariant” derivative under the nonlinear chiral symmetry, and
fi = (fi1, fi2, fi3) represents the pion vector. In geometric language, Gij(fi2) can
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There has been a lot of activity in this field

Full gauge-higgs basis
Alonso et al PLB 2013
Gavela et al 1406.6367

Distinguishing the linear and the non-linear scenarios
Brivio et al JHEP 2014

Full basis including fermions
Buchalla et al NPB 2014

(1-loop) signals at collider
Delgado et al JHEP 2014

Unitarity constraints
Delgado et al 1408.1193
Espriu Mescia PRD 2014
Espriu Mescia Yencho PRD 2013

Effective Lagrangian for generic symmetry cosets
Alonso et al 1409.1589
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Theoretical consistency
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The chiral Lagrangian is renormalizable order by order

Theoretical consistency

Hence, a complete Ld≤4 basis should renormalize the Ld≤2 Lagrangian,
providing a test of the NDA prescription
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The chiral Lagrangian is renormalizable order by order

Theoretical consistency

Hence, a complete Ld≤4 basis should renormalize the Ld≤2 Lagrangian,
providing a test of the NDA prescription

It is long known that the off-shell renormalization of the nonlinear sigma model 
displays apparent chiral non-invariant divergencies (NID)

It has been shown that the NIDs are unphysical
We would like to do the same for the EW chiral Lagrangian

Charap 1970, Appelquist Bernard 1981, Kazakov+ 1977, Honerkamp 1972, ...
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The chiral Lagrangian is renormalizable order by order

Theoretical consistency

Hence, a complete Ld≤4 basis should renormalize the Ld≤2 Lagrangian,
providing a test of the NDA prescription

It is long known that the off-shell renormalization of the nonlinear sigma model 
displays apparent chiral non-invariant divergencies (NID)

It has been shown that the NIDs are unphysical
We would like to do the same for the EW chiral Lagrangian

Charap 1970, Appelquist Bernard 1981, Kazakov+ 1977, Honerkamp 1972, ...

Future phenomenology

The RGEs may be useful when comparing future higgs data at different energies
see for instance Alonso+ 2013
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SETUP
only the h – π sector of the Lagrangian (longitudinal modes of gauge bosons)

g, g’ = 0
no custodial breaking terms
renormalization up to 4 legs

General U matrix parametrization
Off-shell amplitudes

Renormalization
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SETUP
only the h – π sector of the Lagrangian (longitudinal modes of gauge bosons)

g, g’ = 0
no custodial breaking terms
renormalization up to 4 legs

General U matrix parametrization
Off-shell amplitudes

Represented by matrix              transforming linearly 

Page 4 Kanshin K. 
University of Padova / INFN 

General U-matrix parameterization 
Three would-be goldstones analogous to pions in QCD 
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One loop structure of effective non-linear 
Lagrangian with light dynamical Higgs 

All the physical quantities are     independent   
Weinberg  ‘68 

U parametrization:  we only need to satisfy UU† = U†U = 1

Renormalization
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SETUP
only the h – π sector of the Lagrangian (longitudinal modes of gauge bosons)

g, g’ = 0
no custodial breaking terms
renormalization up to 4 legs

General U matrix parametrization
Off-shell amplitudes

Represented by matrix              transforming linearly 

Page 4 Kanshin K. 
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General U-matrix parameterization 
Three would-be goldstones analogous to pions in QCD 

under 

We define a general parameterization of  

One loop structure of effective non-linear 
Lagrangian with light dynamical Higgs 

All the physical quantities are     independent   
Weinberg  ‘68 

U parametrization:  we only need to satisfy UU† = U†U = 1

All physical quantities are independent of η
Weinberg 1968

Renormalization
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Boring... just get a source counterterm to cancel the tadpole
Figure 1: Diagrams contributing to the higgs 1-point function.

p p

p

1

p p

h

2

p

p

p

h

3

p Æ p

Figure 2: Diagrams contributing to the fi self energy.

3.2 2-point functions
The calculation of the 2-point function amplitudes will give us the masses and wave-

functions renormalization. As a result of chiral symmetry, we do not expect the WBGBs
to get a mass induced by loop corrections of any order. The same is not true about the
higgs, as we will see explicitly. Finally, the wavefunctions renormalizations will impact on
almost all other parameters. Although we do not show the calculations in details for the
loop diagrams with more external legs, we do it here for pedagogical reasons.

