Tools and ideas for LHC phenomenology

Emanuele Re

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

Montpellier, 18 March 2015

legacy of LHC Run I

ATLAS SUSY Searches* - 95\% CL Lower Limits

	IS: Feb 2015
Model	
9OO©©	MSUGRA/CMSSM
	$\tilde{q} \tilde{q}, \tilde{q} \rightarrow \tilde{\chi}_{1}^{0}$
	$\tilde{q} \tilde{q} \gamma, \tilde{q} \rightarrow \chi_{1}^{0} \hat{\chi}_{1}^{0}$ (compressed)
	$\bar{g} \dot{g}, \underline{g} \rightarrow q \bar{q} \hat{q}_{1}^{0}$
	$\tilde{g} \tilde{g}, \underline{g} \rightarrow q q \tilde{1}_{1}^{ \pm} \rightarrow q q W^{ \pm} \tilde{\chi}_{1}^{0}$
	$\underline{g} \tilde{g}, \tilde{g} \rightarrow q q(t / / \ell v / v v)_{1}^{0}$
$\begin{aligned} & 0 \\ & \frac{3}{5} \\ & \frac{3}{U} \\ & \text { E } \end{aligned}$	GMSB ($\check{\ell} \mathrm{NLSP}$)
	GGM (bino NLSP)
	GGM (wino NLSP)
	GGM (higgsino-bino NLSP)
	GGM (higgsino NLSP)
	Gravitino LSP

$\sqrt{s}=7 \mathrm{TeV}$
full data
$\sqrt{5}=8 \mathrm{TeV}$
partial data partial data
$\sqrt{s}=8 \mathrm{TeV}$
full data

ATLAS Preliminary $\sqrt{s}=7,8 \mathrm{TeV}$
$m(\vec{g})=m(\vec{g})$
$m\left(X_{1}^{0}\right)=0 \operatorname{GeV}, m\left(I^{\mathrm{s}} \operatorname{gen} . \overline{\mathrm{q}}\right)=m\left(2^{\mathrm{d}} \operatorname{gen} . \overline{\mathrm{q}}\right)$ $m(\bar{y})-m\left(x_{1}^{0}\right)=m(c)$ $m\left(\tilde{C}_{1}^{0}\right)=0 \mathrm{GeV}$ $\mathrm{m}\left(\vec{X}_{1}^{0}\right)<300 \mathrm{GeV}, \mathrm{m}\left(\tilde{X}^{ \pm}\right)=0.5\left(\mathrm{~m}\left(\tilde{X}_{1}^{(1)}\right)+\mathrm{m}(\vec{g})\right)$ $m\left(\hat{X}_{1}^{0}\right)=0 \mathrm{GeV}$
$\tan \beta>20$
$m\left(X_{1}^{0}\right)>50 \mathrm{GeV}$
$m\left(X_{1}^{0}\right)>50 \mathrm{GeV}$
$m\left(X_{1}^{0}\right)>220 \mathrm{GeV}$ $m(N L S P)>200 \mathrm{GeV}$ $m(\bar{G})>1.8 \times 10^{-4} \mathrm{eV}, m(\tilde{g})=m(\tilde{q} \tilde{\tilde{q}}=1.5 \mathrm{TeV}$

Mass scale [TeV]

- so far no sign of new Physics at the TeV scale from direct searches

legacy of LHC Run I

ATLAS Preliminary Total uncertainty

- so far no sign of new Physics at the TeV scale from direct searches
- Higgs couplings have started to be measured: SM-like values, within 20-30 \%

legacy of LHC Run I

ATLAS SUSY Searches* - 95\% CL Lower Limit

- so far no sign of new Physics at the TeV scale from direct searches
- Higgs couplings have started to be measured: SM-like values, within 20-30 \%
- Situation will hopefully change at 13-14 TeV. Otherwise BSM hints likely from:
- small deviations from SM backgrounds
- indirect searches
[Higgs couplings, precise extraction of SM parameters]

legacy of LHC Run I

ATLAS Preliminary

$\mathrm{m}_{\mathrm{H}}=125.36 \mathrm{GeV}$

ATLAS SUSY Searches* - 95\% CL Lower Limit
Status: Feb 2015

require accurate understanding of signals and backgrounds:喔 "precision Physics"

Where are QCD precision and MC important?

