Fermionic extensions of the SM in light of the Higgs couplings

Nicolas Bizot

based on arXiv: 1508.01645 with M. Frigerio

October 2015

Standard Model (SM)

Higgs discovery

A SM-like Higgs boson has been discovered at CERN with mass $m_h = 125.09 \pm 0.24$ GeV.

 \implies No unknown parameters in the SM which becomes predictive.

Higgs physics

• So far no deviations compare to the SM \implies SM is a <u>successful</u> theory <u>up to</u> the EW scale.

- LHC run 2 will increase the precision of the Higgs coupling measurements.
 - \implies Maybe some deviations will appear.

The SM is a successful theory **BUT** several hints point in favour of BSM physics.

The need of new physics

The SM has no answer to these observational and theoretical issues. \implies SM is an <u>effective model</u> valid up to the EW scale. \implies BSM physics has to be present.

Important to understand what kind of new physics is still experimentally allowed and can be visible at the LHC run 2.

• <u>Renormalizable extensions of the SM at the EW scale:</u>

$$\mathcal{L}_{BSM} = \mathcal{L}_{SM} + \sum_i c_i \mathcal{O}_i \ , \qquad [\mathcal{O}_i] \leq 4 \ . \label{eq:smaller}$$

• Model independent approach:

Couplings c_i are not constrained by BSM symmetries like Supersymmetry, global symmetries, \cdots

 \rightarrow phenomenological point of view

- Add only new fermions to the SM: The Higgs sector remains SM-like.
- Minimal sets of new fermions:

Restrict up to n = 4 new multiplets. The phenomenological issues are already well illustrated and a detailed analysis for $n \ge 5$ is worth only in the context of well-motivated BSM theories.

• Higgs couplings:

New fermions couple to the Higgs and modify its couplings.

Models considered = Effective theories containing the SM + up to n = 4 new fermionic multiplets.

Leading order corrections

Computation of the leading order corrections (due to new fermions) to the Higgs and gauge couplings.

No mixing with light generations

New fermions don't mix with the two SM light generations \implies Avoid strong constraints coming from flavour observables

Not a UV theory

Effective theory valid up to a scale much larger than the EW one \implies No constraints from coupling evolution such as vaccuum stability, Landau poles, gauge unification, \cdots

No cosmological considerations

Rely in most case on specific assumptions on the early Universe evolution \implies No bounds on the relic abundance of the new fermions.

Table of contents

1 Classification of the Standard Model extensions

- 2 Constraints on the models
- 3 SM + a new exotic chiral family
- SM + 2 sterile neutrinos
- 5 SM + one vector-like lepton
- 6 SM + one vector-like quark
- SM + two vector-like leptons

Requirements for the classification

Theoretically self-consistent ightarrow No Gauge Anomalies

- SM is anomaly free by itself.
- Extra fermions much heavier than the EW scale (Effective theories) form vector-like pair with respect to the SM gauge group.
 → No play in the anomaly cancellation.
- \implies Anomaly-cancellation imposed on the set of new fermions only.
 - Anomaly-cancellation conditions:

$$\begin{array}{rcl} SU(3)_c - SU(3)_c - U(1)_Y & : & \sum_{i=1}^n N_{wi}C(R_{ci})Y_i = 0 \ , \\ SU(2)_w - SU(2)_w - U(1)_Y & : & \sum_{i=1}^n N_{ci}C(R_{wi})Y_i = 0 \ , \\ U(1)_Y - U(1)_Y - U(1)_Y & : & \sum_{i=1}^n N_{ci}N_{wi}Y_i^3 = 0 \ , \\ grav - grav - U(1)_Y & : & \sum_{i=1}^n N_{ci}N_{wi}Y_i = 0 \ , \end{array}$$

Theoretically self-consistent $\rightarrow \text{No } SU(2)_w$ global Anomaly

Anomaly-cancellation condition: $\sum_{i=1}^{n} N_{ci} C(R_{wi})$ integer number

Phenomenologically viable \rightarrow No massless fermions after EWSB

Except the three <u>SM neutrinos</u> and gauge singlets. Indeed massless fermions allowed only if they have:

- No colour ($R_c = 1$)
- No electric charge ($Q = T_3 + Y = 0$)
- No couplings to the Z boson $(T_3 \tan^2 \theta_w Y = 0)$

 $\Rightarrow \psi \sim (1, R_w \text{ odd}, 0) \rightarrow (\mathsf{Large})$ Majorana mass allowed.

with Non-zero corrections to the Higgs couplings

- At least one new Yukawa coupling with the Higgs doublet H.
 ⇒ SM Higgs couplings affected at tree or one loop level.
- If no new Yukawa, Higgs couplings affected at two loops level.

 $\psi \sim (\textit{R}_{c},\textit{R}_{w},\textit{Y})$ under $\textit{SU}(3)_{c} imes \textit{SU}(2)_{w} imes \textit{U}(1)_{Y}$

Results of the classification

Three main kind of extensions.

1) Purely chiral extensions

Purely chiral \equiv New fermions get their mass only from the Higgs vev \implies No mass terms before EWSB.

• <u>Three chiral fermions</u> $(R_c \neq \overline{R_c}, N_c \text{ even})$

$$\psi_{1L} \sim (R_c, 2, 0), \ \psi_{2R} \sim \left(R_c, 1, \frac{1}{2}\right), \ \psi_{3R} \sim \left(R_c, 1, -\frac{1}{2}\right)$$

• Four chiral fermions $(R_c \neq \overline{R_c}, N_c \text{ even if } N_w \text{ odd})$

$$\psi_{1L} \sim (R_c, R_w - 1, 0), \ \psi_{2L} \sim (R_c, R_w + 1, 0), \ \psi_{3R} \sim \left(R_c, R_w, \frac{1}{2}\right), \ \psi_{4R} \sim \left(R_c, R_w, -\frac{1}{2}\right),$$

 \Rightarrow Mixing with SM not allowed in the two cases.

