A mixed boundary qKZ equation: integrability, graphical solutions, and connections

Caley Finn, LAPTh

November 2015, Montpellier

Outline

1 Temperley–Lieb loop model

2 Solutions of the qKZ equation

3 Hecke algebra and special functions

Outline

Section 1

Temperley-Lieb loop model

Temperley–Lieb O(n) loop model

Random tiling with

• Tiles: left boundary, bulk, right boundary

- Mixed boundaries: open or reflecting at left, always reflecting at right
- An example configuration with four rows:

- Closed loops are given weight $n = -(t + t^{-1})$
- Choosing $t = e^{\pm 2\pi i/3}$ gives loops weight n = 1

Link patterns

• Consider now a semi-infinite lattice, width ${\cal N}$

• Represent connectivity along the bottom edge by left-extended link patterns

Action on link patterns

• Introduce operators e_0 , e_1, \ldots, e_{N-1}

$$e_0 = \swarrow_1 \ | \ \cdots \ | \qquad e_i = \ | \ \cdots \ | \qquad \underset{i-1}{\smile} \ \underset{i+1i+2}{\smile} \ \cdots \ | \qquad N$$

Act on a link pattern

Temperley-Lieb algebra

Introduce the one boundary Temperley-Lieb algebra

• The operators e_0 , e_1, \ldots, e_{N-1} are the generators

$$e_0 = \overleftarrow{\begin{array}{c}} & & \\ 1 & 2 & \end{array} \xrightarrow{N} \qquad e_i = \begin{array}{c} & & \\ 1 & & i-1 \end{array} \xrightarrow{i}_{i \ i+1i+2} \begin{array}{c} & & \\ & & \\ N \end{array}$$

Relations

$$e_i^2 = -(t + t^{-1})e_i, \quad e_i e_{i\pm 1}e_i = e_i, \quad e_i e_j = e_j e_i, |i - j| > 1,$$

 $e_0^2 = e_0, e_1 e_0 e_1 = e_1$

• Example

$$e_i^2 = \dots \left| \begin{array}{c} \bigcirc \\ \bigcirc \\ \bigcirc \end{array} \right| \dots = -(t+t^{-1}) \dots \left| \begin{array}{c} \smile \\ \frown \\ \end{array} \right| \dots$$

= $-(t+t^{-1})e_i$

Adding rows

• Adding a pair of rows transforms the link pattern

• In terms of the Temperley-Lieb generators

Transfer matrix

- The *double row transfer matrix* gives the probability of transitions between link patterns
- Give weights to tiles, e.g.

• For N=2

Contributions from

Transfer matrix

• The general case defined pictorially

Assigns weights to tiles

$$w \xrightarrow{z} = a(w, z) + b(w, z)$$

• Expanding gives a weighted sum over all double row configurations

Integrability

• Choose the weights so that the model is *integrable*

$$[\boldsymbol{t}(w; z_i), \boldsymbol{t}(v; z_i)] = 0$$

• Then the eigenvectors are independent of the spectral parameter

$$t(w;z_i)|\Psi(z_i)
angle=\Lambda(w)|\Psi(z_i)
angle$$

• Integrability in this model arises from solutions of the Yang-Baxter and reflection relations

Yang-Baxter and reflection relations

Yang–Baxter relation

$$R_{i}(w)R_{i+1}(wz)R_{i}(z) = R_{i+1}(z)R_{i}(wz)R_{i+1}(w)$$

Reflection relation

 $K_0(z)R_1(wz)K_0(w)R_1(w/z) = R_1(w/z)K_0(w)R_1(wz)K_0(z)$

• Satisfied by the bulk R matrix, and boundary K matrix

$$R_{i}(z) = \frac{t - t^{-1}z}{tz - t^{-1}} \mathbb{1} - \frac{z - 1}{tz - t^{-1}} e_{i}$$

$$K_{0}(z) = \frac{(1 - z^{-1}\zeta_{1}^{-1})(z - t\zeta_{1})}{(z - \zeta_{1})(t - z^{-1}\zeta_{1}^{-1})} \mathbb{1} - \frac{(1 - t)(z - z^{-1})}{(z - \zeta_{1})(t - z^{-1}\zeta_{1}^{-1})} e_{0}$$

• The transfer matrix weights are related to the coefficients in these expressions

