IFAC seminar

April 2015

Martín González-Alonso

Lyon Institute of Origins Institut de Physique Nucléaire de Lyon

Outline

- Introduction & EFTs
- Generalizing the kappa framework to analyze Higgs data:
 Pseudo-observables in Higgs decays
- Linear EFT:
 - * EW bounds on Higgs PO;
 - New Physics room in $h \rightarrow 41$?
 - What about $h \rightarrow 212v$?
- Conclusions

[MGA & Isidori, PLB733 (2014)] [MGA, Greljo, Isidori & Marzocca, EPJC75 (2015)] [MGA, Greljo, Isidori & Marzocca, arXiv:1504.04018]

- After the discovery, we enter a high-precision Higgs physics era.
- How to analyze exp results? How to pass them to the theory community?
 - Extreme case (no theory bias): all available experimental info... we wouldn't know what todo!
 - The other extreme (max theory bias): assume a simple model with 1 free parameter P, analyze all Higgs data and extract P.

EFT approach is useful...

EFT at the EW scale

M. González-Alonso

EFT at the EW scale

$$\mathcal{R} = \mathcal{R}_0 \left(1 + \frac{\mathcal{O}(m, E)}{\Lambda} + \frac{\mathcal{O}(m^2, E^2, mE)}{\Lambda^2} + \dots \right)$$

Validity of the EFT: E << Λ

(Higgs decays: $E \leq M_h \leq \Lambda$)

M. González-Alonso

EFT at the EW scale

M. González-Alonso

 After the discovery, we enter a high-precision Higgs physics era.

How to analyze exp results? How to pass them to the theory community?

- Extreme case (no theory bias): all available experimental info... we wouldn't know what todo!
- The other extreme (max theory bias): assume a simple model with 1 free parameter P, analyze all Higgs data and extract P.

What was done in run 1? Kappa framework

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Higgs characteristic footprint:

$$g_F = \kappa_F \frac{\sqrt{2}m_F}{v}$$
$$g_V = \kappa_V \frac{2m_V^2}{v}$$

What was done in run 1? Kappa framework

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Virtues: Clean SM limit $(k \rightarrow 1)$, well-def. exp & th, quite general.

Limitations:

- * What about NP affecting mainly diff. distr? (easy to conceive, e.g. CPV)
- * What about hVff terms? (diff. in production & decay)

What was done in run 1? Kappa framework

$$\sigma(ii \to h+X) \times BR(h \to ff) = \sigma_{ii} \frac{\Gamma_{ff}}{\Gamma_{h}} = \frac{\kappa_{ii}^2 \kappa_{ff}^2}{\kappa_{h}^2} \sigma_{SM} \times BR_{SM}$$

Virtues: Clean SM limit $(k \rightarrow 1)$, well-def. exp & th, quite general.

Limitations:

- * What about NP affecting mainly diff. distr? (easy to conceive, e.g. CPV)
- * What about hVff terms? (diff. in production & decay)

Higgs pseudo-observables

We need a larger set of "pseudo-observables" able to characterize NP in the Higgs sector with the least theory bias.

PO encode experimental information in idealized observables, of easy theoretical interpretation. This approach is old: developed at LEP to describe the Z properties.

[MGA, Greljo, Isidori & Marzocca, 2014]

Polarization information needed to disentangle both contributions.
 If the total rate is all we have ==> kappa is enough.

[MGA, Greljo, Isidori & Marzocca, 2014]

Let's focus on h→41
 (where the limitations of the kappa framework are more relevant)

Assumption #1: Chirality-conserving interactions

Process described by the Green function of onshell states: $\langle 0|\mathcal{T}\left\{J_{f}^{\mu}(x), J_{f'}^{\nu}(y), h(0)\right\}|0\rangle, \quad J_{f}^{\mu}(x) = \bar{f}(x)\gamma^{\mu}f(x)$... which also affect production (VBF, Vh) $\bigvee_{J_{q'}} \bigvee_{J_{q'}} \bigvee_{J_$

[MGA, Greljo, Isidori & Marzocca, 2014]

/

Let's focus on h→41
 (where the limitations of the kappa framework are more relevant)