- s-channel resonance "easy" to discover; Higgs discovery in $\gamma \gamma$ and $Z Z$ belongs to 1
- Some analysis techniques (e.g. 2) heavily relies on using MC event generators to separate signal and backgrounds
- MC very often needed also in more standard analysis...

Where are QCD precision and MC important?

- For 3 and 4 , need to control as much as possible QCD effects (i.e. rates and shapes, and also uncertainties!).
- Similar issues when extracting a SM parameters very precisely (e.g. the W mass).

Where are QCD precision and MC important?

- at some level, MC event generators enter in almost all experimental analyses
precise tools \Rightarrow smaller uncertainties on measured quantities \Downarrow
"small" deviations from SM accessible

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

- collide non-elementary particles
- we detect e, μ, γ, hadrons, "missing energy"
- we want to predict final state
- realistically
- precisely
- from first principles

[sherpa's artistic view]

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

- collide non-elementary particles
- we detect e, μ, γ, hadrons, "missing energy"
- we want to predict final state
- realistically
- precisely
- from first principles
\Rightarrow full event simulation needed to:
- compare theory and data
- estimate how backgrounds affect signal region
- test/build analysis techniques
soner or later, at some point a MC is used...

[sherpa's artistic view]

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

non-perturbative model, tuned on $e^{+} e^{-}$data all stages: QCD

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

Event generators: what they are?

ideal world: high-energy collision and detection of elementary particles real world:

hard scattering
$\Lambda_{\mathrm{QCD}} \ll \mu \approx Q$

perturbation theory

parton shower
$\Lambda_{\mathrm{QCD}}<\mu<Q$
hierarchy of scales
. resummation of large
logarithms
hadronisation
$\mu \approx \Lambda_{\mathrm{QCD}}$

non-perturbative model, tuned on $e^{+} e^{-}$data

```
all stages: QCD
```


Event generators: what's the output?

- in practice: momenta of all outgoing leptons and hadrons:

IHEP	ID	IDPDG IST	MO1	MO2	DA1	DA2	P-X	$P-Y$	P-Z	ENERGY	
31	NU_E	-11	1	30	22	0	0	-22.80	2.59	-232.4	233.6
32	E+	321	1	109	9	0	0	-1.66	1.26	1.3	2.5
148	K+	111	1	111	9	0	0	-0.01	0.05	11.4	11.4
151	PIO	211	1	111	9	0	0	-0.19	-0.13	2.0	2.0
152	PI+	-211	1	112	9	0	0	0.84	-1.07	1626.0	1626.0
153	PI-	321	1	112	9	0	0	0.48	-0.63	945.7	945.7
154	K+	111	1	113	9	0	0	-0.37	-1.16	64.8	64.8
155	PIO	-211	1	113	9	0	0	-0.20	-0.02	3.1	3.1
156	PI-	111	1	114	9	0	0	-0.17	-0.11	0.2	0.3
158	PIO	111	1	115	18	0	0	0.18	-0.74	-267.8	267.8
159	PIO	-211	1	115	18	0	0	-0.21	-0.13	-259.4	259.4
160	PI-	2112	1	116	23	0	0	-8.45	-27.55	-394.6	395.7
161	N	-2112	1	116	23	0	0	-2.49	-11.05	-154.0	154.4
162	NBAR	111	1	117	23	0	0	-0.45	-2.04	-26.6	26.6
163	PIO	111	1	117	23	0	0	0.00	-3.70	-56.0	56.1
164	PIO	321	1	119	23	0	0	-0.40	-0.19	-8.1	8.1
167	K+	-2212	1	130	9	0	0	0.10	0.17	-0.3	1.0

