Resonant mono Higgs at the LHC and at future lepton colliders

Lorenzo Basso CPPM and Aix-Marseille Université

To be released soon

Outline

- Status of the Higgs boson
- Mono Higgs
 - Dark matter
 - Resonant via sterile neutrinos (SPSM)

Analysis at the LHC

- Bounds
- Reinterpretation in SPSM
- Glimpses of FCC-ee
- Conclusions

Introduction

The Standard Model of particle physics: $SU(3)_C \times SU(2)_L \times U(1)_Y$

Problems:

- dark matter
- dark energy
- neutrino masses
- baryon-antibaryon asymmetry
- gravity

• . . .

Introduction

LHC run-I at $\sqrt{s} = 7/8$ TeV: found the Higgs boson

LHC run-II at $\sqrt{s} = 13(14)$ TeV: (among others) study Higgs boson properties, clarify if SM boson, search for New Physics

Lorenzo Basso (OVECU)

Mono-X, X = Higgs boson

Mono-X signatures: production of X in association with missing momentum

Vaste literature, $X = any SM particle: t/b, W/Z, \gamma, j, and h$

"Missing momentum" \leftrightarrow (pair) dark matter candidates

For X = h, any type of mediator: scalar or vector, SM or BSM

Mono-higgs present also in SM: higgs-strahlung

Mono-X, X = Higgs boson

Mono-X, X = Higgs boson

Typical limits differentiating h decay mode

L. Carpenter et al., 1312.2592

Diphoton is the most powerful in costraining h+ MET final state

What's missing?

Fermions!

What's missing?

Fermions!

Status of neutrino masses

S.F. King, C. Luhn, Rept. Prog. Phys. 76 (2013) 056201

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \mathcal{U}_{PMNS}^{-1} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$\mathcal{U}_{PMNS} = U_{23}U_{13}U_{12}\left(P_{12}\right)$$

with

$$\sin^2 \theta_{12} = 0.31 \pm 0.02, \sin^2 \theta_{23} = 0.41 \pm 0.05, \sin^2 \theta_{13} = 0.024 \pm 0.003.$$

The previous summary is the result of global fits (assumption: U_{PMNS} is a *unitary* matrix).

However, most common models that explain neutrino masses predict extra neutrinos that mix with the SM ones: ν_i , i = 1, ..., 3 + n mass eigenstates

New unitary diagonalisation matrix is \mathcal{U} :

$$\begin{pmatrix} \nu_1 \\ \vdots \\ \nu_{3+n} \end{pmatrix} = \begin{pmatrix} \mathcal{U}_{PMNS} & \mathcal{W} \\ \mathcal{W}^{\dagger} & \mathcal{V} \end{pmatrix} \begin{pmatrix} \nu_{L_e} \\ \vdots \\ N_n \end{pmatrix}$$

As a submatrix, U_{PMNS} non unitary (for $n \neq 0$)

Seesaw mechanisms

Neutrino masses where discussed well before the discovery of neutrino oscillations, adding right-handed (sterile) neutrinos

• type-I/III, $N \sim (1,1,0)/(1,3,0)$: $\mathscr{L}_N = -y_D \overline{L} \widetilde{\phi} N - M \overline{N^c} N + \text{H.c.},$

$$\mathcal{M} = \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \qquad \Rightarrow \qquad \begin{cases} m_\nu \sim \frac{m_D^2}{M} \\ m_N \sim M \end{cases}$$

Drawback is as usual, $M \sim M_{GUT}$ or $y_D \sim 10^{-12}$

• linear/inverse, pairs of $N \sim (1, 1, 0)$, $\mathscr{L}_N = -y_D \overline{L} \widetilde{\phi} N_1 - M \overline{N_1^c} N_2 + \dots$

$$\mathcal{M} = \begin{pmatrix} 0 & m_D & \mu \\ m_D & 0 & M \\ \mu & M & \varepsilon \end{pmatrix} \qquad \Rightarrow \qquad \begin{cases} \lim_{\nu \to \mu} \frac{m_D}{M} & \text{or} & \varepsilon \frac{m_D^2}{M^2} \\ m_{N_1} \sim m_{N_2} \sim M \end{cases}$$

