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Section 1

Temperley–Lieb loop model



Temperley–Lieb O(n) loop model
Random tiling with

• Tiles: left boundary, bulk, right boundary

• Mixed boundaries: open or reflecting at left, always reflecting
at right

• An example configuration with four rows:

• Closed loops are given weight n = −(t+ t−1)

• Choosing t = e±2πi/3 gives loops weight n = 1



Link patterns

• Consider now a semi-infinite lattice, width N

1 2 3 4 5 6 7

• Represent connectivity along the bottom edge by
left-extended link patterns

1 2 3 4 5 6 7



Action on link patterns

• Introduce operators e0, e1, . . . , eN−1

e0 =
1 2

. . .

N

ei =
1

. . .

i−1 i i+1i+2

. . .

N

• Act on a link pattern

|α〉 =

1 2 3 4 5 6 7

e4|α〉 =

1 2 3 4 5 6 7

=
1 2 3 4 5 6 7



Temperley–Lieb algebra
Introduce the one boundary Temperley–Lieb algebra

• The operators e0, e1, . . . , eN−1 are the generators

e0 =
1 2

. . .

N

ei =
1

. . .

i−1 i i+1i+2

. . .

N

• Relations

e2
i = −(t+ t−1)ei, eiei±1ei = ei, eiej = ejei, |i− j| > 1,

e2
0 = e0, e1e0e1 = e1

• Example

e2
i = . . . . . . =− (t+ t−1) . . . . . .

=− (t+ t−1)ei



Adding rows
• Adding a pair of rows transforms the link pattern

1 2 3 4 5 6 7 ‖

1 2 3 4 5 6 7

• In terms of the Temperley–Lieb generators

= e5e6



Transfer matrix

• The double row transfer matrix gives the probability of
transitions between link patterns

• Give weights to tiles, e.g.

∼ a(w) ∼ b(w)

• For N = 2

t(w) =

( |Ω〉 |α〉
|Ω〉
|α〉 ∗

)
|Ω〉 = |α〉 =

Contributions from

, , , . . .



Transfer matrix

• The general case defined pictorially

t(w; zi) =

w−1

w

z1 z2 zL−1 zL

• Assigns weights to tiles

w

z

= a(w, z) + b(w, z)

w

w−1
= a0(w) + b0(w)

• Expanding gives a weighted sum over all double row
configurations



Integrability

• Choose the weights so that the model is integrable

[t(w; zi), t(v; zi)] = 0

• Then the eigenvectors are independent of the spectral
parameter

t(w; zi)|Ψ(zi)〉 = Λ(w)|Ψ(zi)〉

• Integrability in this model arises from solutions of the
Yang–Baxter and reflection relations



Yang–Baxter and reflection relations

• Yang–Baxter relation

Ri(w)Ri+1(wz)Ri(z) = Ri+1(z)Ri(wz)Ri+1(w)

• Reflection relation

K0(z)R1(wz)K0(w)R1(w/z) = R1(w/z)K0(w)R1(wz)K0(z)

• Satisfied by the bulk R matrix, and boundary K matrix

Ri(z) =
t− t−1z

tz − t−1
1− z − 1

tz − t−1
ei

K0(z) =
(1− z−1ζ−1

1 )(z − tζ1)

(z − ζ1)(t− z−1ζ−1
1 )

1− (1− t)(z − z−1)

(z − ζ1)(t− z−1ζ−1
1 )

e0

• The transfer matrix weights are related to the coefficients in
these expressions



Interlacing condition

• The R operator is represented graphically as

Ri(zi/zi+1) =
zi zi+1

• We will need the bulk interlacing condition

Ri

(
zi
zi+1

)
t(w; . . . , zi, zi+1, . . .) = t(w; . . . , zi+1, zi, . . .)Ri

(
zi
zi+1

)
• Or pictorially

w−1

w

zizi+1

=
w−1

w

zi zi+1



The transition matrix
• Taking −(t+ t−1) = 1 we can obtain a stochastic transition

matrix

M = α
∂

∂w
log t(w; zi = 1)

∣∣∣
w=1

+ const.

where

M = a(e0 − 1) +

L−1∑
i=1

(ei − 1) , [M, t(u)] = 0

• M has left eigenvector (1, . . . , 1) with eigenvalue 0.
Perron–Frobenius tells us the corresponding right eigenvector
is the unique stationary state.