1. review how these tools work
2. discuss how their accuracy can be improved
3. show recent "NNLO matched to parton showers" results (NNLOPS)

parton showers and fixed order

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate

Parton showers I

- connect the hard scattering $\left(\mu \approx Q\right.$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate
3. soft-collinear emissions are ennhanced:

$$
\frac{1}{\left(p_{1}+p_{2}\right)^{2}}=\frac{1}{2 E_{1} E_{2}(1-\cos \theta)}
$$

4. in soft-collinear limit, factorization properties of QCD amplitudes

$$
\begin{aligned}
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \rightarrow\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} & \frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d t}{t} P_{q, q g}(z) d z \frac{d \varphi}{2 \pi} \\
z=k^{0} /\left(k^{0}+l^{0}\right) & \text { quark energy fraction } \\
t=\left\{(k+l)^{2}, l_{T}^{2}, E^{2} \theta^{2}\right\} & \text { splitting hardness } \\
P_{q, q g}(z)=C_{\mathrm{F}} \frac{1+z^{2}}{1-z} & \text { AP splitting function }
\end{aligned}
$$

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate
3. soft-collinear emissions are ennhanced:

$$
\frac{1}{\left(p_{1}+p_{2}\right)^{2}}=\frac{1}{2 E_{1} E_{2}(1-\cos \theta)}
$$

4. in soft-collinear limit, factorization properties of QCD amplitudes

$$
\begin{aligned}
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \rightarrow\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} & \frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d t}{t} P_{q, q g}(z) d z \frac{d \varphi}{2 \pi} \\
z=k^{0} /\left(k^{0}+l^{0}\right) & \text { quark energy fraction } \\
t=\left\{(k+l)^{2}, l_{T}^{2}, E^{2} \theta^{2}\right\} & \text { splitting hardness } \\
P_{q, q g}(z)=C_{\mathrm{F}} \frac{1+z^{2}}{1-z} & \text { AP splitting function }
\end{aligned}
$$

probabilistic interpretation!

Parton showers I

- connect the hard scattering ($\mu \approx Q$) with the final state hadrons ($\mu \approx \Lambda_{\mathrm{QCD}}$)
- need to simulate production of many quarks and gluons

1. start from low multiplicity at high Q^{2}
2. quarks and gluons are color-charged \Rightarrow they radiate
3. soft-collinear emissions are ennhanced:

$$
\frac{1}{\left(p_{1}+p_{2}\right)^{2}}=\frac{1}{2 E_{1} E_{2}(1-\cos \theta)}
$$

4. in soft-collinear limit, factorization properties of QCD amplitudes

$$
\begin{aligned}
\left|\mathcal{M}_{n+1}\right|^{2} d \Phi_{n+1} \rightarrow\left|\mathcal{M}_{n}\right|^{2} d \Phi_{n} & \frac{\alpha_{\mathrm{S}}}{2 \pi} \frac{d t}{t} P_{q, q g}(z) d z \frac{d \varphi}{2 \pi} \\
z=k^{0} /\left(k^{0}+l^{0}\right) & \text { quark energy fraction } \\
t=\left\{(k+l)^{2}, l_{T}^{2}, E^{2} \theta^{2}\right\} & \text { splitting hardness } \\
P_{q, q g}(z)=C_{\mathrm{F}} \frac{1+z^{2}}{1-z} & \text { AP splitting function }
\end{aligned}
$$

probabilistic interpretation! [notice: $\alpha_{\mathrm{S}} L^{2}$]

Parton showers II

5. dominant contributions for multiparticle production due to strongly ordered emissions

$$
t_{1}>t_{2}>t_{3} \ldots
$$

6. at any given order, we also have virtual corrections: include them with the same approximation

- LL virtual contributions: Sudakov form factor for each internal line:

$$
\Delta_{a}\left(t_{i}, t_{i+1}\right)=\exp \left[-\sum_{(b c)} \int_{t_{i+1}}^{t_{i}} \frac{d t^{\prime}}{t^{\prime}} \int \frac{\alpha_{s}\left(t^{\prime}\right)}{2 \pi} P_{a, b c}(z) d z\right]
$$

- Δ_{a} corresponds to the probability of having no resolved emission between t_{i} and t_{i+1} off a line of flavour a
[1/8 resummation of collinear logarithms
[very soff/collinear emissions are suppressed - all order effect!]