Assumption #1: Chirality-conserving interactions

$$\mathcal{A} = i \frac{2m_Z^2}{v_F} \sum_{e=e_L, e_R} \sum_{\mu=\mu_L, \mu_R} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times T^{\alpha\beta}(q_1, q_2)$$
Lorentz symmetry:

$$T^{\alpha\beta}(q_1, q_2) = F_1^{e\mu}(q_1^2, q_2^2) g^{\alpha\beta} + F_3^{e\mu}(q_1^2, q_2^2) \frac{q_1 \cdot q_2}{m_Z^2} \frac{g^{\alpha\beta} - q_2^{\alpha} q_1^{\beta}}{m_Z^2} + F_4^{e\mu}(q_1^2, q_2^2) \frac{\varepsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2}$$

==> One could simply extract FFs but it requires an enormous amount of data & general considerations (EFT!) tells us quite a lot about them...

[MGA, Greljo, Isidori & Marzocca, 2014]

FF form?

M. González-Alonso

[MGA, Greljo, Isidori & Marzocca, 2014]

Leading NP effects (linear & non-linear EFT):

$$\begin{split} \mathcal{A} = & i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times \\ & \left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^{\mu}}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} \right) g^{\alpha\beta} + \\ & + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{\mathrm{SM-1L}} \left(\frac{eQ_{\mu}g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^{\mu}}{q_1^2 P_Z(q_2^2)} \right) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{\mathrm{SM-1L}} \frac{e^2 Q_e Q_{\mu}}{q_1^2 q_2^2} \right) \frac{q_1 \cdot q_2 \ g^{\alpha\beta} - q_2^{\alpha} q_1^{\beta}}{m_Z^2} + \\ & + \left(\epsilon_{ZZ}^{\mathrm{CP}} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2) P_Z(q_2^2)} + \epsilon_{Z\gamma}^{\mathrm{CP}} \left(\frac{eQ_{\mu}g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^{\mu}}{q_1^2 P_Z(q_2^2)} \right) + \epsilon_{\gamma\gamma}^{\mathrm{CP}} \frac{e^2 Q_e Q_{\mu}}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right] \\ & P_Z(q^2) = q^2 - m_Z^2 + im_Z \Gamma_Z \end{split}$$

PS: Absence of light states is crucial...

M. González-Alonso

Example: $h \to e^+ e^- \mu^+ \mu^-$

[MGA, Greljo, Isidori & Marzocca, 2014]

Leading NP effects (linear & non-linear EFT):

$$\begin{split} \mathcal{A} = & i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times \\ & \left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^\mu}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} \right) g^{\alpha\beta} + \\ & + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{SM-1L} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{SM-1L} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{q_1 \cdot q_2}{m_Z^2} \frac{g^{\alpha\beta} - q_2^\alpha q_1^\beta}{m_Z^2} + \\ & + \left(\epsilon_{ZZ}^e \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \epsilon_{Z\gamma}^{CP} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \epsilon_{\gamma\gamma}^{CP} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right] \\ & P_Z(q^2) = q^2 - m_Z^2 + im_Z \Gamma_Z \end{split}$$

PS: Absence of light states is crucial...

 $\Gamma_Z(q)$

M. González-Alonso

[MGA, Greljo, Isidori & Marzocca, 2014]

Leading NP effects (linear & non-linear EFT):

$$\begin{split} \mathcal{A} = & i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times \\ & \left[\begin{pmatrix} \kappa_{ZZ} \\ g_Z^e g_Z^{\mu} \\ P_Z(q_1^2) P_Z(q_2^2) \end{pmatrix} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^{\mu}}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} \right] g^{\alpha\beta} + \\ & + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2) P_Z(q_2^2)} + \left(\kappa_{Z\gamma} \epsilon_{Z\gamma}^{\mathrm{PM-1L}} \left(\frac{eQ_{\mu}g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^{\mu}}{q_1^2 P_Z(q_2^2)} \right) + \left(\kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{\mathrm{PM-1L}} \frac{e^2 Q_e Q_{\mu}}{q_1^2 q_2^2} \right) \frac{q_1 \cdot q_2 \ g^{\alpha\beta} - q_2^{\alpha} q_1^{\beta}}{m_Z^2} + \\ & + \left(\epsilon_{ZZ}^{\mathrm{CP}} \frac{g_Z^e g_Z^{\mu}}{P_Z(q_1^2) P_Z(q_2^2)} + \epsilon_{Z\gamma}^{\mathrm{CP}} \left(\frac{eQ_{\mu}g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^{\mu}}{q_1^2 P_Z(q_2^2)} \right) + \epsilon_{\gamma\gamma}^{\mathrm{CP}} \frac{e^2 Q_e Q_{\mu}}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_1\sigma}{m_Z^2} \right] \end{split}$$

