A mixed boundary $q K Z$ equation: integrability, graphical solutions, and connections

Caley Finn, LAPTh

November 2015, Montpellier

Outline

(1) Temperley-Lieb loop model
(2) Solutions of the $q \mathrm{KZ}$ equation
(3) Hecke algebra and special functions

Outline

Temperley-Lieb loop model

Fully packed loops

Razumov-Stroganov conjectures

$q \mathrm{KZ}$ solutions
Hecke algebras

Section 1

Temperley-Lieb loop model

Temperley-Lieb $O(n)$ loop model

Random tiling with

- Tiles: left boundary, bulk, right boundary

- Mixed boundaries: open or reflecting at left, always reflecting at right
- An example configuration with four rows:

- Closed loops are given weight $n=-\left(t+t^{-1}\right)$
- Choosing $t=\mathrm{e}^{ \pm 2 \pi \mathrm{i} / 3}$ gives loops weight $n=1$

Link patterns

- Consider now a semi-infinite lattice, width N

- Represent connectivity along the bottom edge by left-extended link patterns

Action on link patterns

- Introduce operators $e_{0}, e_{1}, \ldots, e_{N-1}$

$$
e_{0}=\left.\left.\sum_{1}\right|_{2} ^{\mid} \cdots\right|_{N} e_{i}=\left.|\cdots|_{1} \underbrace{}_{i-1}\right|_{i+1 i+2}|\cdots|_{N}
$$

- Act on a link pattern

Temperley-Lieb algebra

Introduce the one boundary Temperley-Lieb algebra

- The operators $e_{0}, e_{1}, \ldots, e_{N-1}$ are the generators

$$
e_{0}=\left.\left.\varlimsup_{1}\right|_{2} \cdots\right|_{N} \quad e_{i}=|\cdots|_{1} \cdots \underbrace{\gtrless}_{i-1}|\cdots|_{i+1 i+2}
$$

- Relations

$$
\begin{aligned}
& e_{i}^{2}=-\left(t+t^{-1}\right) e_{i}, \quad e_{i} e_{i \pm 1} e_{i}=e_{i}, \quad e_{i} e_{j}=e_{j} e_{i},|i-j|>1 \\
& e_{0}^{2}=e_{0}, e_{1} e_{0} e_{1}=e_{1}
\end{aligned}
$$

- Example

$$
\begin{aligned}
e_{i}^{2}=\ldots\left|\bigodot_{\complement}^{\smile}\right| \ldots & =-\left(t+t^{-1}\right) \ldots \mid \rightleftharpoons \\
& =-\left(t+t^{-1}\right) e_{i}
\end{aligned}
$$

Adding rows

- Adding a pair of rows transforms the link pattern

- In terms of the Temperley-Lieb generators

$$
\text { d } \int \sqrt{\infty}=e_{5} e_{6}
$$

Transfer matrix

- The double row transfer matrix gives the probability of transitions between link patterns
- Give weights to tiles, e.g.

$$
\square \sim a(w) \quad \square \sim b(w)
$$

- For $N=2$

$$
\boldsymbol{t}(w)=\begin{gathered}
|\Omega\rangle \\
|\alpha\rangle \\
|\alpha\rangle
\end{gathered}\left(\begin{array}{cc}
& |\alpha\rangle \\
* &
\end{array}\right) \quad|\Omega\rangle=\curvearrowleft \quad|\alpha\rangle=\ldots \Omega
$$

Contributions from

Transfer matrix

- The general case defined pictorially

- Assigns weights to tiles

$$
\begin{aligned}
& w \bigsqcup_{z}^{\uparrow}=a(w, z) \text { 乌 }+b(w, z) \square \\
& \underbrace{w}_{w^{-1}}=a_{0}(w) \zeta+b_{0}(w)\rangle
\end{aligned}
$$

- Expanding gives a weighted sum over all double row configurations

Integrability

- Choose the weights so that the model is integrable

$$
\left[\boldsymbol{t}\left(w ; z_{i}\right), \boldsymbol{t}\left(v ; z_{i}\right)\right]=0
$$