The diagrams contributing to the pion self energy are shown in fig. 2. The divergent
part of the amplitudes, �ij

div(p2)�Á, and the counterterm structure are

�ij
div(p2) =

C

p2
1
a2

C ≠ bC

2 m2
h

v2 + p4 a2
C

v2

D

”ij (3.2)

�ij
ctr(p2) =

C

p2”fi ≠ p4 4
v2

A

”c9 ≠ ”v2

v2

BD

”ij. (3.3)

In an o�-shell renormalization scheme, we need to match all the momenta structure of the

8

1-point function
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3- and 4-point functions

3,4-point functions 

Page 8 Kanshin K. 
University of Padova / INFN 

One loop structure of effective non-linear 
Lagrangian with light dynamical Higgs 

On shell calculations of these types: 
... 

Delgado, Dobado, and Llanes-Estrada  ‘13 
Espriu, Mescia, Yencho ’13 

Delgado, Dobado, Herrero, and Sanz-Cillero  ’14 
... 

I am not going to write down all formulas, ok?
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Due to the off-shell renormalization, we expect a long list of required operators
In fact, we get ALL h – π invariant operators in L4
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We agree with Georgi-Manohar NDA

We find explicitly that physical quantities do not depend on η

Thursday 18 December 14

mailto:pedro.machado@uam.es
mailto:pedro.machado@uam.es


Renormalization

UM2 Dec-2014  On the renormalization of the EW chiral Lagrangian with a higgs  pedro.machado@uam.es

3- and 4-point functions

Due to the off-shell renormalization, we expect a long list of required operators
In fact, we get ALL h – π invariant operators in L4

We agree with Georgi-Manohar NDA

There are apparent non-invariant divergencies involving the higgs

We find explicitly that physical quantities do not depend on η

Thursday 18 December 14

mailto:pedro.machado@uam.es
mailto:pedro.machado@uam.es


Renormalization

UM2 Dec-2014  On the renormalization of the EW chiral Lagrangian with a higgs  pedro.machado@uam.es

3- and 4-point functions

Due to the off-shell renormalization, we expect a long list of required operators
In fact, we get ALL h – π invariant operators in L4

We agree with Georgi-Manohar NDA

There are apparent non-invariant divergencies involving the higgs

Figure 5: Diagrams contributing to the fifi æ h scattering amplitude, not including dia-
grams obtained by crossing.

what takes place is that there is a part of the amplitude, coming from diagram 5 in fig. 5,
which depends on the pion parametrization and cannot be cast as a function of the L2 and
L4 operators. The occurrence of apparent noninvariant divergencies in loop calculations
dates back to the eighties in the context of the nonlinear ‡ model. What we have here is,
in fact, a new apparent noninvariant divergency, involving the higgs field, that corresponds
to the operator

ONI
1 = ≠

33
2 ≠ 5÷

4
aC�Á fi⇤fi⇤h, (3.6)

clearly noninvariant under the chiral symmetry. We will deal with such counterterms later.
It is also interesting to notice that the renormalization conditions of all physical parameters
do not depend on the choice of U parametrization – ÷ only appears in the noninvariant
divergent pieces, as can be seen in Appendix A. This behaviour will repeat itself when we
renormalize the 4-point functions. Besides, we notice that both ”aC and ”a9 are zero in
the standard case.

3.4 4-point functions
It is when tackling the 4-point functions that things get further intriguing. Let us start

with the fifi æ hh one loop amplitude. We find (see Appendix A) that renormalization
require all hhfifi-like terms in the Lagrangian in the most general case. Nevertheless, ”bC ,
”b9, and ”c20, necessitate deviations of the standard model to be non zero. CHECK!