SM neutrino masses come from soft breaking of (protective) symmetry, $\mu/\varepsilon \ll 1$, hence simultaneously $M \sim \mathcal{O}(1)$ TeV and $y_D \sim \mathcal{O}(1)$ • type-II, with a Higgs triplet and no extra neutrinos

Seesaw mechanisms

Neutrino masses where discussed well before the discovery of neutrino oscillations, adding right-handed (sterile) neutrinos

• type-I/III, $N \sim (1,1,0)/(1,3,0)$: $\mathscr{L}_N = -y_D \overline{L} \widetilde{\phi} N - M \overline{N^c} N + \text{H.c.},$

$$\mathcal{M} = \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \qquad \Rightarrow \qquad \begin{cases} m_\nu \sim \frac{m_D^2}{M} \\ m_N \sim M \end{cases}$$

Drawback is as usual, $M \sim M_{GUT}$ or $y_D \sim 10^{-12}$

• linear/inverse, pairs of $N \sim (1, 1, 0)$, $\mathscr{L}_N = -y_D \overline{L} \widetilde{\phi} N_1 - M \overline{N_1^c} N_2 + \dots$

$$\mathcal{M} = \begin{pmatrix} 0 & m_D & \mu \\ m_D & 0 & M \\ \mu & M & \varepsilon \end{pmatrix} \qquad \Rightarrow \qquad \begin{cases} \lim_{\nu \to \mu} \frac{\min_D \sigma}{M} \text{ or } \varepsilon \frac{m_D^2}{M^2} \\ m_{N_1} \sim m_{N_2} \sim M \end{cases}$$

SM neutrino masses come from soft breaking of (protective) symmetry, $\mu/\varepsilon \ll 1$, hence simultaneously $M \sim \mathcal{O}(1)$ TeV and $y_D \sim \mathcal{O}(1)$ • type-II, with a Higgs triplet and no extra neutrinos

Seesaw mechanisms

Neutrino masses where discussed well before the discovery of neutrino oscillations, adding right-handed (sterile) neutrinos

• type-I/III, $N \sim (1,1,0)/(1,3,0)$: $\mathscr{L}_N = -y_D \overline{L} \widetilde{\phi} N - M \overline{N^c} N + \text{H.c.},$

$$\mathcal{M} = \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \qquad \Rightarrow \qquad \begin{cases} m_\nu \sim \frac{m_D^2}{M} \\ m_N \sim M \end{cases}$$

Drawback is as usual, $M \sim M_{GUT}$ or $y_D \sim 10^{-12}$

• linear/inverse, pairs of $N \sim (1, 1, 0)$, $\mathscr{L}_N = -y_D \overline{L} \widetilde{\phi} N_1 - M \overline{N_1^c} N_2 + \dots$

$$\mathcal{M} = \begin{pmatrix} 0 & m_D & \mu \\ m_D & 0 & M \\ \mu & M & \varepsilon \end{pmatrix} \qquad \Rightarrow \qquad \begin{cases} \lim_{\nu \to \mu} \frac{\min_D \sigma}{M} & \text{or } \varepsilon \frac{m_D^2}{M^2} \\ m_{N_1} \sim m_{N_2} \sim M \end{cases}$$

SM neutrino masses come from soft breaking of (protective) symmetry, $\mu/\varepsilon \ll 1$, hence simultaneously $M \sim \mathcal{O}(1)$ TeV and $y_D \sim \mathcal{O}(1)$

• type-II, with a Higgs triplet and no extra neutrinos

Seesaw mechanisms and mono-Higgs

To explain neutrino masses with sterile states, this interaction term arises

 $\mathscr{L}_N = - y_D \,\overline{L} \,\widetilde{\phi} \, N$

that couples the SM neutrinos to the heavy neutrinos and the Higgs field (h and goldstones)

- $BR(N \rightarrow \ell^{\pm}W^{\mp}): BR(N \rightarrow \nu Z): BR(N \rightarrow \nu H) \sim 2:1:1$
- Resonant mono-Higgs if N produced on-shell (and M_N > M_h)!