2) Non chiral leptons

Majorana leptons:

$$N_R \sim (1, 1, 0), \quad \Sigma_R = \begin{pmatrix} E^c \\ N \\ E \end{pmatrix} \Rightarrow \text{Seesaw Type I and III.}$$

 One Vector-Like (VL) lepton: VL≡ Left and Right chiralities transform in the same way (mass term before EWSB).

$$E, \ L = \begin{pmatrix} N \\ E \end{pmatrix}, \ \Lambda = \begin{pmatrix} E \\ F \end{pmatrix}, \ \Delta = \begin{pmatrix} N \\ E \\ F \end{pmatrix} \Rightarrow Usual VL leptons.$$

 \Rightarrow Always a mixing with SM in these cases.

$$Q(N)=0,\;Q(E)=-1\; ext{and}\;Q(F)=-2$$

Results of the classification

2) Non chiral leptons

- Two VL leptons:
- <u>Trivial cases</u>: 2 VL leptons mixing with SM but no direct coupling between each other.

• <u>Custodial case</u>: (Λ, L) transforming as bi-doublet of $SU(2)_L \times SU(2)_R$.

► General case (may not mix with SM)

$$\psi_{1L}, \psi_{1R} \sim (1, R_w, Y), \ \psi_{2L}, \psi_{2R} \sim (1, R_w + 1, Y + \frac{1}{2})$$

 $\Rightarrow R_w = 1, \ Y = -1: \ \tau \text{ compositeness (E+L)}.$

New exotic VL multiplets can indirectly mix with the SM:

$$\Delta_G = \begin{pmatrix} E \\ F \\ G \end{pmatrix}, \ \Omega = \begin{pmatrix} E^c \\ N \\ E \\ F \end{pmatrix}, \ \Omega_G = \begin{pmatrix} N \\ E \\ F \\ G \end{pmatrix}$$
$$Q(G) = -3$$

Results of the classification

2) Non chiral leptons

• VL+ Majorana leptons:

$$\begin{array}{l} & \chi_{1R} \sim (1, R_w, 0), \ \psi_L, \psi_R \sim (1, R_w + 1, -1/2), \ \chi_{2R} \sim (1, R_w + 2, 0) \\ & (N_w \text{ odd}) \\ & \rightarrow R_w = 1: \ \text{VL doublet } L + \text{sterile singlet } N \text{ and triplet } \Sigma. \\ & (\text{generalization higgsinos + gauginos in Susy}) \\ & \rightarrow R_w = 3: \ \text{VL quartet } \Omega + \text{sterile triplet } \Sigma \text{ and quintuplet } \Xi. \end{array}$$

Fermionic extensions of the SM in light of the Higgs couplings

3) Non chiral quarks

• One VL quark:

$$T, \quad B \\ X_T = \begin{pmatrix} X \\ T \end{pmatrix}, \quad Q = \begin{pmatrix} T \\ B \end{pmatrix}, \quad Y_B = \begin{pmatrix} B \\ Y \end{pmatrix} \\ X_Q = \begin{pmatrix} X \\ T \\ B \end{pmatrix}, \quad Y_Q = \begin{pmatrix} T \\ B \\ Y \end{pmatrix} \\ \Rightarrow \text{ Usual VL quarks mixing with SM.}$$

$$Q(X) = 5/3$$
, $Q(T) = 2/3$, $Q(B) = -1/3$ and $Q(Y) = -4/3$

3) Non chiral quarks

- Two VL quarks:
- Trivial cases: 2 VL quarks mixing with SM but no direct coupling between each other.

• <u>Custodial cases</u>: (T, B), (X_T, Q) , (Q, Y_B) and (X_Q, Y_Q) transforming as doublets of $SU(2)_R$.

► General case (may not mix with SM)

$$\psi_{1L}, \psi_{1R} \sim (R_c, R_w, Y), \ \psi_{2L}, \psi_{2R} \sim (R_c, R_w + 1, Y + \frac{1}{2})$$

 $\Rightarrow R_w = 1, \ Y = -2/3: \text{ top compositeness } (T+Q).$
 $\Rightarrow R_w = 1, \ Y = -1/3: \text{ bottom compositeness } (B+Q).$

 \Rightarrow New exotic VL multiplets can indirectly mix with the SM:

$$Z_{X_{T}} = \begin{pmatrix} Z \\ X \\ T \end{pmatrix}, W_{Y_{B}} = \begin{pmatrix} B \\ Y \\ W \end{pmatrix}, \Omega_{X_{T}} = \begin{pmatrix} Z \\ X \\ T \\ B \end{pmatrix}, \Omega_{Q} = \begin{pmatrix} X \\ T \\ B \\ Y \end{pmatrix}, \Omega_{Y_{B}} = \begin{pmatrix} T \\ B \\ Y \\ W \end{pmatrix}$$
$$Q(Z) = 8/3, \quad Q(W) = -7/3$$

3) Non chiral quarks

• VL+ Majorana quarks
$$(R_c = \overline{R_c} \neq 1)$$
:

► $\chi_R \sim (R_c, R_w, 0), \ \psi_L, \psi_R \sim (R_c, R_w \pm 1, -1/2)$ (Global anomaly cancellation $R_c \text{ odd} \rightarrow N_w \neq 2 + 4n$)

► $\chi_{1R} \sim (R_c, R_w, 0), \ \psi_L, \psi_R \sim (R_c, R_w + 1, -1/2), \ \chi_{2R} \sim (R_c, R_w, 0)$ (N_w arbitrary)

►
$$\chi_{1R} \sim (R_c, R_w, 0), \ \psi_L, \psi_R \sim (R_c, R_w + 1, -1/2), \ \chi_{2R} \sim (R_c, R_w + 2, 0) \ (R_c \text{ odd} \rightarrow N_w \text{ odd})$$

 \Rightarrow Generalization of the uncoloured cases.

 \Rightarrow Mixing with SM is no longer possible.

