Cosmological relaxation of the EW scale

Giuliano Panico

IFAE, Barcelona

Montpellier – 15 October 2015

based on J.R. Espinosa, C. Grojean, G. P., A. Pomarol, O. Pujolàs, G. Servant arXiv:1506.09217

The Higgs discovery and the recent LHC measurements confirm that the Standard Model (i.e. the **Higgs mechanism**) correctly describes the main features of the **EW Symmetry Breaking** dynamics

The SM is not a complete theory, several phenomena unexplained

- origin of neutrino masses
- dark matter
- full description of gravity
- ...

The SM is not a complete theory, several phenomena unexplained

- origin of neutrino masses
- dark matter
- full description of gravity
- ...

More fundamental theory necessarily present!

Introduction: the Hierarchy Problem

Obstruction to get a **predictive** extension of the SM:

the Hierarchy Problem

- ▶ the Higgs mass is highly sensitive to new physics
- ▶ its **natural** value of m_h is of the order of the new-physics scale Λ_{NP}

$$\delta m_h^2 \big|_{1-loop} \sim \frac{h}{1-1} \sim -\frac{h}{1-1} \sim -\frac{y_{top}^2}{8\pi^2} \Lambda_{NP}^2 \gg (125 \text{ GeV})^2$$

Introduction: the Hierarchy Problem

Obstruction to get a **predictive** extension of the SM:

the Hierarchy Problem

- ▶ the Higgs mass is highly sensitive to new physics
- ▶ its **natural** value of m_h is of the order of the new-physics scale Λ_{NP}

$$\delta m_h^2 \big|_{1-loop} \sim \frac{h}{1-1} \sim -\frac{h}{1-1} \sim -\frac{y_{top}^2}{8\pi^2} \Lambda_{NP}^2 \gg (125 \text{ GeV})^2$$

huge cancellation needed to keep the Higgs mass small

$$m_h^2 = m_h^2 \big|_{bare} + \delta m_h^2 \big|_{1-loop} = (125 \text{ GeV})^2$$

Ioss of predictivity!

Is the Higgs mass really unnatural?

look for extensions of the SM that avoid the Hierarchy Problem

The origin of the **Hierarchy problem** can be equivalently understood as the requirement that Higgs potential satisfies two conditions near the same point

- (i) a zero of the first derivative (local minimum)
- (ii) a zero of the second derivative (Higgs mass and EW scale much smaller than the overall scale, $m_h, v \ll \Lambda$)

In a generic potential a **fine-tuning** is required to obtain the two conditions simultaneously.

Introduction: Solutions of the Hierarchy Problem

"Classical" mechanisms to solve the Hierarchy problem

- ► New physics at the TeV scale stabilizes the EW scale (eg. low-scale Supersymmetry, Composite Higgs, ...)
 - Avoid condition (ii) by assuming that $\Lambda \sim v \sim m_h$

$$\delta m_h^2 \big|_{1-loop} \sim \stackrel{h}{\longrightarrow} \frac{t_{op}}{t_{op}} \cdots \stackrel{h}{\longrightarrow} + \stackrel{h}{\longrightarrow} \frac{t_{op}}{1-t_{op}} \wedge \frac{y_{top}^2}{8\pi^2} \Lambda_{NP}^2 \lesssim (\text{TeV})^2$$

► Large Landscape with huge number of minima

- Ensamble of realized vacua spans all possible EW scales
- Anthropic selection of correct vacuum

Introduction: Solutions of the Hierarchy Problem

New solution

► "Relaxation" of the EW scale

[Graham, Kaplan, Rajendran, 1504.07551] (see also earlier work by Abbott 85; Dvali, Vilenkin 04; Dvali 06)

- condition (i) avoided by a potential with vacua "everywhere" (eg. oscillating function can have infinite set of minima)
- "correct" minimum selected dynamically through a backreaction of EWSB