[MGA, Greljo, Isidori & Marzocca, 2014]

Leading NP effects (linear & non-linear EFT):

$$\begin{split} \mathcal{A} = & i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta}\mu) \times \\ & \left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^\mu}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} \right) g^{\alpha\beta} + \\ & + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{SM-1L} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \left(\kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{SM-1L} \frac{e^{2Q_e Q_\mu}}{q_1^2 q_2^2} \right) \frac{q_1 \cdot q_2 \ g^{\alpha\beta} - q_2^\alpha q_1^\beta}{m_Z^2} + \\ & + \left(\epsilon_{ZZ}^{CP} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \epsilon_{Z\gamma}^{CP} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) \right) \left(\epsilon_{\gamma\gamma}^{CP} \epsilon_{ZQ}^{2Q_e Q_\mu} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right] \\ & \left[h \to \gamma q \right] \\ & \mathcal{A} \left[h \to \gamma(q,\epsilon)\gamma(q',\epsilon') \right] = i \frac{2}{v_F} \epsilon_{\mu}' \epsilon_{\nu} \left(\kappa_{\gamma\gamma} \right)_{\gamma\gamma}^{SM-1L} \left(g^{\mu\nu} \ q \cdot q' - q^{\mu} q'^{\nu} \right) + \left(\epsilon_{\gamma\gamma}^{CP} \right)^{\mu\nu\rho\sigma} q_{\rho} q_{\sigma}' \right], \end{split}$$

.

[MGA, Greljo, Isidori & Marzocca, 2014]

Leading NP effects (linear & non-linear EFT):

$$\begin{split} \mathcal{A} = & i \frac{2m_Z^2}{v_F} \sum_{e=e_L,e_R} \sum_{\mu=\mu_L,\mu_R} (\bar{e}\gamma_{\alpha} e) (\bar{\mu}\gamma_{\beta} \mu) \times \\ & \left[\left(\kappa_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \frac{\epsilon_{Ze}}{m_Z^2} \frac{g_Z^\mu}{P_Z(q_2^2)} + \frac{\epsilon_{Z\mu}}{m_Z^2} \frac{g_Z^e}{P_Z(q_1^2)} \right) g^{\alpha\beta} + \right. \\ & \left. + \left(\epsilon_{ZZ} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \kappa_{Z\gamma} \epsilon_{Z\gamma}^{\mathrm{SM-1L}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \kappa_{\gamma\gamma} \epsilon_{\gamma\gamma}^{\mathrm{SM-1L}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{q_1 \cdot q_2 \ g^{\alpha\beta} - q_2^\alpha q_1^\beta}{m_Z^2} + \\ & \left. + \left(\epsilon_{ZZ}^{\mathrm{CP}} \frac{g_Z^e g_Z^\mu}{P_Z(q_1^2) P_Z(q_2^2)} + \epsilon_{Z\gamma}^{\mathrm{CP}} \left(\frac{eQ_\mu g_Z^e}{q_2^2 P_Z(q_1^2)} + \frac{eQ_e g_Z^\mu}{q_1^2 P_Z(q_2^2)} \right) + \epsilon_{\gamma\gamma}^{\mathrm{CP}} \frac{e^2 Q_e Q_\mu}{q_1^2 q_2^2} \right) \frac{\epsilon^{\alpha\beta\rho\sigma} q_{2\rho} q_{1\sigma}}{m_Z^2} \right] \end{split}$$

[A. Greljo's talk at Portoroz'2015]

[A. Greljo's talk at Portoroz'2015]

Flavour universality
$\epsilon_{Ze_L} = \epsilon_{Z\mu_L} \; , \qquad$
$\epsilon_{Ze_R} = \epsilon_{Z\mu_R} \; , \qquad$
$\epsilon_{Z\nu_e} = \epsilon_{Z\nu_\mu} \; , \qquad$
$\epsilon_{We_L} = \epsilon_{W\mu_L} \; .$

[A. Greljo's talk at Portoroz'2015]

[A. Greljo's talk at Portoroz'2015]

★ (Accidentally) true in the linear EFT Linear-EFT can be ruled out using only Higgs data!