- Then the eigenvectors are independent of the spectral parameter

$$
\boldsymbol{t}\left(w ; z_{i}\right)\left|\Psi\left(z_{i}\right)\right\rangle=\Lambda(w)\left|\Psi\left(z_{i}\right)\right\rangle
$$

- Integrability in this model arises from solutions of the Yang-Baxter and reflection relations

Yang-Baxter and reflection relations

- Yang-Baxter relation

$$
R_{i}(w) R_{i+1}(w z) R_{i}(z)=R_{i+1}(z) R_{i}(w z) R_{i+1}(w)
$$

- Reflection relation

$$
K_{0}(z) R_{1}(w z) K_{0}(w) R_{1}(w / z)=R_{1}(w / z) K_{0}(w) R_{1}(w z) K_{0}(z)
$$

- Satisfied by the bulk R matrix, and boundary K matrix

$$
\begin{aligned}
R_{i}(z) & =\frac{t-t^{-1} z}{t z-t^{-1}} \mathbb{1}-\frac{z-1}{t z-t^{-1}} e_{i} \\
K_{0}(z) & =\frac{\left(1-z^{-1} \zeta_{1}^{-1}\right)\left(z-t \zeta_{1}\right)}{\left(z-\zeta_{1}\right)\left(t-z^{-1} \zeta_{1}^{-1}\right)} \mathbb{1}-\frac{(1-t)\left(z-z^{-1}\right)}{\left(z-\zeta_{1}\right)\left(t-z^{-1} \zeta_{1}^{-1}\right)} e_{0}
\end{aligned}
$$

- The transfer matrix weights are related to the coefficients in these expressions

Interlacing condition

- The R operator is represented graphically as

$$
R_{i}\left(z_{i} / z_{i+1}\right)=\varliminf_{z_{i}}
$$

- We will need the bulk interlacing condition

$$
R_{i}\left(\frac{z_{i}}{z_{i+1}}\right) \boldsymbol{t}\left(w ; \ldots, z_{i}, z_{i+1}, \ldots\right)=\boldsymbol{t}\left(w ; \ldots, z_{i+1}, z_{i}, \ldots\right) R_{i}\left(\frac{z_{i}}{z_{i+1}}\right)
$$

- Or pictorially

The transition matrix

- Taking $-\left(t+t^{-1}\right)=1$ we can obtain a stochastic transition matrix

$$
M=\left.\alpha \frac{\partial}{\partial w} \log \boldsymbol{t}\left(w ; z_{i}=1\right)\right|_{w=1}+\text { const. }
$$

where

$$
M=a\left(e_{0}-\mathbb{1}\right)+\sum_{i=1}^{L-1}\left(e_{i}-\mathbb{1}\right), \quad[M, t(u)]=0
$$

- M has left eigenvector $(1, \ldots, 1)$ with eigenvalue 0 .

Perron-Frobenius tells us the corresponding right eigenvector is the unique stationary state.

- Will assume there is a transfer matrix eigenvector such that

$$
\boldsymbol{t}\left(w ; z_{i}\right)\left|\Psi_{0}\left(z_{i}\right)\right\rangle=\left|\Psi_{0}\left(z_{i}\right)\right\rangle
$$

then

$$
M\left|\Psi_{0}\left(z_{i}=1\right)\right\rangle=0
$$

so $\left|\Psi_{0}\left(z_{i}\right)\right\rangle$ is unique (in the neighbourhood of $z_{i}=1$)

The $q \mathrm{KZ}$ equations

- Using the definition of the stationary state, and the interlacing condition

$$
\begin{aligned}
R_{i}\left(z_{i} / z_{i+1}\right)\left|\Psi_{0}\left(z_{i}\right)\right\rangle & =R_{i}\left(z_{i} / z_{i+1}\right) t\left(w ; z_{i}, z_{i+1}\right)\left|\Psi_{0}\left(z_{i}\right)\right\rangle \\
& =t\left(w ; z_{i+1}, z_{i}\right) R_{i}\left(z_{i} / z_{i+1}\right)\left|\Psi_{0}\left(z_{i}\right)\right\rangle
\end{aligned}
$$