Neutrino oscillations require 2 neutrinos to be massive

• Assumption: collider phenomenology dominated by two sterile neutrinos N_i with protective symmetry (SPSM), such that

$$\mathscr{L}_{N} = -\frac{1}{2} \overline{N_{R}^{1}} M(N_{R}^{2})^{c} - y_{\nu_{\alpha}} \overline{N_{R}^{1}} \widetilde{\phi}^{\dagger} L^{\alpha} + \text{H.c.}$$

• 3+2 neutrinos, with mass matrix

$$\mathscr{L}_{\text{mass}} = -\frac{1}{2} \begin{pmatrix} \frac{\overline{\nu_{e_L}^c}}{\nu_{\mu_L}^c} \\ \frac{\overline{\nu_{e_L}^c}}{N_R^1} \\ \frac{\overline{N_R^2}}{N_R^2} \end{pmatrix}^T \begin{pmatrix} 0 & 0 & 0 & m_e & 0 \\ 0 & 0 & 0 & m_\mu & 0 \\ 0 & 0 & 0 & m_\tau & 0 \\ m_e & m_\mu & m_\tau & 0 & M \\ 0 & 0 & 0 & M & \epsilon \end{pmatrix} \begin{pmatrix} \nu_{e_L} \\ \nu_{\mu_L} \\ \nu_{\tau_L} \\ (N_R^1)^c \\ (N_R^2)^c \end{pmatrix} + \text{H.c.}$$

 The leptonic mixing matrix to leading order in the active-sterile mixing parameters:

$$\mathcal{U} = \begin{pmatrix} \mathcal{N}_{e1} & \mathcal{N}_{e2} & \mathcal{N}_{e3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{e} & \frac{1}{\sqrt{2}}\theta_{e} \\ \mathcal{N}_{\mu1} & \mathcal{N}_{\mu2} & \mathcal{N}_{\mu3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\mu} & \frac{1}{\sqrt{2}}\theta_{\mu} \\ \mathcal{N}_{\tau1} & \mathcal{N}_{\tau2} & \mathcal{N}_{\tau3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\tau} & \frac{1}{\sqrt{2}}\theta_{\tau} \\ 0 & 0 & 0 & \frac{\mathrm{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\theta_{e}^{*} & -\theta_{\mu}^{*} & -\theta_{\tau}^{*} & -\frac{\mathrm{i}}{\sqrt{2}} \left(1 - \frac{\theta^{2}}{2}\right) & \frac{1}{\sqrt{2}} \left(1 - \frac{\theta^{2}}{2}\right) \end{pmatrix}$$

Mixing parameters and PMNS (sub-)matrix

$$\theta_{\alpha} = \frac{y_{\nu_{\alpha}}^*}{\sqrt{2}} \frac{v_{\rm EW}}{M}, \qquad \qquad \mathcal{N}_{\alpha i} = \left(\delta_{\alpha\beta} - \frac{1}{2}\theta_{\alpha}\theta_{\beta}^*\right) (U_{\ell})_{\beta i}$$

Non-unitarity of the PMNS matrix

- Input parameters affected: Fermi constant $G_F = G_{\mu}(1 \epsilon_{\mu})(1 \epsilon_e)$, $\sin \theta_W$
- Weak currents with active neutrinos:

$$(J^{\mu,\pm})_{\alpha i} = \ell_{\alpha} \gamma^{\mu} \nu_i \mathcal{N}_{\alpha i} , \qquad (J^{\mu,0})_{ij} = \nu_i \gamma^{\mu} \nu_j (\mathcal{N}^{\dagger} \mathcal{N})_{ij}$$

- ⇒ Allows for indirect tests of leptonic mixing (electroweak precision observables)
 - $! > 3\sigma$ when neglecting $\sin_{eff}^{\ell, had}$. LB, Fischer, v.d. Bij arXiv:1310.2057 (2013) ! Indication for non-zero mixing with the electron neutrino.