Classification of the Standard Model extensions

- 2 Constraints on the models
- 3 SM + a new exotic chiral family
- 4 SM + 2 sterile neutrinos
- 5 SM + one vector-like lepton
- 6 SM + one vector-like quark
- SM + two vector-like leptons

Obliques (Electroweak) precision tests

S and T parameters

$$T = \frac{1}{\alpha c_w^2 m_Z^2} \left[(\Pi_{33}(0) - \Pi_{33}^{SM}(0)) - (\Pi_{WW}(0) - \Pi_{WW}^{SM}(0)) \right] .$$

$$S = \frac{4s_w c_w}{\alpha m_Z^2} \left[(\Pi_{30}(m_Z^2) - (\Pi_{30}(0)) - (\Pi_{30}^{SM}(m_Z^2) - \Pi_{30}^{SM}(0)) \right]$$

- $S_{SM} = T_{SM} \equiv 0$.
- Calculation 1 loop vacuum polarization amplitude of EW gauge boson.

Non-obliques precision tests

Non-oblique \equiv Not flavor universal (depending on the SM generation).

Zbb couplings

$$\mathcal{L}_{Zb\bar{b}} = \frac{g}{c_w} Z_{\mu} \overline{b} \gamma^{\mu} \left[\left(g_{b\bar{b},SM}^L + \delta g_{b\bar{b}}^L \right) P_L + \left(g_{b\bar{b},SM}^R + \delta g_{b\bar{b}}^R \right) P_R \right] b \ \delta g_{b\bar{b}}^{L,R}$$

 $\rightarrow \underline{\text{tree-level:}} \ b \ \text{mix with } b' \ \text{which as different } T_3 \ \text{and } Y.$
 $\rightarrow \underline{1 \ \text{loop-level:}} \ \text{Modification in } Zt\bar{t}, \ Wt\bar{b} \ \text{couplings (new } t' \ \text{or } Y_{-4/3}$
 $\ \text{loops).}$

Nicolas Bizot

Fermionic extensions of the SM in light of the Higgs couplings

Definition

At LHC, Higgs couplings are constrained by measurement of signal strengths:

$$\mu_{\alpha} \equiv \frac{\sigma(pp \to h)}{\sigma^{SM}(pp \to h)} \frac{Br(h \to \alpha)}{Br^{SM}(h \to \alpha)} = \frac{\sigma(pp \to h)}{\sigma^{SM}(pp \to h)} \frac{\Gamma(h \to \alpha)}{\Gamma^{SM}(h \to \alpha)} \frac{\Gamma_{h}^{SM}}{\Gamma_{h}} ,$$

$$\alpha = \gamma\gamma, ZZ^{*}, WW^{*}, b\overline{b}, \tau\tau, \gamma Z, \cdots$$

- $\sigma(gg \rightarrow h)/\sigma(gg \rightarrow h) \simeq 85\%$ at $\sqrt{8}$ TeV in the SM. Restrict to gluon fusion \rightarrow All μ_{α} depend on *hgg* coupling.
- $Br(h \rightarrow b\overline{b}) \simeq 57\%$ in the SM. \Rightarrow All μ_{α} strongly depend on $hb\overline{b}$ through Γ_{h} .
- ZZ^* , WW^* decays are SM-like but not μ_{ZZ} , μ_{WW} .

$$R_{\alpha} \equiv \frac{\Gamma(h \to \alpha)}{\Gamma^{SM}(h \to \alpha)} = \frac{\sigma(h \to \alpha)}{\sigma^{SM}(h \to \alpha)} = 1 + \delta R_{\alpha}$$

Higgs couplings - Tree-level couplings

General form

• General Yukawa couplings: $\overline{\psi_L} \sim (R_c, R_w, Y), \ \psi_R^{u,d} \sim (R_c, R_w - 1, Y \pm \frac{1}{2})$

$$-\mathcal{L}_{Y} = \sum_{\psi_{L}} \left[\sum_{\psi_{R}^{u}} y_{\psi_{L}\psi_{R}^{u}} \left(\overline{\psi_{L}} \psi_{R}^{u} \widetilde{H} \right) + \sum_{\psi_{R}^{d}} y_{\psi_{L}\psi_{R}^{d}} \left(\overline{\psi_{L}} \psi_{R}^{d} H \right) \right] + h.c.$$

• <u>After EWSB</u>: \rightarrow fermions mix through the mass matrix \mathcal{M} .

$$\begin{aligned} -\mathcal{L}_{Y} &= \overline{f_{Lj}} \left[U_{L}^{\dagger} \mathcal{M}(v) U_{R} \right]_{jk} f_{Rk} + \overline{f_{Lj}} \left[U_{L}^{\dagger} \frac{\partial \mathcal{M}(v)}{\partial v} U_{R} \right]_{jk} f_{Rk} h + h.c. \\ &= \sum_{i} m_{i} \overline{f_{i}} f_{i} + \overline{f_{j}} \left(y_{jk} + i \gamma_{5} \tilde{y}_{jk} \right) f_{k} h . \end{aligned}$$

 $\Rightarrow \text{CP-even } (y) \text{ and odd } (\tilde{y}) \text{ couplings depend on the form of } \mathcal{M}:$ $y = \frac{\lambda + \lambda^{\dagger}}{2} , \qquad \tilde{y} = \frac{\lambda - \lambda^{\dagger}}{2i} , \qquad \lambda \equiv U_L^{\dagger} \frac{\partial \mathcal{M}(v)}{\partial v} U_R .$

Higgs couplings to two gluons (hgg)

SM contributions

$$\begin{split} \Gamma^{SM}(h \to gg) &= \frac{\alpha_s^2 m_h^3}{72\pi^3 v^2} \left| \frac{3}{4} \sum_q A_{1/2}(\tau_q) \right|^2 \to \mathsf{SM} \text{ quarks contribute.} \\ \Rightarrow \mathsf{Top loop dominates:} \ \mathcal{A}_{gg}^{SM} \simeq \mathcal{A}_{gg,t}^{SM} > 0 \end{split}$$

Fermionic BSM contributions

$$\begin{split} \Gamma(h \to gg) &= \frac{\alpha_s^2 m_h^3}{72 \pi^3 v^2} \left(|\mathcal{A}_f^{gg}|^2 + |\tilde{\mathcal{A}}_f^{gg}|^2 \right), \\ \mathcal{A}_f^{gg} &= \frac{3}{2} \sum_i C(R_{ci}) \frac{y_i v}{m_i} \mathcal{A}_{1/2}(\tau_i), \qquad \widetilde{\mathcal{A}}_f^{gg} &= \frac{3}{2} \sum_i C(R_{ci}) \frac{\widetilde{y}_i v}{m_i} \widetilde{\mathcal{A}}_{1/2}(\tau_i) \end{split}$$

• Only diagonal loops

(1 mass eigenstate runs in the loop) as color is unbroken.