- Then from uniqueness can show that

$$
R_{i}\left(z_{i} / z_{i+1}\right)\left|\Psi_{0}\left(\ldots, z_{i}, z_{i+1}, \ldots\right)\right\rangle=\left|\Psi_{0}\left(\ldots, z_{i+1}, z_{i}, \ldots\right)\right\rangle
$$

This is the bulk part of the $q \mathrm{KZ}$ equation.

- The boundary equations

$$
\begin{aligned}
K_{0}\left(z_{1}^{-1}\right)\left|\Psi\left(z_{1}, z_{2}, \ldots, z_{N}\right)\right\rangle & =\left|\Psi\left(z_{1}^{-1}, z_{2}, \ldots, z_{N}\right)\right\rangle \\
\left|\Psi\left(z_{1}, \ldots, z_{N-1}, z_{N}\right)\right\rangle & =\left|\Psi\left(z_{1}, \ldots, z_{N-1}, t^{3} z_{N}^{-1}\right)\right\rangle
\end{aligned}
$$

Summary so far

- We have a stochastic process

$$
M=a\left(e_{0}-\mathbb{1}\right)+\sum_{i=1}^{L-1}\left(e_{i}-\mathbb{1}\right)
$$

with stationary distribution $\left|\Psi_{0}\right\rangle$ such that $M\left|\Psi_{0}\right\rangle=0$

- To find $\left|\Psi_{0}\right\rangle$ we will find the more general vector

$$
\left|\Psi_{0}\right\rangle \rightarrow\left|\Psi_{0}\left(z_{1}, \ldots z_{N}\right)\right\rangle
$$

by solving the $q \mathrm{KZ}$ equations

- Setting $z_{i}=1$ will give us back the stationary distribution. But we are also interested in the general solution!

Section 2

Solutions of the $q K Z$ equation

Bijection to Ballot paths

- Left-extended link patterns are in bijection with Ballot paths

- Working from right to left:
- Arch opening - step left and up
- Arch closing - step left and down
- Gives a Ballot path: sequence of non-negative heights

$$
\alpha=\left(\alpha_{0}, \ldots, \alpha_{N}\right)
$$

with $\alpha_{N}=0$, and $\alpha_{i+1}-\alpha_{i}= \pm 1$.

The Temperley-Lieb algebra

- Generators mapped to tiles

$$
e_{i}=|\cdots|_{i-1} \overbrace{i} \overbrace{i+1 i+2}|\cdots|_{N} \quad \rightarrow \quad e_{i}=\widehat{\substack{i}}
$$

- Bulk relations $e_{i}^{2}=-\left(t+t^{-1}\right) e_{i}, e_{i} e_{i \pm 1} e_{i}=e_{i}$:

- Boundary relations $e_{0}^{2}=e_{0}, e_{1} e_{0} e_{1}=e_{1}$:

Action on Ballot paths

- Ballot paths of length $N=3$

$$
\Omega=
$$

- Example

- Matrix form

$$
\left.e_{2}=\begin{array}{c}
\\
|\Omega\rangle \\
|\Omega\rangle \\
\left|\alpha_{1}\right\rangle \\
\left|\alpha_{2}\right\rangle
\end{array} \begin{array}{ccc}
\left|\alpha_{1}\right\rangle & \left|\alpha_{2}\right\rangle \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & -\left(t+t^{-1}\right)
\end{array}\right)
$$

Components of the $q \mathrm{KZ}$ equation

- Write the stationary state vector in the Ballot path basis as

$$
\left|\Psi\left(z_{1}, \ldots, z_{N}\right)\right\rangle=\sum_{\alpha} \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)|\alpha\rangle
$$