In addition, we also found noninvariant divergent pieces of the amplitude which can-
not be absorbed by the invariant counterterms. In terms of fields it is check sign and
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We find explicitly that physical quantities do not depend on η
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Due to the off-shell renormalization, we expect a long list of required operators
In fact, we get ALL h – π invariant operators in L4

We agree with Georgi-Manohar NDA

There are apparent non-invariant divergencies involving the higgs

coe�cients
ONI

2 = ≠(2a2
C ≠ bC)

33
2 ≠ 5÷

4 �Á

v4 fi⇤fi h⇤h

ONI
3 = ≠(a2

C ≠ bC)
33

2 ≠ 5÷
4 �Á

v4 fi⇤fi ˆµhˆµh

ONI
4 = +2a2

C

33
2 ≠ 5÷

4 �Á

v4 fiˆµfi ˆµh⇤h

(3.7)

Although the noninvariant divergencies are di�erent from the ones in eq. (3.6), the factor
(3/2 ≠ 5÷) is common. Therefore, with a proper choice of parametrization, ÷ = 3/10, all
noninvariant terms including the h field can be avoided. We stress that this choice is by
no means special, and there is no choice of parametrization that can avoid all noninvariant
divergencies, as we will see shortly.

Let us proceed with the fifi æ fifi amplitude. We only find two counterterms, namely
c6 and c11, the last being zero in the standard model case. We also find that the usual
noninvariant divergencies of the nonlinear ‡ model [6], are not changed by the presence of
the higgs couplings. The reason being that the diagrams which generate the noninvariant
divergencies are those with a 4fi vertex, leaving no possibility of having a h ≠ fi vertex at
one loop. In any case, the corresponding operators are check signs and coe�cients!

ONI
5 = ≠

3
9÷2 + 5÷ + 3

4

4 �Á

v4 (fi⇤fi)2,

ONI
6 = ≠

5
1 + 4÷ +

31
2 + ÷

4
a2

C

6 �Á

v4 (fi⇤fi)(ˆµfiˆµfi),

ONI
11 = ≠2÷2 �Á

v4 fi2(⇤fi)2,

ONI
8 = ≠2÷

1
a2

C ≠ 1
2 �Á

v4 (⇤fiˆµfi)(fiˆµfi).

(3.8)

As expected, the parametrization freedom – the ÷ parameter – appears only in the
noninvariant divergencies. Besides, now we see clearly that there is no parametrization
that makes all noninvariant divergencies vanish. We can get rid of the new ones, involving
the higgs, but we still would have the ones involving only the pion field.

The last process we will consider is hh æ hh scattering. Although the renormalization
is quite straight forward, we call attention to ”ah2, ”cDH , and ”bH , which all vanish in the
standard model case, and to possible large coe�cients in ”bH and ”⁄4 which might translate
into stronger runnings, given the presence of deviations of the standard model. As a final
remark, we see that, in this renormalization scheme, we do not need to renormalize v2.

3.5 Counterterms for noninvariant divergencies
Before summarizing the results and discussing it in more details, we present a fully

justified way of treating the noninvariant divergencies. We have seen that the 1-loop
amplitude computation of the dynamical higgs e�ective Lagrangian yields apparent chiral
noninvariant divergencies (for the case of the nonlinear ‡ model, see for instance Refs. [6,
10, 16–19]). It has been shown, for the nonlinear ‡ model, that such divergencies do not

12
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We find explicitly that physical quantities do not depend on η

These terms do not respect chiral invariance!!! How do we deal with it?
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There are many methods to deal with the NIDs

Gerstein Jackiw Weinberg Lee 1971

Proper quantization using the Hamiltonian formalist 
which yields non-covariant Feynman rules

Honerkamp 1972
Kazakov Pervushin Pushkin 1976

Modified background field method 

Appelquist Bernard 1981
Field redefinition
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Lagrangians related by local field redefinitions, even
 involving derivatives or other fields, are equivalent
Ostrogradsky 1850, Grosse-Knetter 1993, Arzt 1993, Scherer Fearing 1994
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Lagrangians related by local field redefinitions, even
 involving derivatives or other fields, are equivalent
Ostrogradsky 1850, Grosse-Knetter 1993, Arzt 1993, Scherer Fearing 1994

Hence, if we redefine the π field

 in such a way that

L(⇡, @µ⇡, h, @µh) ! L(⇡, @µ⇡, h, @µh) +�L

the ΔL term in the Lagrangian is not physical

⇡ ! ⇡f(⇡, @µ⇡, h, @µh, . . . ), f(0) = 1
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With this redefinition

we can absorb all NIDs

contribute to on-shell quantities [6]. Thus, one could completely disregard them, as they are
unphysical. Nevertheless, by performing a nonlinear redefinition the pion field, including
space-time derivatives, these divergencies can be absorbed [6].