• Will assume there is a transfer matrix eigenvector such that

t(w; zi)|Ψ0(zi)〉 = |Ψ0(zi)〉
then

M |Ψ0(zi = 1)〉 = 0

so |Ψ0(zi)〉 is unique (in the neighbourhood of zi = 1)



The qKZ equations

• Using the definition of the stationary state, and the interlacing
condition

Ri(zi/zi+1)|Ψ0(zi)〉 = Ri(zi/zi+1)t(w; zi, zi+1)|Ψ0(zi)〉
= t(w; zi+1, zi)Ri(zi/zi+1)|Ψ0(zi)〉

• Then from uniqueness can show that

Ri(zi/zi+1)|Ψ0(. . . , zi, zi+1, . . .)〉 = |Ψ0(. . . , zi+1, zi, . . .)〉

This is the bulk part of the qKZ equation.

• The boundary equations

K0(z−1
1 )|Ψ(z1, z2, . . . , zN )〉 = |Ψ(z−1

1 , z2, . . . , zN )〉,
|Ψ(z1, . . . , zN−1, zN )〉 = |Ψ(z1, . . . , zN−1, t

3z−1
N )〉



Summary so far

• We have a stochastic process

M = a(e0 − 1) +

L−1∑
i=1

(ei − 1)

with stationary distribution |Ψ0〉 such that M |Ψ0〉 = 0

• To find |Ψ0〉 we will find the more general vector

|Ψ0〉 → |Ψ0(z1, . . . zN )〉

by solving the qKZ equations

• Setting zi = 1 will give us back the stationary distribution.
But we are also interested in the general solution!



Section 2

Solutions of the qKZ equation



Bijection to Ballot paths

• Left-extended link patterns are in bijection with Ballot paths

1 2 3 4 5 6 7

←→
0 1 2 3 4 5 6 7

• Working from right to left:
• Arch opening - step left and up
• Arch closing - step left and down

• Gives a Ballot path: sequence of non-negative heights

α = (α0, . . . , αN )

with αN = 0, and αi+1 − αi = ±1.



The Temperley–Lieb algebra
• Generators mapped to tiles

ei =
1

. . .

i−1 i i+1i+2

. . .

N

→ ei =

i

• Bulk relations e2
i = −(t+ t−1)ei, eiei±1ei = ei:

i

= −(t+ t−1)

i
i i+1

=

i−1 i

=

i

• Boundary relations e2
0 = e0, e1e0e1 = e1:

0

=

0
10

=

1



Action on Ballot paths

• Ballot paths of length N = 3

Ω = α1 = α2 =

• Example

e2|Ω〉 = = = = = |α2〉

• Matrix form

e2 =


|Ω〉 |α1〉 |α2〉

|Ω〉 0 0 0
|α1〉 0 0 0
|α2〉 1 1 −(t+ t−1)





Components of the qKZ equation

• Write the stationary state vector in the Ballot path basis as

|Ψ(z1, . . . , zN )〉 =
∑
α

ψα(z1, . . . , zN )|α〉

• The bulk part of the qKZ equation

Ri(zi/zi+1)|Ψ(z1, . . . , zN )〉 = |Ψ(. . . , zi+1, zi, . . .)〉

• Component form∑
α

ψα(z1, . . . , zN )
(
ei|α〉

)
=
∑
α

(
Ti(−1)ψα(z1, . . . , zN )

)
ei|α〉

where the Ti(u) are Hecke operator acting on Laurent
polynomials

• The boundary equations

K0(z−1
1 )|Ψ(z1, z2, . . . , zN )〉 = |Ψ(z−1

1 , z2, . . . , zN )〉,
|Ψ(z1, . . . , zN−1, zN )〉 = |Ψ(z1, . . . , zN−1, t

3z−1
N )〉
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Solution of the qKZ equation

Theorem (de Gier, Pyatov 2010)

The solutions of the qKZ equation have a factorised form

ψα(z1, . . . , zN ) =

↗ui,j∏
i,j

Ti(ui,j)ψΩ(z1, . . . , zN )

The product is constructed using a graphical representation of the
Hecke generators

T0(u) = u

0 1

, Ti(u) =

i−1

u

ii+1

.

These are operators on Laurent polynomials, which also satisfy
Yang–Baxter and reflection relations.



Factorised solutions
• Factorised solution for ψα(z1, . . . , zN )

• Fill to maximal Ballot path Ω = (N,N − 1, . . . , 0)
• Label corners with 1
• Label remaining tiles by rule
ui,j = max{ui+1,j−1, ui−1,j−1}+ 1

1
12

3 3
4

5

ψα = T0(1).T1(2)T0(3).T3(1)T2(3)T1(4)T0(5)ψΩ

and
ψΩ = ∆−t (z1, . . . , zN )∆+

t (z1, . . . , zN )
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Stationary state solutions

• The stationary state can be calculated directly from the
factorised solutions

|Ψ(2)
0 〉 =

1

Z2

( )
1
1

|Ψ(3)
0 〉 =

1

Z3

 12
3

|Ψ(4)
0 〉 =

1

Z4





1

3

8

9
3

9

for ζ0 = t, t = e±2πi/3.