The "minimal" realization

- Higgs mass determined by the evolution of ϕ
- ϕ must be stabilized where $|m^2(\phi)|\ll \Lambda^2$
- this structure can arise from a "clever" dynamical interplay between H and ϕ

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda}\right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c}\right)^n \cos(\phi/f)$$

"Kicking" term makes ϕ slide forward

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi,h) = \Lambda^3 g \phi \left(-\frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f) \right)$$

 ϕ "scans" the Higgs mass

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 \left(+ \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f) \right)$$

$$n = 1, 2...$$

"self-regulating" term

stops ϕ when h turns on (periodic function of ϕ as for axion-like states)

The potential generate an interplay between the Higgs h and an axion-like field ϕ

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

- Λ cut off of the theory
- $\Lambda_c~$ scale at which the periodic term originates

Spurions:

- $$\label{eq:expectation} \begin{split} \varepsilon \ll 1 & \mbox{breaking of the shift symmetry} \quad \phi \to \phi + c \\ & \mbox{respecting} \quad \phi \to 2\pi f, \ \phi \to -\phi \end{split}$$
- $g \ll 1 ~~{\rm full}$ breaking of the shift symmetry

Cosmological evolution

$$V(\phi, h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

$$(\phi)$$

$$(h) \neq 0$$

$$(h) \neq$$

)

Cosmological evolution

$$V(\phi, h) = \Lambda^{3}g\phi - \frac{1}{2}\Lambda^{2}\left(1 - \frac{g\phi}{\Lambda}\right)h^{2} + \varepsilon\Lambda_{c}^{4}\left(\frac{h}{\Lambda_{c}}\right)^{n}\cos(\phi/f)$$

$$V(\phi)$$

$$(h) \neq 0$$

$$(h) = \frac{\Lambda^{3}f}{\Lambda_{c}^{3}\varepsilon} \ll \Lambda \quad \text{for } g \ll 1$$

• Notice that large field excursions for ϕ needed: $\phi \sim \Lambda/g \gg \Lambda$

$$V(\phi,h) = \Lambda^3 g \phi - \frac{1}{2} \Lambda^2 \left(1 - \frac{g \phi}{\Lambda} \right) h^2 + \varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$

How do we stop in the correct minimum? Should we **tune the initial conditions**?

How do we stop in the correct minimum? Should we **tune the initial conditions**?

No, if ϕ slow-rolls!

- possible if a friction is present
 (eg. during the inflationary epoch, through Hubble friction)
- $\succ \phi$ must "scan" large ranges of the Higgs mass, a long period of inflation is needed

e-folds needed:
$$N_e \gtrsim rac{H_I^2}{g^2 \Lambda^2} \sim 10^{40}$$

Important constraint:

 ϕ must slow-roll $\mbox{classically}$ so that quantum effects do not generate a large spreading

Which is the origin of
$$\varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$
 ?

Which is the origin of
$$arepsilon \Lambda_c^4 \left(rac{h}{\Lambda_c}
ight)^n \cos(\phi/f)$$
 ?

$$n = 1$$

axion term from QCD condensate:
$$\Lambda_c = \Lambda_{
m QCD}$$

 $m_u(h)\langle q \overline{q}
angle \cos(\phi/f)$

Which is the origin of
$$arepsilon \Lambda_c^4 \left(rac{h}{\Lambda_c}
ight)^n \cos(\phi/f)$$
 ?

$$n=1$$
 axion term from QCD condensate: $\Lambda_c=\Lambda_{\rm QCD}$
$$m_u(h)\langle q\overline{q}\rangle\cos(\phi/f)$$

problem: too large $\theta_{\rm QCD} \sim 1$ due to linear tilt!

$$\Lambda^3 g \phi$$
 \clubsuit

can be solved if the tilt disappears after inflation

Low cut-off: $\Lambda \lesssim 30 \ {\rm TeV}$

Which is the origin of
$$\varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$
 ?

n=2 gauge invariant, generated by new-physics at scale Λ_c (no need to rely on QCD) $\varepsilon \Lambda_c^2 |H|^2 \cos(\phi/f)$

Which is the origin of
$$\varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$
 ?

|n=2| gauge invariant, generated by new-physics at scale Λ_c (no need to rely on QCD) $\varepsilon \Lambda_{a}^{2} |H|^{2} \cos(\phi/f)$

> problem: quantum corrections from Higgs loop $\Rightarrow \epsilon \Lambda_a^4 \cos(\phi/f)$

"Relaxation" only works if Higgs barrier dominates

 $\Lambda_c \leq v$

New-dynamics must be around the EW scale!