- The bulk part of the $q \mathrm{KZ}$ equation

$$
R_{i}\left(z_{i} / z_{i+1}\right)\left|\Psi\left(z_{1}, \ldots, z_{N}\right)\right\rangle=\left|\Psi\left(\ldots, z_{i+1}, z_{i}, \ldots\right)\right\rangle
$$

- Component form
$\sum_{\alpha} \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)\left(e_{i}|\alpha\rangle\right)=\sum_{\alpha}\left(T_{i}(-1) \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)\right) e_{i}|\alpha\rangle$
where the $T_{i}(u)$ are Hecke operator acting on Laurent polynomials
- The boundary equations

Components of the $q \mathrm{KZ}$ equation

- Write the stationary state vector in the Ballot path basis as

$$
\left|\Psi\left(z_{1}, \ldots, z_{N}\right)\right\rangle=\sum_{\alpha} \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)|\alpha\rangle
$$

- The bulk part of the $q \mathrm{KZ}$ equation

$$
R_{i}\left(z_{i} / z_{i+1}\right)\left|\Psi\left(z_{1}, \ldots, z_{N}\right)\right\rangle=\left|\Psi\left(\ldots, z_{i+1}, z_{i}, \ldots\right)\right\rangle
$$

- Component form
$\sum_{\alpha} \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)\left(e_{i}|\alpha\rangle\right)=\sum_{\alpha}\left(T_{i}(-1) \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)\right) e_{i}|\alpha\rangle$
where the $T_{i}(u)$ are Hecke operator acting on Laurent polynomials
- The boundary equations

$$
\begin{aligned}
K_{0}\left(z_{1}^{-1}\right)\left|\Psi\left(z_{1}, z_{2}, \ldots, z_{N}\right)\right\rangle & =\left|\Psi\left(z_{1}^{-1}, z_{2}, \ldots, z_{N}\right)\right\rangle \\
\left|\Psi\left(z_{1}, \ldots, z_{N-1}, z_{N}\right)\right\rangle & =\left|\Psi\left(z_{1}, \ldots, z_{N-1}, t^{3} z_{N}^{-1}\right)\right\rangle
\end{aligned}
$$

Solution of the $q K Z$ equation

Theorem (de Gier, Pyatov 2010)

The solutions of the $q K Z$ equation have a factorised form

$$
\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)=\prod_{i, j}^{\nearrow u_{i, j}} T_{i}\left(u_{i, j}\right) \psi_{\Omega}\left(z_{1}, \ldots, z_{N}\right)
$$

The product is constructed using a graphical representation of the Hecke generators

$$
T_{i}(u)=\widehat{u}_{i-1 i i+1}^{\langle }
$$

These are operators on Laurent polynomials, which also satisfy Yang-Baxter and reflection relations.

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$
- Label corners with 1

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$
u_{i, j}=\max \left\{u_{i+1, j-1}, u_{i-1, j-1}\right\}+1
$$

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$
u_{i, j}=\max \left\{u_{i+1, j-1}, u_{i-1, j-1}\right\}+1
$$

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$
u_{i, j}=\max \left\{u_{i+1, j-1}, u_{i-1, j-1}\right\}+1
$$

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$
u_{i, j}=\max \left\{u_{i+1, j-1}, u_{i-1, j-1}\right\}+1
$$

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$
u_{i, j}=\max \left\{u_{i+1, j-1}, u_{i-1, j-1}\right\}+1
$$

Factorised solutions

- Factorised solution for $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$
- Fill to maximal Ballot path $\Omega=(N, N-1, \ldots, 0)$
- Label corners with 1
- Label remaining tiles by rule

$$
u_{i, j}=\max \left\{u_{i+1, j-1}, u_{i-1, j-1}\right\}+1
$$

$$
\psi_{\alpha}=T_{0}(1) \cdot T_{1}(2) T_{0}(3) \cdot T_{3}(1) T_{2}(3) T_{1}(4) T_{0}(5) \psi_{\Omega}
$$

and

$$
\psi_{\Omega}=\Delta_{t}^{-}\left(z_{1}, \ldots, z_{N}\right) \Delta_{t}^{+}\left(z_{1}, \ldots, z_{N}\right)
$$