Relation with Higgs-less processes: Linear EFT

* EW bounds on Higgs PO;
* New Physics room in h → 4l?
* What about h → 2l2v ?

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.04018]

M. González-Alonso

Minimal & complete basis: 59 dim-6 operators.

[Buchmuller & Wyler, 1986] [Leung et al., 1986] [Grzadkowksi et al., 2010]

* E.g. $(\varphi^{\dagger} i D_{\mu} \varphi) (l_p \gamma^{\mu} l_r)$

H^4D^2 and H^6		f^2H^3		V^3D^3			
$O_H \left[\partial_\mu (H^{\dagger}H)\right]^2$		$O_e = -(H^{\dagger}H - \frac{v^2}{2})\bar{e}H^{\dagger}\ell$		O_{3G}	$O_{3G} = g_s^3 f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$		
$O_T \left(H^{\dagger} \overleftarrow{D_{\mu}} H \right)^2$		$O_u = -(H^{\dagger}H - \frac{v^2}{2})\bar{u}\tilde{H}^{\dagger}q$		$O_{3\widetilde{G}}$	$g_s^3 f^{abc} \tilde{G}^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$		
O_{6H} $(H^{\dagger}H)^3$		$O_d \left[-(H^{\dagger}H - \frac{v^2}{2})\overline{d}H^{\dagger}q \right]$		0 _{3W}	O_{3W} $g^3 \epsilon^{ijk} W^i_{\mu\nu} W^j_{\nu\rho} W^k_{\rho\mu}$		
				$O_{\widetilde{3W}} \mid g^3 \epsilon^{ijk} \widetilde{W}^i_{\mu\nu} W^j_{\nu\rho} W^k_{\rho\mu}$			
$V^{2}H^{2}$		f^2H^2D		f^2VHD			
O_{GG}	$\frac{g_{*}^{2}}{4}H^{\dagger}HG^{a}_{\mu u}G^{a}_{\mu u}$	$O_{H\ell}$	$i\bar{\ell}\gamma_{\mu}\ell H^{\dagger}\overleftrightarrow{D_{\mu}}H$	O_{eW}		$g\bar{\ell}\sigma_{\mu\nu}e\sigma^{i}HW^{i}_{\mu\nu}$	
$O_{\widetilde{G}\widetilde{G}}$	$\frac{g_a^2}{4}H^{\dagger}H \widetilde{G}^a_{\mu\nu}G^a_{\mu\nu}$	$O'_{H\ell}$	$i\bar{\ell}\sigma^i\gamma_\mu\ell H^\dagger\sigma^i\overleftrightarrow{D_\mu}H$	O_{eB}		$g' \bar{\ell} \sigma_{\mu\nu} e H B_{\mu\nu}$	
O_{WW}	$\frac{g^2}{4}H^{\dagger}HW^i_{\mu\nu}W^i_{\mu\nu}$	O_{He}	$i\bar{e}\gamma_{\mu}\bar{e}H^{\dagger}\overleftrightarrow{D_{\mu}}H$	O_{uG}	g ,	$_{a}\bar{q}\sigma_{\mu u}T^{a}u\widetilde{H}G^{a}_{\mu u}$	
$O_{\widehat{W}\widehat{W}}$	$\frac{g^2}{4}H^{\dagger}H\widetilde{W}^i_{\mu\nu}W^i_{\mu\nu}$	O_{Hq}	$i\bar{q}\gamma_{\mu}qH^{\dagger}\overleftrightarrow{D_{\mu}}H$	O_{uW}	9	$\bar{q}\sigma_{\mu u}u\sigma^{i}\widetilde{H}W^{i}_{\mu u}$	
O_{BB}	$\frac{g'^2}{4}H^{\dagger}H B_{\mu\nu}B_{\mu\nu}$	O'_{Hq}	$i\bar{q}\sigma^i\gamma_\mu qH^\dagger\sigma^i\overleftrightarrow{D_\mu}H$	O_{uB}		$g' \bar{q} \sigma_{\mu\nu} u \tilde{H} B_{\mu\nu}$	