This method reveals a deeper rationale regarding this situation with or without a light
higgs degree of freedom. In fact, Lagrangians related by a local field redefinition, even when
it involves derivatives, are equivalent [25–28]. Consequently, if a pion field redefinition
involving derivatives makes possibles to absorb the noninvariant divergencies, and at the
same time does not generate any other new structure, the equivalence between the original
and the redefined Lagrangians tell us that such noninvariant terms are unphysical and do
not contribute to the S-matrix. That is, if we can find a pion field redefinition which
absorb the noninvariant divergencies and does not do anything else, then we prove that
the noninvariant terms do not contribute to on-shell quantities and thus chiral symmetry
is preserved.

Being that way, we can carry on the following pion redefinition

fii æ fii

A

1 + –1
2v4 fi⇤fi + –2

2v4 ˆµfiˆµfi + —

2v3⇤h + “̃1
2v4 h⇤h + “2

2v4 ˆµhˆµh

B

+ –3
2v4⇤fii(fifi) + –4

2v4 ˆµfii(fiˆµfi).
(3.9)

As all new terms contain two derivatives, this redefinition, when applied to L2 generates
operators in L4 and so on. Hence, we do not need to worry about L4. Substituting it in

1
4Tr(ˆµUˆµU)FC(h)

results in the additional terms

�LNI = ≠fi⇤fi

A
–1
v4 fi⇤fi + –2

v4 ˆµfiˆµfi + —

v3⇤h + “1
v4 h⇤h + “2

v4 ˆµhˆµh

B

≠ –3
v4 (⇤fi⇤fi)(fifi) ≠ –4

v4 (⇤fiˆµfi)(fiˆµfi) ≠ 2aC—

v4 fiˆµfiˆµh⇤h,

and others which belong to L6 or have more than 5 fields and do not interest us. Also,
“1 = 2aC— + “̃1.

We see that no operator in �LNI is present in the original L0, L2 and L4 Lagrangians.
Also, we can identify the coe�cients, with the ones in eqs. (3.6), (3.7) and (3.8) obtaining

–1 =
3

9÷2 ≠ 13÷ + 19
4

4
�Á,

–2 = ≠
31

2 ≠ ÷
4 Ë1

a2
C + 4

2
≠ 1

È
�Á,

–3 = 2÷2�Á,

–4 = 2÷
1
a2

C ≠ 1
2

�Á,

— =
33

2 ≠ 5÷
4

aC�Á,

“1 = ≠
33

2 ≠ 5÷
4 1

2a2
C ≠ bC

2
�Á,

“2 = ≠
33

2 ≠ 5÷
4 1

a2
C ≠ bC

2
�Á.

A few comments are in order. Being able to renormalize the one loop amplitudes o�-
shell is not a frivolous deed. Because of chiral symmetry, the h ≠ fi and fi only operators
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With this redefinition

we can absorb all NIDs

Therefore, chiral symmetry is never broken: 
the non-invariant terms are actually “zero” (inside a path integral)

This should be equivalent to use the equations of motion
(but a bit more elegant, in my opinion)
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shell is not a frivolous deed. Because of chiral symmetry, the h ≠ fi and fi only operators
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all 1-loop NID are removed away.
A few comments are in order. The o�-shell renormalization of one loop amplitudes is

delicate and physically interesting. Because of chiral symmetry, the pure pionic or mixed
pion-h operators do not encode all possible momentum structures, even after pion field
redefinitions. Hence, the appearance of divergent structures that can be absorbed by ”L0,
”L2, ”L4 and �LNI is a manisfestation of chiral invariance and of the field redefinition
equivalence discussed above. We have shown consistently that NIDs appearing in the one-
loop renormalization of the electroweak chiral Lagrangian do not contribute to on-shell
quantities. In fact, a closer examination has revealed that the apparent chiral non-invariant
divergencies emerge from loop diagrams which have at least one four-pion vertex in it, and
this is why all of them depend on ÷. We have also shown that the presence of a light Higgs
boson modifies the coe�cients of the unphysical counterterms made out purely of pions,
but not their structure, neither -of course- breaks chiral symmetry.