- No interference between CP-even and CP-odd parts.
- Form factors depend on fermion mass $\tau_i = m_h^2/(4m_i^2)$

Higgs couplings- Loop induced form factors

- Heavy fermion limits: $A_{1/2}(0) = 4/3$, $\widetilde{A}_{1/2}(0) = 2$
- Light fermions contributions are negligible ($\tau_t \simeq 0.13$ and $\tau_b \simeq 220$).
- Imaginary part when fermion can be put on-shell ie for $m_i < m_h/2$

Nicolas Bizot

Fermionic extensions of the SM in light of the Higgs couplings

SM contribution

$$\Gamma^{SM}(h \to \gamma \gamma) = \frac{\alpha^2 m_h^3}{256 \pi^2 v^2} \left| A_1(\tau_W) + \sum_{f_i} N_{ci} Q_i^2 A_{1/2}(\tau_i) \right|^2$$

 \rightarrow SM fermions but also W boson contribute.

 \Rightarrow Top and W loops dominate: $\mathcal{A}_{\gamma\gamma}^{SM} \simeq \mathcal{A}_{\gamma\gamma,t}^{SM} + \mathcal{A}_{\gamma\gamma,W}^{SM} < 0$

• Destructive interference between top and W loops: $\mathcal{A}_{\gamma\gamma,t}^{SM} \simeq 1.83$, $\mathcal{A}_{\gamma\gamma,W}^{SM} \simeq -8.36$

•
$$gg \rightarrow \gamma\gamma$$
: $g_s^2 C(R_{ci}) \rightarrow e^2 Q_i^2 N_{ci}$

Fermionic BSM contributions

$$\begin{split} \Gamma(h \to \gamma \gamma) &= \frac{\alpha^2 m_h^3}{256 \pi^3 v^2} \left[|A_1(\tau_W) + \mathcal{A}_f^{\gamma \gamma}|^2 + |\tilde{\mathcal{A}}_f^{\gamma \gamma}|^2 \right] \\ \mathcal{A}_f^{\gamma \gamma} &= \sum_i \frac{y_i v}{m_i} N_{ci} Q_i^2 A_{1/2}(\tau_i), \qquad \tilde{\mathcal{A}}_f^{\gamma \gamma} = \sum_i \frac{\tilde{y}_i v}{m_i} N_{ci} Q_i^2 \tilde{\mathcal{A}}_{1/2}(\tau_i) \end{split}$$

Higgs couplings to photon Z $(h\gamma Z)$

SM contribution

$$\Gamma^{SM}(h \to \gamma Z) = \frac{\alpha g^2 c_w^2 m_h^3}{512 \pi^4 v^2} \left(1 - \frac{m_Z^2}{m_h^2}\right)^3 \left| A_1(\tau_W, \lambda_W) + \sum_{f_i} \frac{N_{ci} Q_{ig} V}{c_w^2} A_{1/2}(\tau_i, \lambda_i) \right|^2$$

 \Rightarrow Top and W loops dominate: $\mathcal{A}_{\gamma Z}^{SM} \simeq \mathcal{A}_{\gamma Z,W}^{SM} + \mathcal{A}_{\gamma Z,t}^{SM} < 0$

• Destructive interference between top and W loops: $\mathcal{A}_{\gamma Z,t}^{SM} \simeq 0.37$, $\mathcal{A}_{\gamma Z,W}^{SM} \simeq -6.64$

•
$$\gamma\gamma
ightarrow \gamma Z$$
: Not trivial due to Z mass.

• Higgs and Z boson massive $\tau_i = m_h^2/(4m_i^2)$, $\lambda_i = m_Z^2/(4m_i^2)$

Fermionic BSM contributions

$$\Gamma(h \to \gamma Z) = \frac{\alpha g^2 c_w^2 m_h^3}{512 \pi^4 v^2} \left(1 - \frac{m_Z^2}{m_h^2} \right)^3 \left[|A_1(\tau_W, \lambda_W) + \mathcal{A}_f^{Z\gamma}|^2 + |\tilde{\mathcal{A}}_f^{Z\gamma}|^2 \right]$$

$$\begin{aligned} \mathcal{A}_{f}^{Z\gamma} &= \sum_{j,k} \frac{N_{ck} Q_{k} v}{c_{w}^{2} \sqrt{m_{j} m_{k}}} \left[\operatorname{Re}(g_{kj}^{V} y_{jk}) a_{1/2}(m_{j}, m_{k}, m_{k}) + i \operatorname{Im}(g_{kj}^{A} \tilde{y}_{jk}) b_{1/2}(m_{j}, m_{k}, m_{k}) \right] \\ \tilde{\mathcal{A}}_{f}^{Z\gamma} &= \sum_{j,k} \frac{N_{ck} Q_{k} v}{c_{w}^{2} \sqrt{m_{j} m_{k}}} \left[\operatorname{Re}(g_{kj}^{V} \tilde{y}_{jk}) \tilde{a}_{1/2}(m_{j}, m_{k}, m_{k}) + i \operatorname{Im}(g_{kj}^{A} y_{jk}) \tilde{b}_{1/2}(m_{j}, m_{k}, m_{k}) \right] \end{aligned}$$

• Off-diagonal loops present (h and Z couplings to 2 mass eigenstates).