$O_{\widetilde{BB}}$	$\frac{g'^2}{4}H^{\dagger}H \widetilde{B}_{\mu\nu}B_{\mu\nu}$	O_{Hu}	$i\bar{u}\gamma_{\mu}uH^{\dagger}\overrightarrow{D_{\mu}}H$	O_{dG}	9	$_{s}\bar{q}\sigma_{\mu u}T^{a}dHG^{a}_{\mu u}$	
O_{WB}	$gg'H^{\dagger}\sigma^{i}HW^{i}_{\mu\nu}B_{\mu\nu}$	O_{Hd}	$i d \gamma_{\mu} d H^{\dagger} \overleftrightarrow{D_{\mu}} H$	O_{dW}	9	$q \overline{\sigma}_{\mu u} d\sigma^i H W^i_{\mu u}$	
$O_{\widetilde{WB}}$	$gg'H^{\dagger}\sigma^{i}H \widetilde{W}^{i}_{\mu\nu}B_{\mu\nu}$	O _{Hud}	$i ar{u} \gamma_\mu d ilde{H}^\dagger D_\mu H$	O_{dB}		$g' \bar{q} \sigma_{\mu u} dH B_{\mu u}$	
$(\bar{L}L)(\bar{L}L)$ and $(\bar{L}R)(\bar{L}R)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$			
0,,	$(\bar{\ell}\gamma_{\mu}\ell)(\bar{\ell}\gamma_{\mu}\ell)$		$(\bar{e}\gamma_{\mu}e)(\bar{e}\gamma_{\mu}e)$		Oje	$(\bar{\ell}\gamma_{\mu}\ell)(\bar{e}\gamma_{\mu}e)$	
Oaa	$(\bar{q}\gamma_{\mu}q)(\bar{q}\gamma_{\mu}q)$	<i>O</i> _{ии}	$(\bar{u}\gamma_{\mu}u)(\bar{u}\gamma_{\mu}u)$	($O_{\ell u}$	$(\bar{\ell}\gamma_{\mu}\ell)(\bar{u}\gamma_{\mu}u)$	
O'ag	$(\bar{q}\gamma_{\mu}\sigma^{i}q)(\bar{q}\gamma_{\mu}\sigma^{i}q)$	O_{dd}	$(\bar{d}\gamma_{\mu}d)(\bar{d}\gamma_{\mu}d)$	($O_{\ell d}$	$(\bar{\ell}\gamma_{\mu}\ell)(\bar{d}\gamma_{\mu}d)$	
Olg	$(\bar{\ell}\gamma_{\mu}\ell)(\bar{q}\gamma_{\mu}q)$	O_{eu}	$(\bar{e}\gamma_{\mu}e)(\bar{u}\gamma_{\mu}u)$	(O_{qe}	$(\bar{q}\gamma_{\mu}q)(\bar{e}\gamma_{\mu}e)$	
$O'_{\ell q}$	$(\bar{\ell}\gamma_{\mu}\sigma^{i}\ell)(\bar{q}\gamma_{\mu}\sigma^{i}q)$	O_{ed}	$(\bar{e}\gamma_{\mu}e)(\bar{d}\gamma_{\mu}d)$	(O_{qu}	$(\bar{q}\gamma_{\mu}q)(\bar{u}\gamma_{\mu}u)$	
Oquqd	$(\bar{q}^{j}u)\epsilon_{jk}(\bar{q}^{k}d)$	O_{ud}	$(\bar{u}\gamma_{\mu}u)(\bar{d}\gamma_{\mu}d)$	(O'_{qu}	$(\bar{q}\gamma_{\mu}T^{a}q)(\bar{u}\gamma_{\mu}T^{a}u)$	
O'_{quqd}	$(\bar{q}^j T^a u) \epsilon_{jk} (\bar{q}^k T^a d)$	O'_{ud}	$(\bar{u}\gamma_{\mu}T^{a}u)(\bar{d}\gamma_{\mu}T^{a}d)$	(O_{qd}	$(\bar{q}\gamma_{\mu}q)(\bar{d}\gamma_{\mu}d)$	
$O_{\ell equ}$	$(\bar{\ell}^j e) \epsilon_{jk} (\bar{q}^k u)$		-	(O'_{qd}	$(\bar{q}\gamma_{\mu}T^{a}q)(\bar{d}\gamma_{\mu}T^{a}d)$	
$O'_{\ell equ}$	$(\bar{\ell}^j \sigma_{\mu\nu} e) \epsilon_{jk} (\bar{q}^k \sigma^{\mu\nu} u)$						
$O_{\ell edq}$	$(\bar{\ell}^j e)(\bar{d}q^j)$						