• Will return to the integer entries later

• Computing the entries for large N is difficult (no closed form)



Alternate filling

Fill with consecutive integers along rows, e.g. for previous shape
tilted by 45 °

ψ4,2,1(u1 + 1, u2 + 1, u3 + 1)

=
u1+1u1+2u1+3

u1+

4

u2+1
u2+

2

u3+

1

= T1(u3 + 1)T2(u2 + 1)T3(u1 + 1)ψΩ

where

Ta(u+ 1) = Ta−1(u+ 1) . . . T1(u+ a− 1)T0(u+ a)

gives a row of length a, numbered from u+ 1.



Staircase diagram

• Call the largest such element the staircase diagram:

ψā1,...,ān(u1 + 1, . . . , un + 1) =

u1+1. . .

. . .

. . .

un+

1

where n = bN/2c, āi = N − 2i+ 1

• In terms of Hecke generators

ψā1,...,ān(u1 + 1, . . . , un + 1)

= TN−2n+1(un + 1) . . . TN−3(u2 + 1)TN−1(u1 + 1)ψΩ



Generalised sum rule

Theorem (de Gier, F)

The staircase diagram has the expansion

ψā1,...,ān(u1 + 1, . . . , un + 1) =
∑
α

cαψα(z1, . . . , zN ),

where the coefficients cα are non-zero and are monomials in

yi = − [ui]

[ui + 1]
, ỹi = −B0(ui + 1).

• Using the notation

[u] = [u]t =
tu − t−u

t− t−1

• Proof of the sum rule requires expanding staircase diagram in
two stages.



First expansion

The first stage of the expansion gives the form of the coefficients.

Lemma (First expansion)

Tan(un + 1) . . . Ta1(u1 + 1)ψΩ

=
∏

i=n,n−1,...,1

(Tai(1) + yiTai−1(1) + ỹi)ψΩ

where

yi = − [ui]

[ui + 1]
, ỹi = −B0(ui + 1)



First expansion terms
Procedure to expand

(Tān(1) + ynTān−1(1) + ỹn) . . . (Tā1(1) + y1Tā1−1(1) + ỹ1)ψΩ

• Start from the empty outline.
• Working from top down, a row may be left empty (factor ỹi),

filled one short (factor yi), or filled completely (no additional
factor).

• Delete empty rows and boxes.

10 9 8 7 6 5 4 3 2 1 y1

9 8 7 6 5 4 3 2 1 1
7 6 5 4 3 2 1 1

ỹ4
2 1 y5

1 1
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filled one short (factor yi), or filled completely (no additional
factor).

• Delete empty rows and boxes.

10 9 8 7 6 5 4 3 2 1 y1

9 8 7 6 5 4 3 2 1 1
7 6 5 4 3 2 1 1

ỹ4
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filled one short (factor yi), or filled completely (no additional
factor).

• Delete empty rows and boxes.

10 9 8 7 6 5 4 3 2 1 y1

9 8 7 6 5 4 3 2 1 1
7 6 5 4 3 2 1 1

ỹ4
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First expansion terms
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1

• Coefficient y1ỹ4y5



Second expansion

When the resulting term is not a proper component ψα, a second
expansion is required.

Lemma (Second expansion)

Let ψα(z1, . . . , zN ) be a component of the qKZ solution, with last
row of length a+ 1, then

Ta−1(1) . . . T1(a− 1)T0(a)ψα(z1, . . . , zN ) =
∑
α′

ψα′(z1, . . . , zN )

• The terms in the sum are found through a graphical rule, and
all have coefficient 1.



Second expansion example

T1(1)T0(2)ψα(z1, . . . , zN ) =

5 4 3 2 1

3 2 1

2 1

Ballot path

Terms

16 5 4 3

4 3 2

2 1

+

5 4 3 2 1

3 2

1

+

5 4 3

3 2

1
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Proof of the sum rule

• Recall the sum rule

ψā1,...,ān(u1 + 1, . . . , un + 1) =
∑
α

cαψα(z1, . . . , zN ),

where the coefficients cα are non-zero and are monomials in
yi, ỹi.

• We have shown via the two expansions that the staircase
diagram can be expanded in terms of components ψα, with
coefficients polynomials in yi, ỹi.

• To show that the coefficients are non-zero and monomials, we
must show that each component ψα arises from a single term
in the first expansion.



Example of the algorithm

• Work backwards from ψα to term from staircase expansion.