Antusch and Fischer arXiv:1407.6607 (2014)

Present bounds

$$y_{\nu_e} \le 0.042 \cdot \frac{M_N/GeV}{175} \qquad y_{\nu_{\mu}} \le 0.065 \cdot \frac{M_N/GeV}{175} \qquad y_{\nu_{\tau}} \le 0.015 \cdot \frac{M_N/GeV}{175}$$

Analysis

- Inspired by the neutrino simplified model, study of resonant mono-Higgs via fermionic resonance
- Free parameters: M_N (and later $y_{\nu_{\alpha}} \equiv y_{\nu}$ $\forall \alpha = e, \mu, \tau$)
- two final states: $h \rightarrow b\overline{b}$ and $h \rightarrow \gamma\gamma$

Monte Carlo simulation details

LO samples simulation with

- parton level: MG5_aMC@NLO (CTEQ6L1)
- Hadronisation/showering: Pythia6 Tune Z2
- FastSim: Delphes3 ma5Tune
- Analysis: MadAnalysis5

Signal:

5 benchmark points of $M \in [200, 350, 500, 750, 1000]$ GeV. No k-factors

Backgrounds (plus up to 2 jets):

- $b\overline{b}$: ggH, Wh/Zh, $W(Z)b\overline{b}$, $t\overline{t}W$, $t\overline{t}$ and single-t
- $\gamma\gamma$: ggH, Wh/Zh, $\gamma\gamma$, and $\gamma\gamma Z/W$

Samples normalised to NLO cross sections where available

CMS detector emulation Anti $-k_T$ algorithm with R = 0.5b-tagging CSV medium working point: b-tag = 70%, mistag = 1%

Objects identification

$$\begin{array}{ll} p_T(\gamma) > 30 \; {\rm GeV}, & |\eta(\gamma)| < 2.5 \;, & (1) \\ p_T(j) > 40 \; {\rm GeV}, & |\eta(j)| < 3 \;, & (2) \\ \Delta R(\gamma,j) > 0.4, & (3) \end{array}$$

isolated "loose" charged leptons, with $p_T^\ell>10$ GeV, $|\eta^\ell|<2.5(2.4)$ for $\ell=e(\mu),$ are selected for vetoing

$$h \to b\overline{b}$$
 $h \to \gamma\gamma$

- exactly 2 b-tagged jet
- no other jet
- no loose leptons ($e \text{ or } \mu$)

- exactly 2 photons
- no jet
- no loose leptons ($e \text{ or } \mu$)

 $h \to b\overline{b}$

Problem: how do you select (trigger) these events, $b\bar{b}+MET$?

Di-jet trigger? too high thresholds

MET trigger! fully functional for $MET \ge 200 \text{ GeV}$

Removes completely $pp \rightarrow b\bar{b}$. Suppresses low M_N points.

Then, select Higgs mass window: $100 \leq M(b\bar{b})/{\rm GeV} \leq 150$

Lorenzo Basso (OVECU)

$$h \to b\overline{b}$$

Large MET means also large higgs boson boosts (momentum conservation) $p_T(b\bar{b}) \geq 200 \; {\rm GeV}$

Finally, optimise cut on transverse mass of the whole final state ($b\bar{b}$ + MET) (sort of resonant)

 $h \to \gamma \gamma$

Here trigger is not a problem, but signal has still large MET

```
Enhance signal by cutting MET \ge 120 \text{ GeV}
```

Then, select Higgs mass window: $110 \le M(b\bar{b})/\text{GeV} \le 140$

Removes completely $pp \rightarrow \gamma\gamma$.