Higgs couplings- Loop induced form factors

- $a_{1/2}(m, m, m) \equiv A_{1/2}(\tau, \lambda), \quad \tilde{a}_{1/2}(m, m, m) \equiv \tilde{A}_{1/2}(\tau, \lambda)$ $b_{1/2}(m, m, m) = \tilde{b}_{1/2}(m, m, m) \equiv 0$
- Similar behaviour compare to $h\gamma\gamma$ (additional Z threshold). Same limits: $A_{1/2}(0,0) = A_{1/2}(0)$, $\tilde{A}_{1/2}(0,0) = \tilde{A}_{1/2}(0)$

Experimental constraints - Conclusion

EWPT

- Obliques: S and T parameters.
- Non-obliques: $Zb\overline{b}$, $Z\tau\tau$, ...

Higgs couplings

- <u>Tree-level</u>: $hb\overline{b}$, $h\tau\tau$, $\cdots \rightarrow$ Also possibly large BSM couplings.
- Loop-level: gg, $\gamma\gamma$, γZ loop induced \rightarrow sensitive to heavy NP in the loop.

 $\Rightarrow gg, \gamma\gamma \text{ already a lot constrain.}$ $\Rightarrow \gamma Z \text{ still place for large deviations as } \mu_{\gamma Z} \lesssim 10.$

Other relevant constraints

- Direct searches at colliders: Lower limit on the mass.
- Perturbativity: Limit on the size of the couplings $o \lambda \leqslant 2\pi$

Table of contents

- Classification of the Standard Model extensions
- 2 Constraints on the models
- SM + a new exotic chiral family
- 4 SM + 2 sterile neutrinos
- 5 SM + one vector-like lepton
- 6 SM + one vector-like quark
- SM + two vector-like leptons

Minimal chiral extension of the SM

$$\psi_{1L} \sim (R_c, 2, 0), \ \psi_{2R} \sim (R_c, 1, \frac{1}{2}), \ \psi_{3R} \sim (R_c, 1, -\frac{1}{2})$$

$$-\mathcal{L}_{chiral} = \lambda_2 \overline{\psi_{1L}} \tilde{H} \psi_{2R} + \lambda_3 \overline{\psi_{1L}} H \psi_{3R} + h.c.$$

$$\Rightarrow \text{ Minimal self-consistent chiral set of new fermions}$$

•
$$R_c \neq \overline{R_c}$$
, N_c even \Rightarrow Minimal choice $N_c = 6$.

• Two mass eigenstates with charge $Q=\pm 1/2$ and masses $m_{2,3}=\lambda_{2,3} v/\sqrt{2}$

Limits

- <u>Mass bounds</u>: Lightest fermion stable and form R-hadrons. $\Rightarrow m \gtrsim 1.4 \text{ TeV} (N_c = 6).$
- <u>EWPT</u>: $S \simeq N_c/(6\pi)$, $T \propto (m_2 m_3) \Rightarrow$ May respect constraints.

Higgs couplings

$$\begin{array}{l} R_{gg} \equiv \frac{\sigma(gg \rightarrow h)}{\sigma_{SM}(gg \rightarrow h)} \simeq \left[1 + 4C(R_c)\right]^2 \geq 121 \\ \Rightarrow \text{ Gluons fusion generally kills chiral models with colored states} \\ \text{(large enhancement as constructive interference with SM).} \end{array}$$

Fermionic extensions of the SM in light of the Higgs couplings

Viable chiral extensions after LHC

One viable extension = Two doublets + four singlets

 $\begin{array}{l} (2,Y)\,, \ (2,-Y)\,, \ \left(1,-Y+\frac{1}{2}\right), \ \left(1,-Y-\frac{1}{2}\right), \ \left(1,Y+\frac{1}{2}\right), \ \left(1,Y-\frac{1}{2}\right) \\ (\text{all left-handed}) \end{array}$

- No colour \Rightarrow Avoid contribution to hgg coupling ($\mathcal{A}_{new}^{gg} = 0$).
- Global symmetry to forbid VL masses (Not purely chiral extension).

S and T parameters

Higgs couplings

•
$$\mathcal{A}_{new}^{\gamma\gamma} = 4(1+4Y^2)/3 \rightarrow \text{Agree with experiment if}$$

1) $\mathcal{A}_{new}^{\gamma\gamma} \simeq 0$ ie $|Y| \lesssim 0.6$ 2) $\mathcal{A}_{new}^{\gamma\gamma} \simeq -2\mathcal{A}_{SM}^{\gamma\gamma}$ ie $1.3 \lesssim |Y| \lesssim 1.6$

•
$$\mathcal{A}_{new}^{\gamma Z} \simeq 2 \left[1 - \left(1 + 8Y^2 \right) \tan^2 \theta_w \right] / 3$$

 $\Rightarrow R_{\gamma Z} \simeq 1.55 \text{ for } |Y| = 1.6 \rightarrow \text{Large contribution to } \gamma Z \text{ channel.}$

Table of contents

- Classification of the Standard Model extensions
- 2 Constraints on the models
- 3 SM + a new exotic chiral family
- SM + 2 sterile neutrinos
- 5 SM + one vector-like lepton
- 6 SM + one vector-like quark
- SM + two vector-like leptons

Usual Seesaw mechanism

Sterile neutrino $N_R \sim (1,1,0)$

$$-\mathcal{L}_{N} = \lambda_{N} \overline{I_{L}} \widetilde{H} N_{R} + \frac{1}{2} M_{N} \overline{N_{R}^{c}} N_{R} + h.c. \Rightarrow \text{Two parameters } \lambda_{N} \text{ and } M_{N}.$$

Mixing and neutrino masses

$$\mathcal{M}_{\nu} = \begin{pmatrix} 0 & m \\ m & M_N \end{pmatrix} = U \ diag(m_{\nu}, m_{\nu'}) \ U^{\dagger} \Rightarrow \mathsf{Mixing with SM}.$$

• Seesaw mechanism: For $\theta \equiv m/M_N \ll 1$ (small active-sterile neutrinos mixing) $m_{\nu_I} \simeq m^2/M_N$, $m_{\nu_h} \simeq M_N$. \Rightarrow Naturally small neutrino mass. $m = \lambda_N v/\sqrt{2}$