Stationary state solutions

- The stationary state can be calculated directly from the factorised solutions

$$
\begin{aligned}
& \left|\Psi_{0}^{(2)}\right\rangle=\frac{1}{\mathcal{Z}_{2}}\binom{1}{1} \xrightarrow{\curvearrowleft} \\
& \left|\Psi_{0}^{(3)}\right\rangle=\frac{1}{\mathcal{Z}_{3}}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \xrightarrow[\Omega]{\curvearrowleft \Omega}
\end{aligned}
$$

$$
\text { for } \zeta_{0}=t, t=\mathrm{e}^{ \pm 2 \pi \mathrm{i} / 3} \text {. }
$$

- Will return to the integer entries later
- Computing the entries for large N is difficult (no closed form)

Alternate filling

Fill with consecutive integers along rows, e.g. for previous shape tilted by 45°

$$
\begin{aligned}
& \psi_{4,2,1}\left(u_{1}+1, u_{2}+1, u_{3}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathcal{T}_{1}\left(u_{3}+1\right) \mathcal{T}_{2}\left(u_{2}+1\right) \mathcal{T}_{3}\left(u_{1}+1\right) \psi_{\Omega}
\end{aligned}
$$

where

$$
\mathcal{T}_{a}(u+1)=T_{a-1}(u+1) \ldots T_{1}(u+a-1) T_{0}(u+a)
$$

gives a row of length a, numbered from $u+1$.

Staircase diagram

- Call the largest such element the staircase diagram:

where $n=\lfloor N / 2\rfloor, \bar{a}_{i}=N-2 i+1$
- In terms of Hecke generators

$$
\begin{aligned}
& \psi_{\bar{a}_{1}, \ldots, \bar{a}_{n}}\left(u_{1}+1, \ldots, u_{n}+1\right) \\
& =\mathcal{T}_{N-2 n+1}\left(u_{n}+1\right) \ldots \mathcal{T}_{N-3}\left(u_{2}+1\right) \mathcal{T}_{N-1}\left(u_{1}+1\right) \psi_{\Omega}
\end{aligned}
$$

Generalised sum rule

Theorem (de Gier, F)

The staircase diagram has the expansion

$$
\psi_{\bar{a}_{1}, \ldots, \bar{a}_{n}}\left(u_{1}+1, \ldots, u_{n}+1\right)=\sum_{\alpha} c_{\alpha} \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)
$$

where the coefficients c_{α} are non-zero and are monomials in

$$
y_{i}=-\frac{\left[u_{i}\right]}{\left[u_{i}+1\right]}, \quad \tilde{y}_{i}=-B_{0}\left(u_{i}+1\right)
$$

- Using the notation

$$
[u]=[u]_{t}=\frac{t^{u}-t^{-u}}{t-t^{-1}}
$$

- Proof of the sum rule requires expanding staircase diagram in two stages.

First expansion

The first stage of the expansion gives the form of the coefficients.

Lemma (First expansion)

$$
\begin{aligned}
& \mathcal{T}_{a_{n}}\left(u_{n}+1\right) \ldots \mathcal{T}_{a_{1}}\left(u_{1}+1\right) \psi_{\Omega} \\
& =\prod_{i=n, n-1, \ldots, 1}\left(\mathcal{T}_{a_{i}}(1)+y_{i} \mathcal{T}_{a_{i}-1}(1)+\tilde{y}_{i}\right) \psi_{\Omega}
\end{aligned}
$$

where

$$
y_{i}=-\frac{\left[u_{i}\right]}{\left[u_{i}+1\right]}, \quad \tilde{y}_{i}=-B_{0}\left(u_{i}+1\right)
$$