ψα(z1, . . . , zN ) =

110 9 8 7 6 5 4 3

8 7 6 5 4 3 2

6 5 4 3 2 1

3 2

1

• Draw empty maximal staircase

• Add rows to staircase, bottom up, in lowest place each fits

• Draw in ribbons, starting from outer diagonal

• Coefficient cα = y1ỹ4y5.
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Specialisation of the sum rule

• At specialisation ui = 1, t = e±2πi/3, all coefficients cα = 1.

ψā1,...,ān(2, . . . , 2) =
∑
α

ψα(z1, . . . , zN ),

giving the normalisation of the loop model stationary state
vector

• At this point there is a closed form for the sum [Zinn-Justin
2007]. Setting zi = 1 and ζ1 = t = e±2πi/3

ZN =
∑
α

ψα(zi = 1) =

N∏
k=1

b3k/2 + 1c(3k)!k!

(2k + 1)!(2k)!

giving
Z2 = 2, Z3 = 6, Z4 = 33 . . .



Razumov–Stroganov conjectures

• The sequence ZN counts the number of vertically and
horizontally symmetric fully packed loop diagrams (FPLs) of
size 2N + 3.

|Ψ(3)
0 〉 =

1

Z3

 12
3

?↔

1

2 3

Fully packed loops

• This connection between Temperley–Lieb loop models and
FPLs is one of several Razumov–Stroganov type conjectures.



Section 3

Hecke algebra and special functions



Hecke algebra

The operators Ti(u) are polynomial representations of a Baxterized
Hecke algebra.

• Hecke algebra, H, with relations

(Ti − t)(Ti + t−1) = 0, TiTi+1Ti = Ti+1TiTi+1, i ≥ 1

TiTj = TjTi, ∀i, j : |i− j| > 1

• Baxterized generator

Ti(u) =

i−1

u

ii+1

= Ti + t−1 − [u− 1]

[u]

• We have also seen the boundary element T0 but for the
moment we will consider periodic systems (type A) without
this generator.



qKZ solutions for type A
• Type A solutions given by partitions labelled with the same

rule as the mixed boundary system [Kirilov, Lascoux 2000, de
Gier, Pyatov 2010], e.g.

4 3 2 1

3 2 1

2

1

• The type A base function has form

ψ
(A)
Ω (z1, . . . , z2n) = ∆(z1, . . . , zn)∆(zn+1, . . . , z2n+1)

• The set of solutions forms the Kazhdan–Lusztig basis

H∆∆ = span{ψ(A)
α }

with invariance property

ψ
(A)
α = ψ(A)

α



Sum rule for type A
• Sum rule given by consecutive integer labelling [de Gier,

Lascoux, Sorrell 2012]

8 7 6 5 4 3 2

23. . .

. .
.

...

. .
.

3 2

2

• Set of all subpartitions gives the Young basis, e.g.

8 7 6 5 4 3 2

7 6 5

6

5

23. . .

. .
.

... . .
.

3 2

2

• Elements of the Young basis are specialised Macdonald
polynomials.



Macdonald polynomials

• Within the Hecke algebra, can define a family of commuting
elements

Yi = Ti . . . TN−1ωT
−1
1 . . . T−1

i−1

with
[Yi, Yj ] = 0

• These operators have a shared set of eigenfunctions Eλ, with

YiEλ(z1, . . . , zN ) = y(λ)iEλ(z1, . . . , zN )

and these Eλ are the non-symmetric Macdonald polynomials

• The eigenfunctions are related by intertwiners

Esiλ(z1, . . . , zN ) = Ti(u(λ)i)Eλ(z1, . . . , zN )

• For periodic boundaries, the intertwining relation gives exactly
the Young basis elements



Hecke bases for mixed boundaries

• The elements of the qKZ solution correspond to a
Kazhdan–Lusztig basis for the mixed boundary (type B)
Hecke algebra [Shigechi 2014], e.g.

15 4 3

3 2

1

• The consecutive integer numbering gives an alternative basis,
e.g.

8 7 6 5 4 3 2

6 5 4 3 2

4 3 2

2

• The expansion rules that led to the sum rule give the change
of basis back to the KL basis

• Koornwinder instead of Macdonald polynomials



Conclusion and prospects

• The Temperley–Lieb loop model connects several areas of
mathematics - integrability, combinatorics, representation
theory, . . .

• Though the stationary state is given through solutions of the
qKZ equation we do not have a closed form

• The construction of the generalised sum rule gives a change of
basis of the Hecke algebra, and relates Koornwinder
polynomials to the qKZ solution

• We are hopeful that this will help us find closed forms for
elements of the loop model stationary distribution
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