Parton showers: summary

$$
d \sigma_{\mathrm{SMC}}=\underbrace{\left|\mathcal{M}_{B}\right|^{2} d \Phi_{B}}_{d \sigma_{B}}\{
$$

Parton showers: summary

$$
d \sigma_{\mathrm{SMC}}=\underbrace{\left|\mathcal{M}_{B}\right|^{2} d \Phi_{B}}_{d \sigma_{B}}\left\{\Delta\left(t_{\mathrm{max}}, t_{0}\right)\right.
$$

Parton showers: summary

$$
d \sigma_{\mathrm{SMC}}=\underbrace{\left|\mathcal{M}_{B}\right|^{2} d \Phi_{B}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \underbrace{d \mathcal{P}_{\mathrm{emis}}(t)}_{\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}}
$$

Parton showers: summary

$$
d \sigma_{\mathrm{SMC}}=\underbrace{\left|\mathcal{M}_{B}\right|^{2} d \Phi_{B}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \underbrace{d \mathcal{P}_{\mathrm{emis}}(t)}_{\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}}\{\underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\mathrm{emis}}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}
$$

Parton showers: summary

$$
d \sigma_{\mathrm{SMC}}=\underbrace{\left|\mathcal{M}_{B}\right|^{2} d \Phi_{B}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \underbrace{d \mathcal{P}_{\mathrm{emis}}(t)}_{\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}}\{\underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\mathrm{emis}}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}
$$

Parton showers: summary

$$
d \sigma_{\mathrm{SMC}}=\underbrace{\left|\mathcal{M}_{B}\right|^{2} d \Phi_{B}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \underbrace{d \mathcal{P}_{\mathrm{emis}}(t)}_{\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}}\{\underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\mathrm{emis}}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}
$$

Parton showers: summary

$d \sigma_{\mathrm{SMC}}=\underbrace{\left|\mathcal{M}_{B}\right|^{2} d \Phi_{B}}_{d \sigma_{B}}\{\Delta\left(t_{\max }, t_{0}\right)+\Delta\left(t_{\max }, t\right) \underbrace{d \mathcal{P}_{\text {emis }}(t)}_{\frac{\alpha_{s}}{2 \pi} \frac{1}{t} P(z) d \Phi_{r}} \underbrace{\Delta\left(t, t_{0}\right)+\Delta\left(t, t^{\prime}\right) d \mathcal{P}_{\text {emis }}\left(t^{\prime}\right)}_{t^{\prime}<t}\}\}$

- A parton shower changes shapes, not the overall normalization, which stays LO (unitarity)

Do they work?

plot from [Gianotti,Mangano 0504221]

- ok when observables dominated by soft-collinear radiation
- not surprisingly, they fail when looking for hard multijet kinematics
- they are only LO+LL accurate (whereas we want (N)NLO QCD corrections)
\Rightarrow Not enough if interested in precision (10\% or less), or in multijet regions

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order NLO: Next-to-Leading Order

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order
NLO: Next-to-Leading Order NLO: Next-to-Leading Order

$$
d \sigma=d \Phi_{n}\{\underbrace{B\left(\Phi_{n}\right)}_{\mathrm{LO}}
$$

$$
\frac{\alpha_{s}}{2 \pi}[\underbrace{V\left(\Phi_{n}\right)+R\left(\Phi_{n+1}\right) d \Phi_{r}}_{\mathrm{NLO}}]
$$

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order NLO: Next-to-Leading Order

ns Why NLO is important?

