Probing dark matter above TeV and below meV

Giovanni Grilli di Cortona

based on:

- JHEP 1505(2015)035 (arXiv: 1412.5952)

- work in progress with E. Hardy, J. Pardo Vega and G. Villadoro

Evidences for dark matter

G. Grilli di Cortona, SISSA

Dark matter candidates

DM properties:

- stable
- electrical and color neutral
- not relativistic today -> Cold DM
- collision-less

several candidates:

```
WIMPs gravitino ...
axino ...
```

Outline

• TeV dark matter: split SUSY

- Motivations
- Anomaly mediation
- Universal gaugino masses

meV dark matter: QCD axion

- Motivations
- Axion properties

Conclusions

Above the TeV...

Dark matter relic density: WIMP

Split SUSY: motivations

G. Grilli di Cortona, SISSA

Anomaly mediation

Long-lived Winos

G. Grilli di Cortona, SISSA

Long-lived Winos

G. Grilli di Cortona, SISSA

G. Grilli di Cortona, SISSA

G. Grilli di Cortona, SISSA

G. Grilli di Cortona, SISSA

G. Grilli di Cortona, SISSA

Collider vs direct detection

Collider vs direct detection

G. Grilli di Cortona, SISSA

G. Grilli di Cortona, SISSA

G. Grilli di Cortona, SISSA

Collider vs direct detection

... and below meV

Strong CP problem...

Why the quark masses and the theta term should cancel so exactly even if they come from completely different sources?

... axion as a solution [Peccei, Quinn '77]

[Peccei, Quinn '77] [Wilczek '78] [Weinberg '78]

$$\mathcal{L} \supset -\frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a + \left(\overline{\theta} + \frac{a}{f_{a}}\right)\frac{g^{2}}{32\pi^{2}}G_{\mu\nu}\tilde{G}^{\mu\nu}$$
$$+ \sum_{j=1}^{n} \left[i\overline{q}_{j}\gamma^{\mu}D_{\mu}q_{j} - (m_{j}q_{Lj}^{\dagger}q_{Rj} + \text{h.c.})\right]$$
$$\overline{\theta} + \frac{a}{f_{a}} = 0 \qquad \text{minimize the energy density}$$

Chiral perturbation theory

$$Z(j) = \int \delta q \delta \bar{q} \delta G \, e^{iS_{QCD}(\phi,j)} = \int \delta \pi \, e^{iS(\pi,j)}$$

$SU(N_f)_L x SU(N_f)_R \longrightarrow SU(N_f)_V$

Chiral perturbation theory

$$\mathcal{L} = \frac{f_{\pi}^2}{4} \left[\operatorname{Tr}(D_{\mu}UD^{\mu}U) + 2B_0 \operatorname{Tr}(MU^{\dagger} + M^{\dagger}U) \right]$$

$$M = e^{i\frac{a}{2f_a}Q_a} M_0 e^{i\frac{a}{2f_a}Q_a}$$

and in order to avoid axion-pion mixing:

$$Q_a = \frac{M_0^{-1}}{\text{Tr}(M_0^{-1})}$$

Axion mass

$$m_a^2 = \frac{m_u m_d}{(m_u + m_d)^2} \frac{m_\pi^2 f_\pi^2}{f_a^2} \left[1 + 2\frac{m_\pi^2}{f_\pi^2} \left(h_1^r - h_3^r - l_4^r + \frac{m_u^2 - 6m_u m_d + m_d^2}{(m_u + m_d)^2} l_7^r \right) \right]$$

Axion mass

$$m_a^2 = \frac{m_u m_d}{(m_u + m_d)^2} \frac{m_\pi^2 f_\pi^2}{f_a^2} \left[1 + 2\frac{m_\pi^2}{f_\pi^2} \left(h_1^r - h_3^r - l_4^r + \frac{m_u^2 - 6m_u m_d + m_d^2}{(m_u + m_d)^2} l_7^r \right) \right]$$

$$l_7^r = 7(4) \cdot 10^{-3} \qquad h_1^r - h_3^r - l_4^r = (4.8 \pm 1.4) \cdot 10^{-3}$$
$$z = \frac{m_u^{\overline{MS}}(2 \,\text{GeV})}{m_d^{\overline{MS}}(2 \,\text{GeV})} = 0.48(3)$$