Warsaw basis:

59 ops; 2499 real couplings;

[Grzadkowksi et al., 2010] [Alonso et al., 2013]

Correlating measurements (or how to play the EFT game)

- Choose your EFT, e.g. linear EFT
- Choose an operator basis {O₁, O₂, ..., O_n}, *e.g. the Warsaw basis* $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \Sigma \alpha_i O_i$
- ◆ Calculate the observable you like in the EFT,
 e.g. Γ(h→4e) = Γ(h→4e)_{SM} + Σ c_i α_i = Γ(h→4e)_{SM} + 3α₁ α₆
- What are the known limits on the Wilson coefficients? e.g. from LEP... $\alpha_1 = 0.001(3)$, α_2 unkown, ...

More precisely: χ^2 with (*LEP*) measurements gives you central values and error matrix

Implications for your observable?

e.g. error matrix $\rightarrow 3\alpha_1 - \alpha_6 = 0.02(4)$

- ~ 4% sensitivity (th+exp) to be competitive (or to check a LEP anomaly);
- A deviation larger than that indicates some wrong assumptions in your EFT!

Correlating measurements (or how to play the EFT game)

- Choose your EFT, e.g. linear EFT
- Choose an operator basis $\{O_1, O_2, ..., O_n\}$, *e.g. the Warsaw basis* $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \Sigma \alpha_i O_i$
- Calculate the observable you like in the EFT,
 - Equivalently (& more transparent)
 - Show analytical relations between pseudo-observables;
 - Do the error analysis afterwards;

l error matrix

Implications for your observable?

e.g. error matrix $\rightarrow 3\alpha_1 - \alpha_6 = 0.02(4)$

- \sim 4% sensitivity (th+exp) to be competitive (or to check a LEP anomaly);
- A deviation larger than that indicates some wrong assumptions in your EFT!

More

What's the room for NP in Higgs decays taking into account LEP results?

Example:

$$h \rightarrow e^+ e^- \mu^+ \mu^-$$

$$\begin{split} & \kappa_{ZZ}, \kappa_{Z\gamma}, \kappa_{\gamma\gamma}, \epsilon_{ZZ} , \\ & \epsilon_{Z\gamma}^{CP}, \epsilon_{\gamma\gamma}^{CP}, \epsilon_{ZZ}^{CP} , \\ & \epsilon_{Ze_L}, \epsilon_{Ze_R}, \epsilon_{Z\mu_L}, \epsilon_{Z\mu_R} \end{split}$$

What's the room for NP in Higgs decays taking into account LEP results?

Example:

$$h \rightarrow e^+ e^- \mu^+ \mu^-$$

 $\kappa_{ZZ}, \kappa_{Z\gamma}, \kappa_{\gamma\gamma}, \epsilon_{ZZ}$,
$$\begin{split} \epsilon^{CP}_{Z\gamma}, \epsilon^{CP}_{\gamma\gamma}, \epsilon^{CP}_{ZZ} , \\ \epsilon_{Ze_L}, \epsilon_{Ze_R}, \epsilon_{Z\mu_L}, \epsilon_{Z\mu_R} \end{split}$$

$$\epsilon_{\mathbf{Zf}} = \sqrt{g^2 + g'^2} \left(\delta g^{Zf} - (c_{\theta}^2 T_f^3 + s_{\theta}^2 Y_f) \mathbf{1} \left(\delta g_{1,z} + t_{\theta}^2 Y_f \mathbf{1} \left(\delta \kappa_{\gamma} \right) \right),$$

LEPI pseudo-obs. A(Z->ff) LEPII pseudo-obs. A(e⁻e⁺->W⁻W⁺)

M. González-Alonso

What's the room for NP in Higgs decays taking into account LEP results?