- first order where rates are reliable
- shapes are, in general, better described
- possible to attach sensible theoretical uncertainties

Next-to-Leading Order

$\alpha_{\mathrm{S}} \sim 0.1 \Rightarrow$ to improve the accuracy, use exact perturbative expansion

$$
d \sigma=d \sigma_{\mathrm{LO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right) d \sigma_{\mathrm{NLO}}+\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{2} d \sigma_{\mathrm{NNLO}}+\ldots
$$

LO: Leading Order
NLO: Next-to-Leading Order

nate Why NLO is important?

- first order where rates are reliable
- shapes are, in general, better described
- possible to attach sensible theoretical uncertainties

When NNLO is needed?

- NLO corrections large
- very high-precision needed

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)
㖪 can we merge them and build an NLOPS generator?
Problem:

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

腌 can we merge them and build an NLOPS generator?
Problem: overlapping regions!

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

腌 can we merge them and build an NLOPS generator?
Problem: overlapping regions!
NLO:

NLO

\checkmark precision
\checkmark nowadays this is the standard
X limited multiplicity
X (fail when resummation needed)

parton showers

\checkmark realistic + flexible tools
\checkmark widely used by experimental coll's
X limited precision (LO)
X (fail when multiple hard jets)

㖪 can we merge them and build an NLOPS generator?
Problem: overlapping regions!

\checkmark many proposals, 2 well-established methods available to solve this problem: MC@NLO and POWHEG
[Frixione-Webber '03, Nason '04]

matching NLO and PS

- POWHEG (POsitive Weight Hardest Emission Generator)

NLOPS: POWHEG I

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

NLOPS: POWHEG I

$$
B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right]-
$$

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}^{\downarrow}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\min }\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

NLOPS: POWHEG I

$$
B\left(\Phi_{n}\right) \Rightarrow \bar{B}\left(\Phi_{n}\right)=B\left(\Phi_{n}\right)+\frac{\alpha_{s}}{2 \pi}\left[V\left(\Phi_{n}\right)+\int R\left(\Phi_{n+1}\right) d \Phi_{r}\right]
$$

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \quad \bar{B}\left(\Phi_{n}\right) \quad\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

$$
\left(\frac{\sigma^{66}}{\sim \Delta\left(t_{\mathrm{m}}, t\right) \Rightarrow \Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right)=\exp \left\{-\frac{\alpha_{s}}{2 \pi} \int \frac{R\left(\Phi_{n}, \Phi_{r}^{\prime}\right)}{B\left(\Phi_{n}\right)} \theta\left(k_{\mathrm{T}}^{\prime}-k_{\mathrm{T}}\right) d \Phi_{r}^{\prime}\right\}}\right.
$$

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\mathrm{min}}\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

[$+p_{\mathrm{T}}$-vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO
- first hard emission: full tree level ME

This is "NLOPS"

- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation

NLOPS: POWHEG II

$$
d \sigma_{\mathrm{POW}}=d \Phi_{n} \bar{B}\left(\Phi_{n}\right)\left\{\Delta\left(\Phi_{n} ; k_{\mathrm{T}}^{\min }\right)+\Delta\left(\Phi_{n} ; k_{\mathrm{T}}\right) \frac{\alpha_{s}}{2 \pi} \frac{R\left(\Phi_{n}, \Phi_{r}\right)}{B\left(\Phi_{n}\right)} d \Phi_{r}\right\}
$$

[$+p_{\mathrm{T}}$-vetoing subsequent emissions, to avoid double-counting]

- inclusive observables: @NLO
- first hard emission: full tree level ME

This is "NLOPS"

- (N)LL resummation of collinear/soft logs
- extra jets in the shower approximation

POWHEG BOX

[Alioli,Nason,Oleari,ER '10]

- large library of SM processes, (largely) automated
- widely used by LHC collaborations and other theorists
- not really a closed chapter; some important issues are still to be addressed...

...a couple of possible BSM applications...