Higgs couplings

$$\begin{split} & h\nu_l\nu_h \propto \sqrt{m_{\nu_l}m_{\nu_h}}/v, \quad h\nu_l\nu_l, \ h\nu_h\nu_h \propto m_{\nu_l}/v \\ \Rightarrow \text{ Negligibly small decay width } (m_{\nu_l} \leqslant 1 \text{ eV}). \\ & \text{Also true for deviation in Z couplings and contributions to S and T.} \end{split}$$

Fermionic extensions of the SM in light of the Higgs couplings

Model with two sterile neutrinos

Two sterile neutrino $N_{1R} \sim N_{2R} \sim (1,1,0)$

$$\mathcal{M}_{\nu} = \begin{pmatrix} O & m_1 & m_2 \\ m_1 & M_{N_1} & 0 \\ m_2 & 0 & M_{N_2} \end{pmatrix} \rightarrow \theta_i \equiv m_i / M_{N_i}$$

Large mixing

 $m_{
u_I} \simeq | heta_1^2 M_{N_1} + heta_2^2 M_{N_2}| \lesssim 1 ~{
m eV}$

- $\theta_{1,2}$ small: Similar features compare to 1 N_R .
- Phase between θ_1 and θ_2 : Possible large $\theta_{1,2}$ with cancellation. 0706.1732

\Rightarrow If we admit tuning, large active-sterile mixings $heta_i$ can be large.

Higgs decays

$$\begin{split} &\Gamma(h \to \nu_l \nu_{hi}) \simeq m_h m_{\nu_{hi}}^2 |\theta_i|^2 / (8\pi v^2), \quad \Gamma(h \to \nu_{hi} \nu_{hi}) \simeq m_h m_{\nu_{hi}}^2 |\theta_i|^4 / (4\pi v^2) \\ \Rightarrow \text{Possibly as large as } \Gamma_h^{SM} \simeq 4 \text{ MeV}. \end{split}$$

Table of contents

- Classification of the Standard Model extensions
- 2 Constraints on the models
- 3 SM + a new exotic chiral family
- SM + 2 sterile neutrinos
- 5 SM + one vector-like lepton
- 6 SM + one vector-like quark
- SM + two vector-like leptons

Vector-like singlet $\mathit{E}_{L,R} \sim (1,1,-1)$

 $-\mathcal{L}_{E} = \lambda_{E}\overline{I_{L}}HE_{R} + M_{E}\overline{E_{L}}E_{R} + h.c. \Rightarrow \text{Two free parameters } \lambda_{E} \text{ and } M_{E}.$

Mixing and masses

•
$$\mathcal{M}_{e} = \begin{pmatrix} \lambda_{\tau} \frac{v}{\sqrt{2}} & \lambda_{E} \frac{v}{\sqrt{2}} \\ 0 & M_{E} \end{pmatrix} = V_{L} diag(m_{\tau}, m_{\tau}') V_{R}^{T}, \Rightarrow \text{Mixing with SM.}$$

• $V_{\alpha} = \begin{pmatrix} c_{\alpha} & s_{\alpha} \\ -s_{\alpha} & c_{\alpha} \end{pmatrix} \rightarrow s_{R} = \frac{m_{\tau}}{M_{\psi}} s_{L} \Rightarrow \text{Right mixing suppressed by } \tau$
mass.

Higgs couplings

$$y_{ au au} \simeq rac{m_ au}{v}, \quad y_{ au' au'} = s_L^2 rac{m_{ au'}}{v}, \quad y_{ au au'} \simeq s_L rac{m_{ au'}}{2v} \simeq i \widetilde{y}_{ au au'}$$

 \Rightarrow Mixing generates diagonal τ' coupling **and** off-diagonal $\tau\tau'$ couplings

Vector-like singlet E

Constraints

- $Z \rightarrow \tau \tau$: Small mixing $s_L \lesssim 6 \cdot 10^{-2} \rightarrow S$ and T automatically respected.
- <u>Direct searches</u>: Light mass $m_{\tau'} \ge 100$ GeV (LEP limits). $\Rightarrow \tau'$ can be lighter than the Higgs, not the case for other VL lepton multiplets.

Higgs decays

• $\delta R(\tau\tau, \gamma\gamma, \gamma Z) \sim s_L^2 \Rightarrow$ Negligible contributions to $h \to \tau\tau, \gamma\gamma, \gamma Z$.

•
$$\Gamma(h \to \tau \tau') \simeq \frac{1}{16\pi v^2} s_L^2 m_{\tau'}^2 m_h \left(1 - \frac{m_{\tau'}^2}{m_h^2}\right)^2 \lesssim 0.2 \text{ MeV} \simeq 5\% \Gamma_h^{SM}$$

 \Rightarrow Small mixing s_L compensates by large mass $m_{\tau'}$. Interesting to do a dedicated search as LHC focus on $\tau\tau$, $\tau\mu$ and $\mu\mu$.

Table of contents

- Classification of the Standard Model extensions
- 2 Constraints on the models
- 3 SM + a new exotic chiral family
- SM + 2 sterile neutrinos
- SM + one vector-like lepton
- 6 SM + one vector-like quark
- SM + two vector-like leptons

One VL quarks doublet

VL doublets
$$X_T \sim (3,2,7/6)$$
 and $Y_B \sim (3,2,-5/6)$

$$-\mathcal{L}_{\psi} = \lambda_{\psi} \overline{\psi_L} \tilde{H} t_R(b_R) + M_{\psi} \overline{\psi_L} \psi_R + h.c. ,$$

for
$$\psi = X_T(Y_B)$$

Mixing and masses

$$X_{T} = \begin{pmatrix} X \\ T \end{pmatrix}, \quad Y_{B} = \begin{pmatrix} B \\ Y \end{pmatrix} \Rightarrow \underline{\text{Exotic charges:}} \quad Q(X) = 5/3, \quad Q(Y) = -4/3$$
$$\mathcal{M}_{t(b)} = \begin{pmatrix} \lambda_{t(b)} \frac{v}{\sqrt{2}} & 0 \\ \lambda_{\psi} \frac{v}{\sqrt{2}} & M_{\psi} \end{pmatrix}, \quad m_{X(Y)} = M_{\psi} \leq m_{t'(b')}$$
$$\Rightarrow s_{L} = \frac{m_{t(b)}}{M_{\psi}} s_{R} \Rightarrow \text{Left mixing suppressed by the top (bottom) mass.}$$