Interlacing condition

• The R operator is represented graphically as

$$R_i(z_i/z_{i+1}) = \bigotimes_{z_i \ z_{i+1}}$$

• We will need the bulk interlacing condition

$$R_i\left(\frac{z_i}{z_{i+1}}\right)\boldsymbol{t}(w;\ldots,z_i,z_{i+1},\ldots) = \boldsymbol{t}(w;\ldots,z_{i+1},z_i,\ldots)R_i\left(\frac{z_i}{z_{i+1}}\right)$$

• Or pictorially

The transition matrix

• Taking $-(t+t^{-1}) = 1$ we can obtain a stochastic transition matrix

$$M = \alpha \frac{\partial}{\partial w} \log t(w; z_i = 1) \Big|_{w=1} + \text{const.}$$

where

$$M = a(e_0 - 1) + \sum_{i=1}^{L-1} (e_i - 1), \qquad [M, t(u)] = 0$$

- *M* has left eigenvector (1, ..., 1) with eigenvalue 0. Perron–Frobenius tells us the corresponding right eigenvector is the unique stationary state.
- Will assume there is a transfer matrix eigenvector such that

$$t(w;z_i)|\Psi_0(z_i)\rangle = |\Psi_0(z_i)\rangle$$

then

$$M|\Psi_0(z_i=1)\rangle = 0$$

so $|\Psi_0(z_i)
angle$ is unique (in the neighbourhood of $z_i=1$)

The qKZ equations

• Using the definition of the stationary state, and the interlacing condition

$$R_i(z_i/z_{i+1})|\Psi_0(z_i)\rangle = R_i(z_i/z_{i+1})t(w; z_i, z_{i+1})|\Psi_0(z_i)\rangle$$

= $t(w; z_{i+1}, z_i)R_i(z_i/z_{i+1})|\Psi_0(z_i)\rangle$

• Then from uniqueness can show that

 $R_i(z_i/z_{i+1})|\Psi_0(\ldots,z_i,z_{i+1},\ldots)\rangle = |\Psi_0(\ldots,z_{i+1},z_i,\ldots)\rangle$

This is the bulk part of the qKZ equation.

The boundary equations

$$K_0(z_1^{-1})|\Psi(z_1, z_2, \dots, z_N)\rangle = |\Psi(z_1^{-1}, z_2, \dots, z_N)\rangle,$$

$$|\Psi(z_1, \dots, z_{N-1}, z_N)\rangle = |\Psi(z_1, \dots, z_{N-1}, t^3 z_N^{-1})\rangle$$

Summary so far

• We have a stochastic process

$$M = a(e_0 - 1) + \sum_{i=1}^{L-1} (e_i - 1)$$

with stationary distribution $|\Psi_0
angle$ such that $M|\Psi_0
angle=0$

• To find $|\Psi_0
angle$ we will find the more general vector

$$|\Psi_0\rangle \rightarrow |\Psi_0(z_1,\ldots z_N)\rangle$$

by solving the qKZ equations

• Setting $z_i = 1$ will give us back the stationary distribution. But we are also interested in the general solution!

Section 2

Solutions of the qKZ equation

Bijection to Ballot paths

Left-extended link patterns are in bijection with Ballot paths

- Working from right to left:
 - Arch opening step left and up
 - Arch closing step left and down
- Gives a Ballot path: sequence of non-negative heights

$$\alpha = (\alpha_0, \ldots, \alpha_N)$$

with $\alpha_N = 0$, and $\alpha_{i+1} - \alpha_i = \pm 1$.

The Temperley–Lieb algebra

• Generators mapped to tiles

$$e_i = \left| \begin{array}{c} \cdots \\ 1 \end{array} \right| \left| \begin{array}{c} \overbrace{i-1} \\ i \end{array} \right|_{i+1i+2} \left| \begin{array}{c} \cdots \\ N \end{array} \right|_{N} \rightarrow e_i = \bigotimes_{i}$$

• Bulk relations $e_i^2 = -(t+t^{-1})e_i$, $e_ie_{i\pm 1}e_i = e_i$:

• Boundary relations $e_0^2 = e_0$, $e_1 e_0 e_1 = e_1$:

Action on Ballot paths

• Ballot paths of length ${\cal N}=3$

Example

Matrix form

$$e_{2} = \begin{vmatrix} \Omega \rangle & |\alpha_{1} \rangle & |\alpha_{2} \rangle \\ |\alpha_{1} \rangle \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ |\alpha_{2} \rangle \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & -(t+t^{-1}) \end{pmatrix}$$