$t \bar{t}$ and top-mass measurement

- Improvement on measurement of the top-mass at the LHC will probably come from combination of different strategies: total x -section, $t \bar{t}+$ jet, leptonic spectra, $b \ell$ endpoint,... [see e.g. TOP LHC Working Group or MITP Workshop 2014]
- Some techniques rely on looking into the kinematics of visible particles from top-decay
- Important that simulations are very accurate, and associated errors are quantified: recently, NLO+PS with NLO in production and decay
[Campbell,Ellis,Nason,ER '14]

plot from [Giudice et al. '13]

$$
m_{t} \approx 173 \pm 1 \mathrm{GeV}
$$

BSM example II: LHC and Dark-Matter searches

BSM example II: LHC and Dark-Matter searches

- studied QCD corrections to monojet searches
[Haisch,Kahlhoefer,ER '13]

- ATLAS and CMS cuts are such that a large fraction of events has 2 or more jets
- for some DM-SM interactions, using VBF cuts: [Haisch,Hibbs,ER '13, see also Cotta,Hewett et al. '13]

$N L O+P S$ merging and NNLO+PS

NNLO+PS: why and where?

NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO "K-factor"
[as in Higgs Physics]
2. very high precision needed
[e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

NNLO+PS: why and where?

NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO "K-factor" [as in Higgs Physics]
2. very high precision needed [e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

[Anastasiou et al., '03]

NNLO+PS: why and where?

NLO(+PS) not always enough: NNLO needed when

1. large NLO/LO "K-factor" [as in Higgs Physics]
2. very high precision needed [e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

Q: can we merge NNLO and PS?

[Anastasiou et al., '03]

NNLO+PS: why and where?

$\mathrm{NLO}(+\mathrm{PS})$ not always enough: NNLO needed when

1. large NLO/LO "K-factor" [as in Higgs Physics]
2. very high precision needed [e.g. Drell-Yan, top pairs]

- last couple of years: huge progress in NNLO

Q: can we merge NNLO and PS?

[Anastasiou et al., '03]
哏
ise important for precision studies for several processes

- method presented here: based on POWHEG+MiNLO, used so far for
- Higgs production
[Hamilton,Nason,ER,Zanderighi, 1309.0017]
- neutral \& charged Drell-Yan

towards NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\mathrm{H} @$ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

towards NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	I	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

傕 a merged H -HJ generator is almost OK

towards NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\mathrm{H} @$ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

傕 a merged $\mathrm{H}-\mathrm{HJ}$ generator is almost OK

- many of the multijet NLO+PS merging approaches work by combining 2 (or more) NLO+PS generators, introducing a merging scale*
- POWHEG + MiNLO [Multiscale Improved NLO].
[Hamilton et al. '12]
No need of merging scale: it extends the validity of a NLO+PS computation with jets in the final state to phase-space regions where jets become unresolved

[^0]
NLOPS merging \& BSM

- left: LO+PS
- right: NLO+PS merging

POWHEG \rightarrow MiNLO \rightarrow NNLO+PS

Higgs at NNLO:

\# loops: 0 (1

\# loops: $0 \quad 1$

\# loops:

POWHEG \rightarrow MiNLO \rightarrow NNLO+PS

Higgs at NNLO:

\# loops: 01

(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

POWHEG \rightarrow MiNLO \rightarrow NNLO+PS

Higgs at NNLO:

(b) - integrate down to $q_{T}=0$ with MiNLO

- "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

POWHEG \rightarrow MiNLO \rightarrow NNLO+PS

Higgs at NNLO:

(b) - integrate down to $q_{T}=0$ with MiNLO

- "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

MiNLO

MiNLO

MiNLO

MiNLO

MiNLO
"Improved" MiNLO \& NLOPS merging
"Improved" MiNLO \& NLOPS merging

Higgs at NNLO+PS: details

Higgs at NNLO+PS: details

Higgs at NNLO+PS: details

Higgs at NNLO+PS: details

H@NNLOPS (fully incl.)