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

First expansion terms

Procedure to expand

$$
\left(\mathcal{T}_{\bar{a}_{n}}(1)+y_{n} \mathcal{T}_{\bar{a}_{n}-1}(1)+\tilde{y}_{n}\right) \ldots\left(\mathcal{T}_{\bar{a}_{1}}(1)+y_{1} \mathcal{T}_{\bar{a}_{1}-1}(1)+\tilde{y}_{1}\right) \psi_{\Omega}
$$

- Start from the empty outline.
- Working from top down, a row may be left empty (factor \tilde{y}_{i}), filled one short (factor y_{i}), or filled completely (no additional factor).
- Delete empty rows and boxes.

- Coefficient $y_{1} \tilde{y}_{4} y_{5}$

Second expansion

When the resulting term is not a proper component ψ_{α}, a second expansion is required.

Lemma (Second expansion)

Let $\psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)$ be a component of the $q K Z$ solution, with last row of length $a+1$, then

$$
T_{a-1}(1) \ldots T_{1}(a-1) T_{0}(a) \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)=\sum_{\alpha^{\prime}} \psi_{\alpha^{\prime}}\left(z_{1}, \ldots, z_{N}\right)
$$

- The terms in the sum are found through a graphical rule, and all have coefficient 1.

Second expansion example

$$
T_{1}(1) T_{0}(2) \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)=
$$

Ballot path

Second expansion example

Ballot path

Terms

Second expansion example

Ballot path

Terms

Second expansion example

Ballot path

Terms

Proof of the sum rule

- Recall the sum rule

$$
\psi_{\bar{a}_{1}, \ldots, \bar{a}_{n}}\left(u_{1}+1, \ldots, u_{n}+1\right)=\sum_{\alpha} c_{\alpha} \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right),
$$

where the coefficients c_{α} are non-zero and are monomials in y_{i}, \tilde{y}_{i}.

- We have shown via the two expansions that the staircase diagram can be expanded in terms of components ψ_{α}, with coefficients polynomials in y_{i}, \tilde{y}_{i}.
- To show that the coefficients are non-zero and monomials, we must show that each component ψ_{α} arises from a single term in the first expansion.

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.
- Draw empty maximal staircase

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.
- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.
- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.
- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.
- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.

- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.

- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.

- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.

- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.

- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

Example of the algorithm

- Work backwards from ψ_{α} to term from staircase expansion.

- Draw empty maximal staircase
- Add rows to staircase, bottom up, in lowest place each fits
- Draw in ribbons, starting from outer diagonal

- Coefficient $c_{\alpha}=y_{1} \tilde{y}_{4} y_{5}$.

Specialisation of the sum rule

- At specialisation $u_{i}=1, t=\mathrm{e}^{ \pm 2 \pi \mathrm{i} / 3}$, all coefficients $c_{\alpha}=1$.

$$
\psi_{\bar{a}_{1}, \ldots, \bar{a}_{n}}(2, \ldots, 2)=\sum_{\alpha} \psi_{\alpha}\left(z_{1}, \ldots, z_{N}\right)
$$

giving the normalisation of the loop model stationary state vector

- At this point there is a closed form for the sum [Zinn-Justin 2007]. Setting $z_{i}=1$ and $\zeta_{1}=t=\mathrm{e}^{ \pm 2 \pi \mathrm{i} / 3}$

$$
\mathcal{Z}_{N}=\sum_{\alpha} \psi_{\alpha}\left(z_{i}=1\right)=\prod_{k=1}^{N} \frac{\lfloor 3 k / 2+1\rfloor(3 k)!k!}{(2 k+1)!(2 k)!}
$$

giving

$$
\mathcal{Z}_{2}=2, \quad \mathcal{Z}_{3}=6, \quad \mathcal{Z}_{4}=33 \ldots
$$

Razumov-Stroganov conjectures

- The sequence \mathcal{Z}_{N} counts the number of vertically and horizontally symmetric fully packed loop diagrams (FPLs) of size $2 N+3$.