Components of the qKZ equation

• Write the stationary state vector in the Ballot path basis as

$$|\Psi(z_1,\ldots,z_N)\rangle = \sum_{\alpha} \psi_{\alpha}(z_1,\ldots,z_N)|\alpha\rangle$$

• The bulk part of the qKZ equation

$$R_i(z_i/z_{i+1})|\Psi(z_1,\ldots,z_N)\rangle = |\Psi(\ldots,z_{i+1},z_i,\ldots)\rangle$$

Component form

$$\sum_{\alpha} \psi_{\alpha}(z_1, \dots, z_N) \Big(e_i | \alpha \rangle \Big) = \sum_{\alpha} \Big(T_i(-1) \psi_{\alpha}(z_1, \dots, z_N) \Big) e_i | \alpha \rangle$$

where the $T_i(\boldsymbol{u})$ are Hecke operator acting on Laurent polynomials

The boundary equations

$$K_0(z_1^{-1})|\Psi(z_1, z_2, \dots, z_N)\rangle = |\Psi(z_1^{-1}, z_2, \dots, z_N)\rangle,$$

$$|\Psi(z_1, \dots, z_{N-1}, z_N)\rangle = |\Psi(z_1, \dots, z_{N-1}, t^3 z_N^{-1})\rangle$$

Components of the qKZ equation

• Write the stationary state vector in the Ballot path basis as

$$|\Psi(z_1,\ldots,z_N)\rangle = \sum_{\alpha} \psi_{\alpha}(z_1,\ldots,z_N)|\alpha\rangle$$

• The bulk part of the qKZ equation

$$R_i(z_i/z_{i+1})|\Psi(z_1,\ldots,z_N)\rangle = |\Psi(\ldots,z_{i+1},z_i,\ldots)\rangle$$

Component form

$$\sum_{\alpha} \psi_{\alpha}(z_1, \dots, z_N) \Big(e_i | \alpha \rangle \Big) = \sum_{\alpha} \Big(T_i(-1) \psi_{\alpha}(z_1, \dots, z_N) \Big) e_i | \alpha \rangle$$

where the $T_i(\boldsymbol{u})$ are Hecke operator acting on Laurent polynomials

• The boundary equations

$$K_0(z_1^{-1})|\Psi(z_1, z_2, \dots, z_N)\rangle = |\Psi(z_1^{-1}, z_2, \dots, z_N)\rangle,$$

$$|\Psi(z_1, \dots, z_{N-1}, z_N)\rangle = |\Psi(z_1, \dots, z_{N-1}, t^3 z_N^{-1})\rangle$$

Solution of the qKZ equation

Theorem (de Gier, Pyatov 2010)

The solutions of the qKZ equation have a factorised form

$$\psi_{\alpha}(z_1,\ldots,z_N) = \prod_{i,j}^{\neq u_{i,j}} T_i(u_{i,j})\psi_{\Omega}(z_1,\ldots,z_N)$$

The product is constructed using a graphical representation of the Hecke generators

$$T_0(u) = \bigvee_{\substack{u = 0 \ 1}}^{u} , \qquad T_i(u) = \bigvee_{\substack{i=1 \ i = 1}}^{u}$$

These are operators on Laurent polynomials, which also satisfy Yang–Baxter and reflection relations.

• Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N-1, \ldots, 0)$

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N 1, \dots, 0)$
- Label corners with 1

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N 1, \dots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$u_{i,j} = \max\{u_{i+1,j-1}, u_{i-1,j-1}\} + 1$$

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N 1, \dots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$u_{i,j} = \max\{u_{i+1,j-1}, u_{i-1,j-1}\} + 1$$

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N 1, \dots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$u_{i,j} = \max\{u_{i+1,j-1}, u_{i-1,j-1}\} + 1$$

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N 1, \dots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$u_{i,j} = \max\{u_{i+1,j-1}, u_{i-1,j-1}\} + 1$$

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N 1, \dots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$u_{i,j} = \max\{u_{i+1,j-1}, u_{i-1,j-1}\} + 1$$

- Factorised solution for $\psi_{\alpha}(z_1,\ldots,z_N)$
- Fill to maximal Ballot path $\Omega = (N, N 1, \dots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$u_{i,j} = \max\{u_{i+1,j-1}, u_{i-1,j-1}\} + 1$$