Axion mass

$$m_a^2 = \frac{m_u m_d}{(m_u + m_d)^2} \frac{m_\pi^2 f_\pi^2}{f_a^2} \left[1 + 2\frac{m_\pi^2}{f_\pi^2} \left(h_1^r - h_3^r - l_4^r + \frac{m_u^2 - 6m_u m_d + m_d^2}{(m_u + m_d)^2} l_7^r \right) \right]$$

$$l_7^r = 7(4) \cdot 10^{-3} \qquad h_1^r - h_3^r - l_4^r = (4.8 \pm 1.4) \cdot 10^{-3}$$
$$z = \frac{m_u^{\overline{MS}}(2 \,\text{GeV})}{m_d^{\overline{MS}}(2 \,\text{GeV})} = 0.48(3)$$

$$m_a = 5.70(6)(4) \ \mu \text{eV}\left(\frac{10^{12} \text{ GeV}}{f_a}\right) = 5.70(7) \ \mu \text{eV}\left(\frac{10^{12} \text{ GeV}}{f_a}\right)$$

Coupling to photons

$$\mathcal{L} \supset -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

$$Q_e = \operatorname{diag}(2/3, -1/3)$$

$$g_{a\gamma\gamma} \rightarrow g_{a\gamma\gamma} - \frac{\alpha}{2\pi} \frac{1}{f_a} \operatorname{Tr}(Q_a Q_e Q_e)$$

$$Q_a = \frac{1}{2} \frac{M^{-1}}{\operatorname{Tr}(M^{-1})}$$

$$g_{a\gamma\gamma} = \frac{a}{2\pi} \frac{1}{f_a} \left(\frac{E}{N} - \frac{2}{3} \frac{4+z}{1+z} \right)$$

Coupling to photons

$$g_{a\gamma\gamma} = \frac{\alpha}{2\pi} \frac{1}{f_a} \left[\frac{E}{N} - \frac{2}{3} \frac{4+z}{1+z} - \frac{8m_\pi^2}{f_\pi^2} \frac{z(1-z)}{(1+z)^3} l_7^r + \frac{1024}{9} \frac{z\pi^2 m_\pi^2}{(1+z)^2} (5c_3^W + c_7^W + 2c_8^W) \right]$$

$$g_{a\gamma\gamma} = \frac{\alpha_{\rm em}}{2\pi f_a} \left[\frac{E}{N} - 1.92(4) \right] = \left[0.203(3) \frac{E}{N} - 0.39(1) \right] \frac{m_a}{\rm GeV^2}$$

Coupling to nucleons

$$\frac{\partial_{\mu}a}{2f_a}c_N\overline{N}\gamma^{\mu}\gamma_5N$$

$$\begin{array}{lll} c_p = -0.48(3) + 0.89(2)c_u^0 - 0.38(2)c_d^0 - 0.036(4)c_s^0 \\ & & -0.013(5)c_c^0 - 0.009(2)c_b^0 - 0.0036(4)c_t^0 \\ c_n = -0.03(3) + 0.89(2)c_d^0 - 0.38(2)c_u^0 - 0.036(4)c_s^0 \\ & & -0.013(5)c_c^0 - 0.009(2)c_b^0 - 0.0036(4)c_t^0 \\ \hline & & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline & & & \\ \hline \hline & & & \\ \hline & &$$

Detecting axions...

$$\mathcal{L} \supset \frac{g}{4} a G_{\mu\nu} \tilde{G}^{\mu\nu} = g a \vec{E} \cdot \vec{B}$$

 $\mathcal{L} \supset -\frac{i}{2}g_d a \overline{N} \sigma_{\mu\nu} \gamma_5 N F^{\mu\nu}$

In a static magnetic field, the oscillating axion field generates EM-fields, oscillating at a frequency given by m_a: ADMX, CAST, IAXO, dish antenna...

NMR searches:

Axion gives all nucleons an oscillating EDM independent of f_a:

CASPEr.

• Axion mediates short ranges spin-dependent forces between objects: **ARIADNE**.

Dark matter relic density Misalignment mechanism

$$\ddot{a} + 3H\dot{a} + m_a^2(T)f_a\sin\left(\frac{a}{f_a}\right) = 0$$

Axion mass at finite T

Axion dark matter

G. Grilli di Cortona, SISSA

Conclusions

- LHC14 might probe Winos up to ~1 TeV with 3000 fb⁻¹, while a 100 TeV collider may reach 3 TeV Winos.
- Direct detection experiments can probe complementary area of the parameter space for higgsino DM.
- In order to explore all the parameter space for Wino and higgsino DM, a 100 TeV collider seems to be a necessary tool.

- We showed that it is possible to achieve high precision in the axion physics. Improvement in lattice calculation will increase more the precision on the mass and the couplings of the axion.
- Lattice studies on the chiral susceptibility at T > T_c will lead to higher precision in the axion mass at finite T and therefore smaller uncertainty on the relic density.