Example:

$$h \rightarrow e^+ e^- \mu^+ \mu^-$$

$$\begin{split} &\kappa_{ZZ}, \kappa_{Z\gamma}, \kappa_{\gamma\gamma}, \epsilon_{ZZ} ,\\ &\epsilon_{Z\gamma}^{CP}, \epsilon_{\gamma\gamma}^{CP}, \epsilon_{ZZ}^{CP} ,\\ &\epsilon_{Ze_L}, \epsilon_{Ze_R}, \epsilon_{Z\mu_L}, \epsilon_{Z\mu_R} \end{split}$$

 $\epsilon_{\mathbf{Zf}} = \sqrt{g^2 + g'^2} \left(\delta g^{Zf} \right) - \left(c_\theta^2 T_f^3 + s_\theta^2 Y_f \right) \mathbf{1} \left(\delta g_{1,z} \right) + t_\theta^2 Y_f \mathbf{1} \left(\delta \kappa_\gamma \right)$

LEP I

LEP II

Only flavor dep. $\mathcal{O}(10^{-3})$ [Efrati, Falkowski & Soreq'2015]

Flavour univ. derived from data (not imposed!)

What's the room for NP in Higgs decays taking into account LEP results?

Example:

$$h \rightarrow e^+ e^- \mu^+ \mu^-$$

 $\begin{array}{l} \kappa_{ZZ}, \kappa_{Z\gamma}, \kappa_{\gamma\gamma}, \epsilon_{ZZ} \ , \\ \epsilon^{CP}_{Z\gamma}, \epsilon^{CP}_{\gamma\gamma}, \epsilon^{CP}_{ZZ} \ , \\ \epsilon_{Ze_L}, \epsilon_{Ze_R}, \epsilon_{Z\mu_L}, \epsilon_{Z\mu_R} \end{array}$

LEP I

0.1

0.0

-0.1

-0.2

-0.3

-0.4 -0.8

-0.6

-0.4

 ϵ_{Ze_L}

 ϵ_{Ze_R}

 $\lambda_Z \neq 0$

$$\epsilon_{\mathbf{Zf}} = \sqrt{g^2 + g'^2} \left(\delta g^{Zf} - (c_\theta^2 T_f^3 + s_\theta^2 Y_f) \mathbf{1} \left(\delta g_{1,z} + t_\theta^2 Y_f \mathbf{1} \left(\delta \kappa_\gamma \right) \right),$$

0.7

LEP II [Falkowski & Riva'2014]

Accidental blind direction: $\lambda_Z pprox - \delta g_{1,z}$

M. González-Alonso

PO in Higgs decays

68%

95% 99.7%

0.0

 $-(h \rightarrow 2e2\mu)$

-0.2

What's the room for NP in Higgs decays taking into account LEP results?

h→γγ

~10-3

Example:

$$h \rightarrow e^+ e^- \mu^+ \mu^-$$

$$\begin{split} & \kappa_{ZZ}, \kappa_{Z\gamma}, \kappa_{\gamma\gamma}, \epsilon_{TZ} \ , \\ & \epsilon_{Z\gamma}^{CP}, \epsilon_{\gamma\gamma}^{CP}, \epsilon_{ZZ}^{CP} \ , \\ & \epsilon_{Le_L}, \epsilon_{Ze_R}, \epsilon_{Z\mu_L}, \epsilon_{Z\mu_R} \end{split}$$

$$\epsilon_{\mathbf{Zf}} = \sqrt{g^2 + g'^2} \left(\delta g^{Zf} - (c_{\theta}^2 T_f^3 + s_{\theta}^2 Y_f) \mathbf{1} \left(\delta g_{1,z} + t_{\theta}^2 Y_f \mathbf{1} \left(\delta \kappa_{\gamma} \right) \right),$$