 $\psi_{\alpha} = T_0(1) \cdot T_1(2) T_0(3) \cdot T_3(1) T_2(3) T_1(4) T_0(5) \psi_{\Omega}$

and

$$\psi_{\Omega} = \Delta_t^-(z_1, \dots, z_N) \Delta_t^+(z_1, \dots, z_N)$$

Stationary state solutions

• The stationary state can be calculated directly from the factorised solutions

$$\begin{split} |\Psi_{0}^{(2)}\rangle &= \frac{1}{\mathcal{Z}_{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \underbrace{\frown}_{\bullet} \\ & \bullet \\ \\ |\Psi_{0}^{(3)}\rangle &= \frac{1}{\mathcal{Z}_{3}} \begin{pmatrix} 1\\2\\3 \end{pmatrix} \underbrace{\frown}_{\bullet} \\ & \bullet \\ \\ \\ & \bullet \\$$

for $\zeta_0 = t$, $t = e^{\pm 2\pi i/3}$.

- Will return to the integer entries later
- Computing the entries for large N is difficult (no closed form)

Alternate filling

Fill with consecutive integers along rows, e.g. for previous shape tilted by 45 $^\circ$

$$\psi_{4,2,1}(u_1+1, u_2+1, u_3+1)$$

$$= \underbrace{\underbrace{u_1+u_1+3u_1+2u_1+1}_{u_2+u_2+1}}_{u_2+u_2+1}$$

$$= \mathcal{T}_1(u_3+1)\mathcal{T}_2(u_2+1)\mathcal{T}_3(u_1+1)\psi_{\Omega}$$

where

$$\mathcal{T}_a(u+1) = T_{a-1}(u+1)\dots T_1(u+a-1)T_0(u+a)$$

gives a row of length a, numbered from u + 1.

Staircase diagram

• Call the largest such element the *staircase diagram*:

where $n = \lfloor N/2 \rfloor$, $\bar{a}_i = N - 2i + 1$

• In terms of Hecke generators

$$\psi_{\bar{a}_1,\dots,\bar{a}_n}(u_1+1,\dots,u_n+1) = \mathcal{T}_{N-2n+1}(u_n+1)\dots\mathcal{T}_{N-3}(u_2+1)\mathcal{T}_{N-1}(u_1+1)\psi_{\Omega}$$
Generalised sum rule

Theorem (de Gier, F)

The staircase diagram has the expansion

$$\psi_{\bar{a}_1,\ldots,\bar{a}_n}(u_1+1,\ldots,u_n+1) = \sum_{\alpha} c_{\alpha} \psi_{\alpha}(z_1,\ldots,z_N),$$

where the coefficients c_{α} are non-zero and are monomials in

$$y_i = -\frac{[u_i]}{[u_i+1]}, \qquad \tilde{y}_i = -B_0(u_i+1).$$

Using the notation

$$[u] = [u]_t = \frac{t^u - t^{-u}}{t - t^{-1}}$$

 Proof of the sum rule requires expanding staircase diagram in two stages.

First expansion

The first stage of the expansion gives the form of the coefficients.

Lemma (First expansion)

$$\mathcal{T}_{a_n}(u_n+1)\dots\mathcal{T}_{a_1}(u_1+1)\psi_{\Omega} \\ = \prod_{i=n,n-1,\dots,1} \left(\mathcal{T}_{a_i}(1) + y_i\mathcal{T}_{a_i-1}(1) + \tilde{y}_i\right)\psi_{\Omega}$$

where

$$y_i = -\frac{[u_i]}{[u_i+1]}, \qquad \tilde{y}_i = -B_0(u_i+1)$$

Procedure to expand

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Procedure to expand

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Procedure to expand

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Procedure to expand

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Procedure to expand

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Procedure to expand

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Procedure to expand

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Procedure to expand

 $\left(\mathcal{T}_{\bar{a}_n}(1) + y_n \mathcal{T}_{\bar{a}_n-1}(1) + \tilde{y}_n\right) \dots \left(\mathcal{T}_{\bar{a}_1}(1) + y_1 \mathcal{T}_{\bar{a}_1-1}(1) + \tilde{y}_1\right) \psi_{\Omega}$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_i), filled one short (factor y_i), or filled completely (no additional factor).
- Delete empty rows and boxes.

Coefficient y₁ ỹ₄y₅

Second expansion

When the resulting term is not a proper component ψ_{α} , a second expansion is required.