 $h \to \gamma \gamma$

Again, large higgs boson boosts (momentum conservation) $p_T(b\bar{b}) \geq 120 \; {\rm GeV}$

Finally, optimise cut on transverse mass of the whole final state ($\gamma\gamma$ + MET) (sort of resonant)

Excluded cross sections for benchmark points

$h \rightarrow b\overline{b}$	M = 200 GeV	M = 350 GeV	$M = 500 \; \mathrm{GeV}$	M = 750 GeV	$M = 1000 \; \mathrm{GeV}$
σ (fb), $\mathcal{L} = 100 \text{ fb}^{-1}$	704.7 ± 44.4	135.2 ± 3.9	35.69 ± 0.57	14.37 ± 0.21	9.65 ± 0.17
σ (fb), $\mathcal{L} = 3 \text{ ab}^{-1}$	126.5 ± 8.0	24.3 ± 0.7	6.41 ± 0.10	2.53 ± 0.04	1.61 ± 0.03

$h \rightarrow \gamma \gamma$	M = 200 GeV	M = 350 GeV	M = 500 GeV	M = 750 GeV	M = 1000 GeV
σ (fb), $\mathcal{L} = 100 \text{ fb}^{-1}$	2.949 ± 0.010	0.538 ± 0.005	0.297 ± 0.002	0.213 ± 0.002	0.201 ± 0.002
σ (fb), $\mathcal{L} = 3 \text{ ab}^{-1}$	0.4306 ± 0.0020	0.0488 ± 0.0004	0.0358 ± 0.0003	0.0179 ± 0.0001	0.0148 ± 0.0001

Significance:

 $\mathbb{S} = \frac{S}{\sqrt{S+B}}$

Exclusion:

$$\sigma \mid \mathbb{S}(\sigma) \equiv 2$$

Excluded cross sections for Higgs production

Black line is combination of the two decay modes

 $b\overline{b}$ has a larger exclusion power for Higgs boson + MET

Reinterpretation in SPSM

For 100 fb^{-1} of data only neutrino masses below 900 GeV are in the naive non-perturbative regime $y_{\nu} < 4\pi$

Large gain at the ultimate 3 ab^{-1}

However, still at least one order of magnitude above the current constraints one

Sterile neutrinos are leptons and mix with LH degrees of freedom Indirect probe: enhancement of $e^+e^- \to W^+W^-$

Direct probe: mono-Higgs (among others)

Lepton colliders are sensitive to neutrino flavour

$$y_e \neq 0, \, y_{\mu,\tau} = 0$$
 $y_\tau \neq 0, \, y_{e,\mu} = 0$

In both cases, s-channel Z production is present, flavour blind Only if $y_e \neq 0$, also W t-channel contributes

Mono-Higgs, $h \to b\bar{b}$ at parton level, $y_e \neq 0, y_{\mu,\tau} = 0$

Potential to improve on existing limits or to observe it.

Still $N \to \ell^{\pm} W^{\mp}$ best search channel.

Conclusions

Higgs boson properties are going to be scrutinised soon

Mono-X signatures promising to look for new physics

Dark matter

Models neutrino masses predict mono-Higgs, resonant

- studied at LHC in benchmark model (SPSM) to set kinematics
- $h \to b\overline{b}$ and $h \to \gamma\gamma$
- sensitivity of signatures
- combination of decay modes

Reinterpretation to SPSM (original motivation to look at signature)

- LHC cannot improve on existing limits
- Further scope of lepton colliders

Backup slides

Interactions between heavy neutrinos and the SM

• Charged current (CC):

$$j^{\pm}_{\mu} = \frac{g}{2} \,\theta_{\alpha} \,\bar{\ell}_{\alpha} \,\gamma_{\mu} \left(-\mathrm{i}N_1 + N_2\right)$$