4 Renormalization Group Equations
It is straightforward to derive the RGE from the ”ci divergent contributions determined

in the previous section. The complete RGE set can be found in Appendix B. As illustration,
the evolution of those Lagrangian coe�cients which do not vanish in the SM limit is given
by:

16fi2 d

d ln µ
aC = 1

2aC

C

aH
µ3
v

+
1
3bC ≠ 5a2

H + bH

2 m2
h

v2

D

+ a2
C

A
µ3
2v

≠ 2aH
m2

h

v2

B

≠ 3
2a3

C

m2
h

v2

≠ 1
2v

bCµ3 + 2aHbC
m2

h

v2 , (4.1)

16fi2 d

d ln µ
bC = bC

C

2aC
µ3
v

+ 5aH
µ3
v

≠ ⁄

2 ≠
1
5a2

C + 8aHaC + 17a2
H ≠ 3bH

2 m2
h

v2

D

+ b2
C

m2
h

v2

+ 1
2

3
≠4aC

µ3
v

≠ 8aH
µ3
v

+ ⁄
4

a2
C + 2

1
2a2

C + 4aHaC + 6a2
H ≠ bH

2
a2

C

m2
h

v2

16fi2 d

d ln µ
m2

h = ≠1
2µ2

3 +
A

5aH
µ3
v

≠ ⁄

2

B

m2
h +

1
2bH ≠ 11a2

H

2 m4
h

v2 , (4.2)

16fi2 d

d ln µ
µ3 = 1

2µ3

C1
≠a2

C + bC ≠ 87a2
H + 15bH

2 m2
h

v2 ≠ 3⁄

D

+ 15
2v

µ2
3aH

+ 6aH⁄
m2

h

v
+ 6

1
8a3

H ≠ 3aHbH

2 m4
h

v3 , (4.3)

16fi2 d

d ln µ
⁄ = ⁄

C

26aH
µ3
v

+
1
14bH ≠ 82a2

H

2 m2
h

v2

D

≠ 3
2⁄2 + 12

1
bH ≠ 6a2

H

2 µ2
3

v2 (4.4)

+ 48aH

1
8a2

H ≠ 3bH

2
µ3

m2
h

v3 ≠ 6
1
80a4

H ≠ 48bHa2
H + 3b2

H

2 m4
h

v4 . (4.5)

These and the rest of the RGE in Appendix B show as well that the running of the
parameters aC , bC , aH , bH , and v2 is only induced by the couplings entering the Higgs
potential, Eq. (2.5).
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Note that in the RGE for the Higgs quartic self-coupling ⁄, Eq. (4.5), some terms are
weighted by numerical factors of O(100). This suggests that if a BSM theory results in
small couplings for aH and bH , those terms could still induce measurable phenomenological
consequences. Nevertheless, physical amplitudes will depend on a large combination of
parameters, which might yield cancellations or enhancements as pointed out earlier, and
only a more thorough study can lead to firm conclusions. Such large coe�cients turn out
to be also present in the evolution of some BSM couplings, such as the four-Higgs coupling
bH for which

16fi2 d

d ln µ
bH = bH

C

20aH
µ3
v

≠ 3
2⁄ +

1
≠a2

C + bC ≠ 87a2
H

2 m2
h

v2

D

≠ 42µ3
v

a3
H + 13

2 ⁄a2
H +

1
7b2

H + 120a4
H

2 m2
h

v2 . (4.6)

On general grounds aH is expected to be small, and for instance the a4
H dependence in

Eq. (4.6) is not expected to be relevant in spite of the numerical prefactor. On the other
side, present data set basically no bound on the couplings involving three or more exter-
nal Higgs particles, and thus the future putative impact of this evolution should not be
dismissed yet.

5 Comparison with the literature
Previous works on the one-loop renormalization of the scalar sector of the non-linear

Lagrangian with a light Higgs have used either the square root parametrization (÷ = 0
in our parametrization) or the exponential one (÷ = ≠1/6), producing very interesting
results, and have

• concentrated on on-shell analyses,

• disregarded the impact of FH(h),

• disregarded fermionic operators; in practice this means to neglect all fermion masses.