- NNLO with $\mu=m_{H} / 2$, HJ-MiNLO "core scale" m_{H}
- $\left(7_{\mathrm{Mi}} \times 3_{\mathrm{NN}}\right)$ pts scale var. in NNLOPS, 7 pts in NNLO

Notice: band is 10% (at NLO would be $\sim 20-30 \%$)
[Until and including $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$, PS effects don't affect y_{H} (first 2 emissions controlled properly at $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$ by MiNLO+POWHEG)]

H@NNLOPS $\left(p_{T}^{H}\right)$

- HqT: NNLL+NNLO, $\mu_{R}=\mu_{F}=m_{H} / 2[7 \mathrm{pts}], \quad Q_{\mathrm{res}} \equiv m_{H} / 2$
[HqT, Bozzi et al.]
\checkmark uncertainty bands of HqT contain nNLOPS at low-/moderate p_{T}
- very good agreement with HqT resummation
["~ expected", since $Q_{\mathrm{res}} \equiv m_{H} / 2$, and $\beta=1 / 2$]

H@NNLOPS ($\left.p_{T}^{j_{1}}\right)$

哏 Separation of $H \rightarrow W W$ from $t \bar{t}$ bkg: x-sec binned in $N_{\text {jet }}$
0 -jet bin \Leftrightarrow jet-veto accurate predictions needed !

$$
\varepsilon\left(p_{\mathrm{T}, \text { veto }}\right)=\frac{\Sigma\left(p_{\mathrm{T}, \text { veto }}\right)}{\sigma^{\text {tot }}}=\frac{1}{\sigma^{\text {tot }}} \int d \sigma \theta\left(p_{\mathrm{T}, \text { veto }}-p_{\mathrm{T}}^{\mathrm{j}_{1}}\right)
$$

- JetVHeto: NNLL resum, $\mu_{R}=\mu_{F}=m_{H} / 2$ [7pts], $\quad Q_{\text {res }} \equiv m_{H} / 2$, (a)-scheme only [JetVHeto, Banfi et al.]
- nice agreement, differences never more than 5-6 \%

Drell-Yan @NNLOPS

....measure W mass very precisely....

consistency of SM

Conclusions and Outlook

- Especially in absence of very clear singals of new-physics, accurate tools are needed for LHC phenomenology
- In the last decade, impressive amount of progress: new ideas, and automated tools
\Rightarrow briefly reviewed how Event Generators work, and how they can be upgraded to NLO
\Rightarrow shown results of merging NLOPS for different jet-multiplicities without merging scale
\Rightarrow shown first working examples of NNLOPS

What next?

Conclusions and Outlook

- Especially in absence of very clear singals of new-physics, accurate tools are needed for LHC phenomenology
- In the last decade, impressive amount of progress: new ideas, and automated tools
\Rightarrow briefly reviewed how Event Generators work, and how they can be upgraded to NLO
\Rightarrow shown results of merging NLOPS for different jet-multiplicities without merging scale
\Rightarrow shown first working examples of NNLOPS

What next?

- NLOPS merging for higher multiplicity
- NNLOPS for more complicated processes (color-singlet in principle doable, in practice a more analytic-based approach might be needed)
- Real phenomenology in experimental analyses

Conclusions and Outlook

- Especially in absence of very clear singals of new-physics, accurate tools are needed for LHC phenomenology
- In the last decade, impressive amount of progress: new ideas, and automated tools
\Rightarrow briefly reviewed how Event Generators work, and how they can be upgraded to NLO
\Rightarrow shown results of merging NLOPS for different jet-multiplicities without merging scale
\Rightarrow shown first working examples of NNLOPS

What next?

- NLOPS merging for higher multiplicity
- NNLOPS for more complicated processes (color-singlet in principle doable, in practice a more analytic-based approach might be needed)
- Real phenomenology in experimental analyses

[^0]: *[Hoeche,Krauss, et al.,1207.5030] [Frederix,Frixione,1209.6215] [Lonnblad,Prestel,1211.7278] [Platzer, 1211.5467] [Alioli,Bauer, et al.,1211.7049] ...