Higgs couplings

•
$$X_{T:} y_{tt} = c_R^2 \frac{m_t}{v}, \quad y_{t't'} = s_R^2 \frac{m_{t'}}{v}, \quad y_{tt'} = c_R s_R \frac{m_t + m_{t'}}{2v}, \\ \widetilde{y}_{tt'} = c_R s_R \frac{m_t - m_{t'}}{2v_t},$$

•
$$Y_B: t \to b$$
 and $t' \to b'$

One VL quarks doublet

Z couplings

- X_T : Loop-induced deviations (No b') \Rightarrow Weak constraints.
- Y_B : Tree-level deviations $\delta g^L_{7b\overline{b}} = s^2_L \simeq 0$, $\delta g^R_{7b\overline{b}} = s^2_R/2$.

S and T parameters

Gives upper limit on the mixing. For X_T : Possible cancellation in T parameter $T \simeq \frac{3s_R^2}{16\pi c_w^2 s_W^2} \frac{m_{t'}^2}{m_{\tau}^2} \left[\frac{4}{3} s_R^2 + \frac{m_t^2}{m_{t'}^2} \left(4\ln \frac{m_t^2}{m_{t'}^2} + 6 \right) \right], \quad S \simeq \frac{s_R^2}{2\pi} \left(\frac{4}{3} \ln \frac{m_t^2}{m_{t'}^2} + 5 \right)$ \Rightarrow Large mixing ~ 0.5 is allowed.

Direct searches

• Relevant decay channels: $X \to tW^+$, $t' \to tZ$, th, bW^+ $Y \rightarrow bW^{-}$, $b' \rightarrow bZ$, bh, tW^{-}

 \Rightarrow Neutral currents relevant for VL quarks (Not the case for chiral quarks).

• Branching ratios: $Br(t' \rightarrow Zt, ht) \simeq 1/2, Br(t' \rightarrow Wb) \simeq 0$ $Br(b' \rightarrow Zb, hb) \simeq 1/2, Br(b' \rightarrow Wt) \simeq 0$

Fermionic extensions of the SM in light of the Higgs couplings

One VL quark doublet-Collider searches

ATLAS and CMS limits on VL quarks $\rightarrow m \ge 600 - 900$ GeV depending on the charge and branching.

heavy quark	branching ratios	mass bound
X (Q = 5/3)	$Br_{Wt} = 1$	$m_X \ge 840 \text{ GeV}$
t' (Q = 2/3)	$Br_{Wb} = \frac{1}{2}, \ Br_{Zt} = Br_{ht} = \frac{1}{4}$	$m_{t'} \ge 800 { m GeV}$
	$Br_{Wb}=0, Br_{Zt}=Br_{ht}=\frac{1}{2}$	$m_{t'} \ge 855 { m GeV}$
	$Br_{Wb} = 1, \ Br_{Zt} = Br_{ht} = 0$	$m_{t'} \geq$ 920 GeV
	$Br_{Wb} = Br_{Zt} = 0, \ Br_{ht} = 1$	$m_{t'} \geq 950 { m GeV}$
	$Br_{Wb} = Br_{ht} = 0, \ Br_{Zt} = 1$	$m_{t'} \geq 800 { m GeV}$
	$Br_{Wb} + Br_{Zt} + Br_{ht} = 1$	$m_{t'} \geq$ 720 GeV
b' (Q = -1/3)	$Br_{Wt} = \frac{1}{2}, \ Br_{Zb} = Br_{hb} = \frac{1}{4}$	$m_{b'} \ge 735$ GeV
	$Br_{Wt}=0, Br_{Zb}=Br_{hb}=\frac{1}{2}$	$m_{b'} \geq 755 { m GeV}$
	$Br_{Wt} = 1, \ Br_{Zb} = Br_{hb} = 0$	$m_{b'} \ge 810 { m GeV}$
	$Br_{Wt} = Br_{Zb} = 0, \ Br_{hb} = 1$	$m_{b'} \ge 846 { m GeV}$
	$Br_{Wt} = Br_{hb} = 0, \ Br_{Zb} = 1$	$m_{b'} \geq 775~{ m GeV}$
	$Br_{Wt} + Br_{Zb} + Br_{hb} = 1$	$m_{b'} \ge 582 { m GeV}$
Y (Q = -4/3)	$Br_{Wb}=1$	$m_Y \ge 770 { m GeV}$

Fermionic extensions of the SM in light of the Higgs couplings

One VL quark doublet-Higgs couplings

 X_T and Y_B contribute to hgg, $h\gamma\gamma$ and $h\gamma Z$ **BUT** contributions are quantitatively very different.

X_T : mixing in the top sector

- $A_{1/2}(t') A_{1/2}(t) \simeq -0.04 \rightarrow \text{Almost no changes in } hgg$ and $h\gamma\gamma$.
- $g_{t'}^V A_{1/2}(t') g_t^V A_{1/2}(t) \rightarrow \text{Sizeable change in } h\gamma Z$.

 $\Rightarrow \delta \mu_{\gamma\gamma} \ll \delta \mu_{\gamma Z}.$

Y_B : mixing in the bottom sector

•
$$R_{b\overline{b}} = (1 - s_R^2)^2$$

• $A_{1/2}(b') - A_{1/2}(b) \simeq +1.41 \rightarrow \text{Constructive}$ (destructive) interference in $gg~(\gamma\gamma)$ channel.

Production dominates the signal strength (no large W contribution in gg) $\Rightarrow \delta \mu_{\gamma\gamma} \sim \delta \mu_{\gamma Z}$.