This last point is not uncorrelated with the fact that the basis of independent four-
derivative operators determined here has a larger number of elements than previous works
about the scalar sector. Those extra bosonic operators have been shown here to be re-
quired by the counterterm procedure. It is possible to demonstrate, though, that they can
be traded via EOM by other type of operators including gauge corrections and Yukawa-
like operators. In a complete basis of all possible operators it is up to the practitioner
to decide which set is kept, as long as it is complete and independent. When restricting
instead to a given subsector, the complete and consistent treatment requires to consider
all independent operators of the kind selected (anyway the renormalization procedure will
indicate their need), or to state explicitly any extra assumptions to eliminate them. Some
further specific comments:

Ref. [14] considers, under the first two itemized conditions above plus disregarding the
impact of V (h) (and in particular neglecting the Higgs mass), the scattering processes
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B The Renormalization Group Equations
This Appendix provides the expressions for the RGE of all couplings discussed above,

at the order considered in this paper:

16fi2 d

d ln µ
aC = aC

C1
5a2

H ≠ 3bC ≠ bH

2 m2
h

v2 ≠ aH
µ3
v

D

+ a2
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A
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m2

h

v2 ≠ µ3
v

B

+ 3a3
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m2
h

v2 + bC
µ3
v

≠ 4aHbC
m2

h

v2 , (B.1)

16fi2 d
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5a2

C + 8aCaH + 17a2
H ≠ 3bH

2 m2
h
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m2
h
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3
≠⁄ + 4aC

µ3
v

+ 8aH
µ3
v

4

≠ 4a2
C

1
2a2
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2 m2
h

v2 , (B.2)
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d ln µ
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1
a2

C ≠ bC + 17bH

2 m2
h

v2

D
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H

µ3
v

+ 45a3
H

m2
h
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µ3
v

, (B.3)

16fi2 d

d ln µ
bH = bH

C

2
1
≠a2
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2 m2
h
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µ3
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+ 3⁄

D
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H

m2
h

v2
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H

3
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µ3
v

4
≠ 240a4

H

m2
h

v2 , (B.4)
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d ln µ
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h = m2
h

3
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µ3
v

4
+

1
22a2

H ≠ 4bH

2 m4
h

v2 + µ2
3 , (B.5)

16fi2 d

d ln µ
µ3 = µ3

C1
87a2

H ≠ 15bH

2 m2
h

v2 + 3⁄

D

≠ 15aH
µ2

3
v

≠ 12⁄aH
m2

h

v
≠

1
96a3

H ≠ 36aHbH

2 m4
h

v3 , (B.6)

16fi2 d

d ln µ
⁄ = ⁄

C

4
1
41a2

H ≠ 7bH

2 m2
h

v2 ≠ 52aH
µ3
v

D

+ 3⁄2 + 24
1
6a2

H ≠ bH

2 µ2
3

v2

≠ 96aH

1
8a2

H ≠ 3bH

2 µ3m
2
h

v3 + 12
1
80a4

H ≠ 48a2
HbH + 3b2

H

2 m4
h

v4 , (B.7)

16fi2 d

d ln µ
v2 = ≠2

1
a2

C ≠ bC

2
m2

h , (B.8)

16fi2 d

d ln µ
c6 = ≠ 1

24
Ë
2 + 2a4

C + 3b2
C ≠ a2

C (≠8 + 6bC)
È

, (B.9)

16fi2 d

d ln µ
c7 = ≠c7

C1
a2

C ≠ 5a2
H ≠ bC + bH

2 m2
h

v2 + aH
µ3
v

D

+ 1
2

1
≠2aC ≠ a3

C + a2
CaH ≠ aHbC

2
, (B.10)

16fi2 d

d ln µ
a7 = ≠a7

C

2
1
a2

C ≠ 5a2
H ≠ bC + bH

2 m2
h

v2 + 2aH
µ3
v

D
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Although in the SM limit the RGEs for BSM operators do not vanish, 
BSM contributions cancel when calculating physical quantities!
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