Which is the origin of
$$\varepsilon \Lambda_c^4 \left(\frac{h}{\Lambda_c} \right)^n \cos(\phi/f)$$
 ?

n = 2

gauge invariant, generated by new-physics at scale Λ_c (no need to rely on QCD) $\varepsilon \Lambda_c^2 |H|^2 \cos(\phi/f)$

> New-physics at the LHC is still required though it arises from an "unusual" motivation (needed to generate the periodic potential)

Extra drawback: "coincidence problem" why $\Lambda_c \sim v$?

Can we make the new-physics scale larger?

Raising the cut-off

Add an additional field σ "modulates" the periodic potential

$\begin{aligned} \textbf{Field-dependent amplitude} \\ A\cos(\phi/f) & \longrightarrow \quad A(\phi,\sigma,H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g_\phi}{\Lambda} - c_\sigma \frac{g_\sigma \sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2}\right) \end{aligned}$

Two "scanners" potential

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_{\sigma}\sigma}{\Lambda} \right) + m^2(\phi) |H|^2 + A(\phi, \sigma, H) \cos(\phi/f)$$

Add an additional field σ "modulates" the periodic potential

Add an additional field σ "modulates" the periodic potential

 $\label{eq:Field-dependent amplitude} \begin{aligned} & \textbf{Field-dependent amplitude} \\ & A\cos(\phi/f) & \longrightarrow & A(\phi,\sigma,H) = \varepsilon \Lambda^4 \left(\beta + c_\phi \frac{g_\phi}{\Lambda} - c_\sigma \frac{g_\sigma \sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2}\right) \end{aligned}$

Two "scanners" potential

$$V(\phi, \sigma, H) = \Lambda^4 \left(\frac{g\phi}{\Lambda} + \frac{g_{\sigma}\sigma}{\Lambda}\right) + m^2(\phi)|H|^2 + A(\phi, \sigma, H)\cos(\phi/f)$$

• We take $\Lambda \sim \Lambda_c$ and see how much we can push it up

$$V(\phi, \sigma, H) = \Lambda^{4} \left(\frac{g\phi}{\Lambda} + \frac{g_{\sigma}\sigma}{\Lambda} \right) + m^{2}(\phi)|H|^{2} + A(\phi, \sigma, H)\cos(\phi/f)$$

$$A(\phi, \sigma, H) = \varepsilon\Lambda^{4} \left(\beta + c_{\phi} \frac{g\phi}{\Lambda} - c_{\sigma} \frac{g_{\sigma}\sigma}{\Lambda} + \frac{|H|^{2}}{\Lambda^{2}} \right)$$

$$(H)^{\frac{1}{2}} \phi_{c}(H)^{\frac{1}{2}} \phi_{c}(H)^{\frac$$

$$V(\phi, \sigma, H) = \Lambda^{4} \left(\frac{g\phi}{\Lambda} + \frac{g\sigma\sigma}{\Lambda} \right) + m^{2}(\phi)|H|^{2} + A(\phi, \sigma, H)\cos(\phi/f)$$

$$A(\phi, \sigma, H) = \varepsilon\Lambda^{4} \left(\beta + c_{\phi} \frac{g\phi}{\Lambda} - c_{\sigma} \frac{g\sigma\sigma}{\Lambda} + \frac{|H|^{2}}{\Lambda^{2}} \right)$$

$$(H)^{\frac{1}{2}} \phi c_{c}(H)^{\frac{1}{2}} \phi$$

$$(H)^{\frac{1}{2}} \phi c_{c}(H)^{\frac{1}{2}} \phi$$

$$(H)^{\frac{1}{2}} \phi$$

$$(H)^{\frac{1}{2}}$$

Stage II: ϕ "tracks" σ

Stage III: ϕ enters the minimum

Stage IV: ϕ stabilized

Potential for ϕ in the four stages:

Constraints

- $\varepsilon \lesssim v^2/\Lambda^2$ keep under control quantum corrections
- $g \lesssim \Lambda/M_{Pl}$ slow-roll condition
- $H_I^3 \lesssim g_\sigma \Lambda^3$ avoid quantum effects spoiling classical rolling
- $g_{\sigma} \lesssim g$ allow ϕ tracking σ
- $\Lambda^2/M_{Pl} \lesssim H_I$ avoid backreaction of ϕ and σ on inflation

Stabilization of the EW scale: $v^2 \simeq {g \Lambda f \over arepsilon}$

upper bound on the cut-off

 $\Lambda \lesssim (v^4 M_{Pl}^3)^{1/7} \simeq 2 \times 10^9 \,\, {\rm GeV}$

UV origin of the periodic term

Gives the needed potential if the mass of N is given by

$$m_N \simeq \varepsilon \left(\Lambda + g_\sigma \sigma + g \phi - \frac{|H|^2}{\Lambda} \right)$$
from integrating
a fermion doublet L

Phenomenological implications

- \succ No state detectable at the LHC
- $\succ \phi$ and σ are the only BSM states below Λ

light scalars weakly-coupled to the SM

 $m_{\phi} \sim 10^{-20} - 10^2 \text{ GeV}$ $m_{\sigma} \sim 10^{-45} - 10^{-8} \text{ GeV}$

mixing to the SM through the Higgs: $|H|^2\cos\phi/f\,,\qquad g\phi|H|^2$

• Bechmark values for $\Lambda \sim 10^9~{\rm GeV}$

$$\begin{split} m_{\phi} &\sim 100 \text{ GeV} & m_{\sigma} &\sim 10^{-18} \text{ GeV} \\ \theta_{\phi h} &\sim 10^{-21} & \theta_{\sigma h} &\sim 10^{-50} \\ \phi \phi hh \text{ coupling} &\sim 10^{-14} \end{split}$$

Cosmological consequences

> Many constraints from cosmology

dark matter overabundance, late decays, BBN bounds, $\gamma\text{-rays},$ CMB, pulsar timing observations, \ldots

> Oscillations of σ can provide a **Dark Matter candidate**

Parameter space

Parameter space

Constraints on the parameter space

Constraints on the parameter space

Constraints on the parameter space

Conclusions

Conclusions

The "Relaxation" models provide an "existence proof" of natural theories with a high cut-off scale $~(\Lambda\sim 10^9~{\rm GeV})$

Good features:

Change of paradigm

- new physics is given by weakly-coupled light states
- not detectable at high-energy collider experiments

Other type of experiments needed

• astrophysics (γ -rays, pulsar timing, ...), CMB, fifth-force searches, ...

Ugly features:

Huge number of inflation e-folds $N_e>10^{38}$ (if high cut-off is required) Super-Planckian field excursions

Future directions:

- \blacktriangleright Are there ways to avoid the limit on the cut-off $\Lambda \lesssim 10^9 \ {\rm GeV?}$
- UV completion? How to get the double breaking of the shift symmetry in the "axion" potential? Connection with SUSY?

[see Gupta, Komargodski, Perez and Ubaldi, arXiv:1509.00047, Batell, Giudice, McCullough, arXiv:1509.00834]

- $\blacktriangleright\,$ Find suitable inflationary models with huge N_e
- Alternative sources of friction, disentangling the "relaxation" mechanism from inflation
 - proposal to do this at finite temperature [Hardy, arXiv:1507.07525]