Fully packed loops

- This connection between Temperley-Lieb loop models and FPLs is one of several Razumov-Stroganov type conjectures.

Section 3

Hecke algebra and special functions

Hecke algebra

The operators $T_{i}(u)$ are polynomial representations of a Baxterized Hecke algebra.

- Hecke algebra, \mathcal{H}, with relations

$$
\begin{aligned}
& \left(T_{i}-t\right)\left(T_{i}+t^{-1}\right)=0, \quad T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}, \quad i \geq 1 \\
& T_{i} T_{j}=T_{j} T_{i}, \quad \forall i, j:|i-j|>1
\end{aligned}
$$

- Baxterized generator

$$
T_{i}(u)=\underbrace{u}_{i-1 i i+1}=T_{i}+t^{-1}-\frac{[u-1]}{[u]}
$$

- We have also seen the boundary element T_{0} but for the moment we will consider periodic systems (type A) without this generator.

q KZ solutions for type A

- Type A solutions given by partitions labelled with the same rule as the mixed boundary system [Kirilov, Lascoux 2000, de Gier, Pyatov 2010], e.g.

- The type A base function has form

$$
\psi_{\Omega}^{(A)}\left(z_{1}, \ldots, z_{2} n\right)=\Delta\left(z_{1}, \ldots, z_{n}\right) \Delta\left(z_{n+1}, \ldots, z_{2 n+1}\right)
$$

- The set of solutions forms the Kazhdan-Lusztig basis

$$
\mathcal{H} \Delta \Delta=\operatorname{span}\left\{\psi_{\alpha}^{(A)}\right\}
$$

with invariance property

$$
\overline{\psi_{\alpha}^{(A)}}=\psi_{\alpha}^{(A)}
$$

Sum rule for type A

- Sum rule given by consecutive integer labelling [de Gier, Lascoux, Sorrell 2012]

- Set of all subpartitions gives the Young basis, e.g.

- Elements of the Young basis are specialised Macdonald polynomials.

Macdonald polynomials

- Within the Hecke algebra, can define a family of commuting elements

$$
Y_{i}=T_{i} \ldots T_{N-1} \omega T_{1}^{-1} \ldots T_{i-1}^{-1}
$$

with

$$
\left[Y_{i}, Y_{j}\right]=0
$$

- These operators have a shared set of eigenfunctions E_{λ}, with

$$
Y_{i} E_{\lambda}\left(z_{1}, \ldots, z_{N}\right)=y(\lambda)_{i} E_{\lambda}\left(z_{1}, \ldots, z_{N}\right)
$$

and these E_{λ} are the non-symmetric Macdonald polynomials

- The eigenfunctions are related by intertwiners

$$
E_{s_{i} \lambda}\left(z_{1}, \ldots, z_{N}\right)=T_{i}\left(u(\lambda)_{i}\right) E_{\lambda}\left(z_{1}, \ldots, z_{N}\right)
$$

- For periodic boundaries, the intertwining relation gives exactly the Young basis elements

Hecke bases for mixed boundaries

- The elements of the $q \mathrm{KZ}$ solution correspond to a Kazhdan-Lusztig basis for the mixed boundary (type B) Hecke algebra [Shigechi 2014], e.g.

- The consecutive integer numbering gives an alternative basis, e.g.

- The expansion rules that led to the sum rule give the change of basis back to the KL basis
- Koornwinder instead of Macdonald polynomials

Conclusion and prospects

- The Temperley-Lieb loop model connects several areas of mathematics - integrability, combinatorics, representation theory, ...
- Though the stationary state is given through solutions of the $q \mathrm{KZ}$ equation we do not have a closed form
- The construction of the generalised sum rule gives a change of basis of the Hecke algebra, and relates Koornwinder polynomials to the $q \mathrm{KZ}$ solution
- We are hopeful that this will help us find closed forms for elements of the loop model stationary distribution