$$\delta \varepsilon_{ZZ} = \delta \varepsilon_{\gamma\gamma} + \frac{c_{2\theta}}{s_{\theta}c_{\theta}} \delta \varepsilon_{Z\gamma} - \frac{1}{c_{\theta}^2} \delta \kappa_{\gamma}$$

h→Zγ

~10-2

LEP I

LEP II [Falkowski & Riva'2014]

$$\begin{pmatrix} \boldsymbol{\varepsilon}_{Ze_L} \\ \boldsymbol{\varepsilon}_{Ze_R} \\ \boldsymbol{\varepsilon}_{ZZ} \\ \boldsymbol{\varepsilon}_{Z\gamma} \\ \boldsymbol{\varepsilon}_{\gamma\gamma} \end{pmatrix} = \begin{pmatrix} -0.32(13) \\ -0.17(7) \\ -0.19(7) \\ 0.000(11) \\ 0.003(1) \end{pmatrix}, \qquad \boldsymbol{\rho} = \begin{pmatrix} 1 \ 0.996 \ 0.72 \ 0 \ 0 \\ \cdot \ 1 \ 0.77 \ 0 \ 0 \\ \cdot \ \cdot \ 1 \ 0.19 \ 0.01 \\ \cdot \ \cdot \ 1 \ 0.19 \ 0.01 \\ \cdot \ \cdot \ \cdot \ 1 \ 0 \end{pmatrix},$$

Linear EFT predictions for $h \rightarrow 4\ell$

What's the room for NP in Higgs decays taking into account LEP results?

Example:

$$h \rightarrow e^+ e^- \mu^+ \mu^-$$

$$\begin{split} & \kappa_{ZZ}, \kappa_{Z\gamma}, \kappa_{\gamma\gamma}, \epsilon_{ZZ} , \\ & \epsilon_{Z\gamma}^{CP}, \epsilon_{\gamma\gamma}^{OP}, \epsilon_{ZZ}^{CP} , \\ & \epsilon_{Le_L}, \epsilon_{Ze_R}, \epsilon_{Z\mu_L}, \epsilon_{Z\mu_R} \end{split}$$

Large effects on total decay rates allowed, but huge correlation between 4e, 4μ and $2e2\mu$ (consequence of flavor univ, which in turn is a consequence of the linear EFT!)

Linear EFT predictions for $h \rightarrow 4\ell$

What's the room for NP in Higgs decays taking into account LEP results?

Example:

$$h \rightarrow e^+ e^- \mu^+ \mu^-$$

Small effects in the shape!

What about $h \rightarrow 2\ell 2\nu$?

What about $h \rightarrow 2\ell 2\nu$?

What about $h \rightarrow 2\ell 2\nu$?

What's the room for NP taking into account LEP results?

Not assumption-independent... Exotic Higgs decays

- EFT-based approaches neglect new light states...
 which are not ruled out & indeed deserve their own separate attention
 - Tiny Γ_h ;
 - O(500,000) Higgses produced at LHC7+LHC8!
 - BR($h\rightarrow$ BSM) could be as large as O(20-50%);
 - Can be connected with some anomalies (g-2).
- Low-energy QCD effects under control;

Discovery potential: worth searching!
 Current cuts: 12 GeV!

 $--\overset{H}{-}$

M. González-Alonso

[[]Davoudiasl et al'2012-2013, Curtin et al'2013, MGA & G. Isidori, 2014 Falkowski & Vega-Morales, 2014, ...]

Summary

- Set of PO in Higgs decays as a convenient & general way to encode the experimental results; (generalization of the kappa framework)
- Different NP hypothesis testable;
- LEP implications for some Higgs decays analyzed:
 strong correlations between channels;
 - implications of the LEP2 flat direction;
- Full complementarity between PO & EFT:
 - PO = input for EFT analyses
 - EFT = predicts relations between Higgs POs (& LEP POs) that can be tested

Merci beaucoup!

Backup slides

Linear EFT predictions for $h \rightarrow 4\ell$

Taking into account the other PO, there is still limited room for NP.