One VL quark doublet

• Y_B:
$$\delta \mu_{\gamma\gamma} \sim \delta \mu_{\gamma Z} \sim 0.3$$

Table of contents

- Classification of the Standard Model extensions
- 2 Constraints on the models
- 3 SM + a new exotic chiral family
- SM + 2 sterile neutrinos
- 5 SM + one vector-like lepton
- 6 SM + one vector-like quark
- SM + two vector-like leptons

Two VL leptons $\psi_{1L}, \psi_{1R} \sim (1, 1, Y) + \psi_{2L}, \psi_{2R} \sim (1, 2, Y + \frac{1}{2})$

 $\begin{aligned} -\mathcal{L}_{\psi_{1}\psi_{2}} &= \widetilde{\lambda}\overline{\psi_{1L}}\widetilde{H}\psi_{2R} + \lambda\overline{\psi_{2L}}H\psi_{1R} + M_{1}\overline{\psi_{1L}}\psi_{1R} + M_{2}\overline{\psi_{2L}}\psi_{2R} + h.c. \\ \Rightarrow 5 \text{ free parameter: 2 Yukawa, 2 Vectorial masses and 1 phase } \varphi. \end{aligned}$

Mixing

• Two states with charges
$$Q = Y$$
:
 $\mathcal{M}_Y = \begin{pmatrix} M_1 & \widetilde{m} \\ m & M_2 \end{pmatrix} = U_L diag(m_1, m_2) U_R^{\dagger}, \quad \widetilde{m} = \frac{\widetilde{\lambda}_V}{\sqrt{2}}, \quad m = \frac{\lambda_V}{\sqrt{2}}$
 $U_L = \begin{pmatrix} c_L & s_L \\ -s_L & c_L \end{pmatrix} \begin{pmatrix} e^{i\varphi} & 0 \\ 0 & 1 \end{pmatrix}, \quad U_R = \begin{pmatrix} c_R & s_R \\ -s_R & c_R \end{pmatrix}$
• One state with charge $Q = Y + 1$ and mass M_2 .

Two VL leptons- Degenerated case

Parameters

$$\begin{array}{l} \hline \text{Degenerated masses:} \ |M_1| = |M_2| \equiv M, \ |m_{12}| = |m_{21}| \equiv \mu \\ \Rightarrow m_1 = m_2 = \sqrt{M^2 + \mu^2} \equiv m_\psi \end{array}$$

$h\gamma\gamma$ coupling

$$\begin{split} \mathcal{A}_{f_{1},f_{2}}^{\gamma\gamma} &= 2Q^{2}F\left(\theta_{L},\theta_{R},\varphi\right)A_{1/2}\left(\tau_{\psi}\right) \geqslant 0 \Rightarrow \text{Destructive interference with SM} \\ F\left(\theta_{L},\theta_{R},\varphi\right) &= s_{L}^{2}c_{R}^{2} + c_{L}^{2}s_{R}^{2} - 2c_{L}s_{L}c_{R}s_{R}\cos\varphi \\ \Rightarrow \text{ Cancellation region where the rate is accidentally close to SM as} \\ \mathcal{A}_{f_{1},f_{2}}^{\gamma\gamma} &\simeq -2\mathcal{A}_{SM}^{\gamma\gamma}. \end{split}$$

$h\gamma Z$ coupling

 $\begin{aligned} \mathcal{A}_{f1,f2}^{\gamma Z} &= \frac{Q}{c_w^2} F\left(\theta_L, \theta_R, \varphi\right) \left(g_{11}^V + g_{22}^V\right) \mathcal{A}_{1/2}\left(\tau_\psi, \lambda_\psi\right), \\ g_{11}^V + g_{22}^V &= -\frac{1}{2} - 2Qs_w^2 \Rightarrow \text{Always constructive interference at large } Q \\ \text{For } \varphi &= 0 \text{ possible to reach } \mu_{\gamma Z} \simeq 3. \end{aligned}$

For $\varphi \neq 0$ additional contribution from $\widetilde{\mathcal{A}}_{f1,f2}^{\gamma Z}$: Possible to reach $\mu_{\gamma Z} \simeq 7$

$h\gamma\gamma$ and $h\gamma Z$ couplings

Case with different masses $m_1 \neq m_2$ and no CP violation:

•
$$\mathcal{A}_{f_1,f_2}^{\gamma\gamma} \simeq 2Q^2 \left[s_L^2 c_R^2 + c_L^2 s_R^2 - \left(\frac{m_1}{m_2} + \frac{m_2}{m_1} \right) c_L s_L c_R s_R \right] \mathcal{A}_{1/2}(\tau_1)$$

 \Rightarrow Parameters can be tuned such that $\mathcal{A}_{f_1,f_2}^{\gamma\gamma} \simeq 0$.

• Possible to reach $\mu_{\gamma Z}\simeq 2$

Conclusion

A lot of Higgs couplings measured at LHC run 1: So far no discrepancy compare to SM.

 \Rightarrow Important to understand where large NP effects are still possible.

We systematically analysed extensions that modify Higgs couplings in a model independent way and up to 4 new fermionic multiplets.

- Chiral extensions with $\mathcal{A}_{new}^{\gamma\gamma} \simeq -2\mathcal{A}_{SM}^{\gamma\gamma}$ are in agreement with $h\gamma\gamma$ and can induced large contribution to $h\gamma Z$ ($\mu_{\gamma Z} \simeq 1.55$).
- Two sterile neurinos can induced large Higgs decays into $\nu'\nu'$ and $h\nu\nu'$ if a strong cancellation in the neutrinos mass is present.
- A VL singlet E can induced a large $h\tau\tau'$ coupling if the τ' is lighter than the Higgs.
- A VL quark X_T or Y_B can significantly contributes to $h\gamma Z$.
- Two VL leptons can lead to $\mu_{\gamma Z}$ as large as 7.

Large deviations in $h\gamma Z$, $h\tau \tau'$, $h\nu \nu'$ are possible. \Rightarrow LHC run 2 will discards these extensions or (being optimistic) maybe see such deviations!

Thanks for your attention!