Lemma (Second expansion)

Let $\psi_{\alpha}(z_1, \ldots, z_N)$ be a component of the qKZ solution, with last row of length a + 1, then

$$T_{a-1}(1)\dots T_1(a-1)T_0(a)\psi_{\alpha}(z_1,\dots,z_N) = \sum_{\alpha'}\psi_{\alpha'}(z_1,\dots,z_N)$$

• The terms in the sum are found through a graphical rule, and all have coefficient 1.

Ballot path

Ballot path

Terms

Proof of the sum rule

Recall the sum rule

$$\psi_{\bar{a}_1,\ldots,\bar{a}_n}(u_1+1,\ldots,u_n+1) = \sum_{\alpha} c_{\alpha}\psi_{\alpha}(z_1,\ldots,z_N),$$

where the coefficients c_{α} are non-zero and are monomials in $y_i,~\tilde{y}_i.$

- We have shown via the two expansions that the staircase diagram can be expanded in terms of components ψ_{α} , with coefficients polynomials in y_i , \tilde{y}_i .
- To show that the coefficients are non-zero and monomials, we must show that each component ψ_{α} arises from a single term in the first expansion.

• Work backwards from ψ_{α} to term from staircase expansion.

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{smallmatrix} 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ & & 5 & 4 & 3 & 2 & 1 \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & &$$

• Draw empty maximal staircase

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{array}{c|c} \sqrt{9} & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ \hline & 8 & 5 & 4 & 3 & 2 & 1 \\ \hline & 3 & 2 & 1 \\ \hline & 3 & 2 & 1 \\ \hline \end{array}}$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{array}{c|c} \sqrt{9} & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ \hline & 8 & 5 & 4 & 3 & 2 & 1 \\ \hline & 3 & 2 & & & \\ \hline & 3 & 2 & & & \\ \hline \end{array}}$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{smallmatrix} 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ & 5 & 4 & 3 & 2 & 1 \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{array}{c|c} \sqrt{9} & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 5 & 4 & 3 & 2 & 1 \\ \hline & 5 & 4 & 5 & 4 & 3 & 2 \\ \hline & 5 & 4 & 5 & 4 & 5 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 4 \\ \hline & 5 & 4 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 5 & 4 & 5 & 5 \\ \hline & 5 & 4 & 5 & 5 & 4 \\ \hline & 5 & 5 & 4 & 5 & 5 \\ \hline & 5 & 5 & 4 & 5 & 5 \\ \hline & 5 & 5 & 4 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 & 5 \\ \hline & 5 & 5 & 5 \\ \hline$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{smallmatrix} 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 5 & 4 & 3 & 2 & 1 \\ \hline \\ & 3 & 2 &$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{smallmatrix} 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 8 & 5 & 4 & 3 & 2 & 1 \\ \hline & 8 & 2 & 1 \\ \hline & 1 & 2 & 1 \\ \hline & 1 & 2 & 2 \\ \hline & 1$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{smallmatrix} 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 8 & 5 & 4 & 3 & 2 & 1 \\ \hline & 8 & 2 & 1 \\ \hline & 1 & 2 & 1 \\ \hline & 1 & 2 & 2 \\ \hline & 1$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{smallmatrix} 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 8 & 5 & 4 & 3 & 2 & 1 \\ \hline & 8 & 2 & 1 \\ \hline & 1 & 2 & 1 \\ \hline & 1 & 2 & 2 \\ \hline & 1$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

• Work backwards from ψ_{α} to term from staircase expansion.

$$\psi_{\alpha}(z_1,\ldots,z_N) = \underbrace{\begin{smallmatrix} 0 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1 \\ \hline & 8 & 7 & 6 & 5 & 4 & 3 & 2 \\ \hline & 8 & 5 & 4 & 3 & 2 & 1 \\ \hline & 8 & 2 & 1 \\ \hline & 1 & 2 & 1 \\ \hline & 1 & 2 & 2 \\ \hline & 1$$

- Draw empty maximal staircase
- · Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

• Coefficient $c_{\alpha} = y_1 \tilde{y}_4 y_5$.