Neutral current (NC):

$$j^{0}_{\mu} = \frac{g}{2 c_{W}} \left[\theta^{2} \bar{N}_{2} \gamma_{\mu} N_{2} + (\bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 1} N_{1} + \bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 2} N_{2} + \text{H.c}) \right]$$

• Higgs boson Yukawa interaction:

$$\mathscr{L}_{\text{Yukawa}} = \sum_{i=1}^{3} \xi_{\alpha 2} \frac{\sqrt{2} M}{v_{\text{EW}}} \nu_i \phi^0 \left(\overline{N}_1 + \overline{N}_2 \right)$$

• With the mixing parameters: $\xi_{\alpha 1} = (-i) \mathcal{N}^*_{\alpha \beta} \frac{\theta_{\beta}}{\sqrt{2}}, \xi_{\alpha 2} = i \xi_{\alpha 1}$

The setup

Courtesy of Eric Conte

Massive Monte Carlo generation for background

- V + jets with V=W,Z,y
- H + jets
- VV + jets
- VH + jets
- T + jets
- TV + jets
- TH + jets
- TT + jets
- TTV + jets
- TTH + jets
- TTVV + jets
- K-factor for background are mainly computed with MG_aMC@NLO
- K-factor for signal are (now) available in the literature ...

Lorenzo Basso (OVECU)

More simulation details

Massive background event generation to gather enough statistics:

Process	# Files	# Events	Process	# Files	# Events
SingleTop_W_madspin	189	18898481	SingleTop_s_madspin	188	18771372
SingleTop_t_5FS_madspin	83	8299246	TTdilep_WToLNu_madspin	1	64191
TTdilep_WWToLLNuNu_madspin	1	99999	TTdilep_WZToLLLNu_madspin	1	99991
TTdilep_ZToLL_madspin	1	99989	TTdilep_ZZToLLLL_madspin	1	99993
TTdilep_madspin	200	9427953	TTsemilep_WToLNu_madspin_1	1	59694
TTsemilep_WToLNu_madspin_2	1	59771	TTsemilep_WWToLLNuNu_madspin_1	1	99989
TTsemilep_WWToLLNuNu_madspin_2	1	99997	TTsemilep_WZToLLLNu_madspin_1	2	199988
TTsemilep_ZToLL_madspin_1	1	99995	TTsemilep_ZToLL_madspin_2	1	99987
TTsemilep_ZZToLLLL_madspin_1	1	99993	TTsemilep_ZZToLLLL_madspin_2	1	99990
TTsemilep_madspin_1	172	8105465	TTsemilep_madspin_2	173	8156688
TZq2_W_trilep1	100	9999157	TZq2_W_trilep2	97	9672987
TZq2_s_trilep	94	9393276	TZq2_t5FS_trilep	97	9699081
WToLNu-0Jet_sm-no_masses	592	52785449	WToLNu-0Jet_sm-no_masses-run2	482	42972689
WToLNu-1Jet_sm-no_masses	586	32827404	WToLNu-2Jets_sm-no_masses	396	15769022
WToLNu-3Jets_sm-no_masses	488	12931463	WWToLLNuNu	194	11221071
WZTolljj	5	306339	WZToLLLNu	120	7666801
WZToLNuNuNu	1	59147	WZToNuNuJJ	1	59420
ZToLL10-50-0Jet_sm-no_masses	1	97701	ZToLL10-50-1Jet_sm-no_masses	1	45361
ZToLL10-50-2Jets_sm-no_masses	1	38998	ZToLL10-50-3Jets_sm-no_masses	1	5690
ZToLL50-0Jet_sm-no_masses	9	784399	ZToLL50-1Jet_sm-no_masses	10	549567
ZToLL50-2Jets_sm-no_masses	9	350088	ZToLL50-3Jets_sm-no_masses_split	8	115396
ZToLL50-4Jets_sm-no_masses_split	1	2884	ZZTO4Nu	1	35808
ZZTOLLLL	92	6222800	ZZToLLNuNu	1	64305

Monte Carlo errors below permil: neglected