Specialisation of the sum rule

• At specialisation $u_i = 1$, $t = e^{\pm 2\pi i/3}$, all coefficients $c_{\alpha} = 1$.

$$\psi_{\bar{a}_1,\ldots,\bar{a}_n}(2,\ldots,2) = \sum_{\alpha} \psi_{\alpha}(z_1,\ldots,z_N),$$

giving the normalisation of the loop model stationary state vector

• At this point there is a closed form for the sum [Zinn-Justin 2007]. Setting $z_i = 1$ and $\zeta_1 = t = e^{\pm 2\pi i/3}$

$$\mathcal{Z}_N = \sum_{\alpha} \psi_{\alpha}(z_i = 1) = \prod_{k=1}^N \frac{\lfloor 3k/2 + 1 \rfloor (3k)!k!}{(2k+1)!(2k)!}$$

giving

$$\mathcal{Z}_2 = 2, \quad \mathcal{Z}_3 = 6, \quad \mathcal{Z}_4 = 33 \dots$$

Razumov–Stroganov conjectures

• The sequence Z_N counts the number of vertically and horizontally symmetric fully packed loop diagrams (FPLs) of size 2N + 3.

 This connection between Temperley–Lieb loop models and FPLs is one of several Razumov–Stroganov type conjectures.

Section 3

Hecke algebra and special functions

Hecke algebra

The operators $T_i(u)$ are polynomial representations of a Baxterized Hecke algebra.

• Hecke algebra, \mathcal{H} , with relations

$$(T_i - t)(T_i + t^{-1}) = 0, \quad T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}, \qquad i \ge 1$$

 $T_i T_j = T_j T_i, \quad \forall i, j : |i - j| > 1$

Baxterized generator

$$T_i(u) = \bigvee_{i-1ii+1}^{u} = T_i + t^{-1} - \frac{[u-1]}{[u]}$$

• We have also seen the boundary element T_0 but for the moment we will consider *periodic* systems (type A) without this generator.

$q {\rm KZ}$ solutions for type A

• Type A solutions given by partitions labelled with the same rule as the mixed boundary system [Kirilov, Lascoux 2000, de Gier, Pyatov 2010], e.g.

• The type A base function has form

$$\psi_{\Omega}^{(A)}(z_1,\ldots,z_2n) = \Delta(z_1,\ldots,z_n)\Delta(z_{n+1},\ldots,z_{2n+1})$$

• The set of solutions forms the Kazhdan-Lusztig basis

$$\mathcal{H}\Delta\Delta = \operatorname{span}\{\psi_{\alpha}^{(A)}\}$$

with invariance property

$$\overline{\psi_{\alpha}^{(A)}} = \psi_{\alpha}^{(A)}$$

Sum rule for type \boldsymbol{A}

• Sum rule given by consecutive integer labelling [de Gier, Lascoux, Sorrell 2012]

• Set of all subpartitions gives the Young basis, e.g.

• Elements of the Young basis are specialised Macdonald polynomials.

Macdonald polynomials

• Within the Hecke algebra, can define a family of commuting elements

$$Y_i = T_i \dots T_{N-1} \omega T_1^{-1} \dots T_{i-1}^{-1}$$

with

$$[Y_i, Y_j] = 0$$

• These operators have a shared set of eigenfunctions E_{λ} , with

$$Y_i E_\lambda(z_1,\ldots,z_N) = y(\lambda)_i E_\lambda(z_1,\ldots,z_N)$$

and these E_{λ} are the non-symmetric Macdonald polynomials

• The eigenfunctions are related by intertwiners

$$E_{s_i\lambda}(z_1,\ldots,z_N)=T_i(u(\lambda)_i)E_\lambda(z_1,\ldots,z_N)$$

• For *periodic* boundaries, the intertwining relation gives exactly the Young basis elements

Hecke bases for mixed boundaries

• The elements of the *q*KZ solution correspond to a Kazhdan-Lusztig basis for the mixed boundary (type B) Hecke algebra [Shigechi 2014], e.g.

• The consecutive integer numbering gives an alternative basis, e.g.

- The expansion rules that led to the sum rule give the change of basis back to the KL basis
- Koornwinder instead of Macdonald polynomials
Conclusion and prospects

- The Temperley–Lieb loop model connects several areas of mathematics integrability, combinatorics, representation theory, ...
- Though the stationary state is given through solutions of the qKZ equation we do not have a closed form
- The construction of the generalised sum rule gives a change of basis of the Hecke algebra, and relates Koornwinder polynomials to the *q*KZ solution
- We are hopeful that this will help us find closed forms for elements of the loop model stationary distribution