Lattice study of the Higgs-Yukawa model for BSM physics

Université des Sciences et Lettres, Montpellier 17/03/2016

C.-J. David Lin
National Chiao-Tung University, Hsinchu, Taiwan
Centre de Physique Théorique, Marseille, France

Work published in Phys. Lett. B744 (20I5) I46, arXiv:I50I.05440[hep-lat].

Collaborators

- DavidY.-J. Chu (NCTU,Taiwan)
- Karl Jansen (DESY Zeuthen, Germany)
- Bastian Knippschild (U. of Bonn, Germany)
- Attila Nagy (Humboldt U. zu Berlin, Germany)

Outline

- Motivation.
- General consideration.
- New physics: A dim-6 operator as a representative.
- Outlook.

Motivation

- Below 750 GeV , no obvious deviation from the SM hitherto.
- Assuming that the Higgs-Yukawa sector has only a Gaussian fixed point. (discuss offline)
- The SM must be replaced by its UV completion.
- The scale for new physics is unknown.
- Triviality of the quartic coupling means higherdim operators may play a role.

Motivation

Do we know the Higgs potential well?

- Textbook thingy

$$
V(H)=-\mu^{2}|H|^{2}+\lambda|H|^{4}
$$

- How about....

$$
\begin{gathered}
\tilde{V}(H)=-\lambda|H|^{4}+c_{6}|H|^{6} \\
v^{2}=\frac{4}{3} \frac{\lambda}{c_{6}}, \quad \frac{m_{h}^{2}}{v^{2}}=2 \lambda \quad \Longrightarrow c_{6} v^{2} \sim 0.17
\end{gathered}
$$

- Better data in the Higgsicion era.
- Lattice computation can play a role.

What the lattice did in the past...

$$
\lambda_{6}=0
$$

Constraints on the masses of extra-generation fermions from the 125 GeV scalar.

The lattice regularisation

- Discrete space-time points.
- Finite-volume.

Finite number of DoF.

- Monte-Carlo method to evaluate the path integral,

$$
\langle O\rangle=\frac{1}{Z} \int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]} O[U] \quad \text { with } \quad Z=\int \mathcal{D}[U] \mathrm{e}^{-S_{G}[U]}
$$

The continuum theory

$$
\begin{gathered}
S^{\mathrm{cont}[\bar{\psi}, \psi, \varphi]=\int d^{4} x\{ } \begin{aligned}
&\left.\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{\dagger}\left(\partial^{\mu} \varphi\right)+\frac{1}{2} m_{0}^{2} \varphi^{\dagger} \varphi+\lambda\left(\varphi^{\dagger} \varphi\right)^{2}+\lambda_{6}\left(\varphi^{\dagger} \varphi\right)^{3}\right\} \\
&+\int d^{4} x\left\{\bar{t} \not \partial t+\bar{b} \not \partial b+y\left(\bar{\psi}_{L} \varphi b_{R}+\bar{\psi}_{L} \tilde{\varphi} t_{R}\right)+h . c .\right\} \\
& \psi=\binom{t}{b}, \quad \varphi=\binom{\varphi^{2}+i \varphi^{1}}{\varphi^{0}-i \varphi^{3}}, \tilde{\varphi}=i \tau_{2} \varphi^{*}
\end{aligned} .
\end{gathered}
$$

Note: degenerate Yukawa couplings

The lattice theory

- Bosonic component:

$$
\begin{aligned}
& S_{B}[\Phi]=-\kappa \sum_{x, \mu} \Phi_{x}^{\dagger}\left[\Phi_{x+\mu}+\Phi_{x-\mu}\right]+\sum_{x}\left(\Phi_{x}^{\dagger} \Phi_{x}+\hat{\lambda}\left[\Phi_{x}^{\dagger} \Phi_{x}-1\right]^{2}+\hat{\lambda}_{6}\left[\Phi_{x}^{\dagger} \Phi_{x}\right]^{3}\right) . \\
& a \varphi=\sqrt{2 \kappa}\binom{\Phi^{2}+i \Phi^{1}}{\Phi^{0}-i \Phi^{3}}, a^{2} m_{0}^{2}=\frac{1-2 \hat{\lambda}-8 \kappa}{\kappa}, \lambda=\frac{\hat{\lambda}}{4 \kappa^{2}}, a^{-2} \lambda_{6}=\frac{\hat{\lambda}_{6}}{8 \kappa^{3}} .
\end{aligned}
$$

- Fermionic component: the overlap fermions.
\Longrightarrow Exact lattice chiral cymmetry.

The continuum limit

$$
a \rightarrow 0 \text { and } \Lambda \rightarrow \infty
$$

- Supercomputers only know "pure numbers".
- All couplings are rescaled to be in lattice units.
- For a theory with asymptotic freedom, with symmetry "protecting" the mass, e.g., QCD:

$$
g_{0}^{2}(a) \xrightarrow{a \rightarrow 0} 0, a m_{0} \xrightarrow{a \rightarrow 0} 0
$$

while

$$
g_{\mathrm{R}}^{2}(\mu, a) \stackrel{a \rightarrow 0}{=} \text { finite, } a M_{\mathrm{R}} \xrightarrow{a \rightarrow 0} 0 \text { with } M_{\mathrm{R}}=\text { finite and } \ll \Lambda .
$$

\Rightarrow Keep lowering the dimensionless bare couplings.

The continuum limit

$$
a \rightarrow 0 \text { and } \Lambda \rightarrow \infty
$$

- A trivial theory w/o symmetry to "protect" the mass:

$$
\begin{gathered}
g_{0}^{2}(a) \xrightarrow{a \rightarrow 0} \text { finite, am } m_{0} \xrightarrow{a \rightarrow 0} \text { finite } \\
\text { while } \\
g_{\mathrm{R}}^{2}(\mu, a) \xrightarrow{a \rightarrow 0} 0, a m_{\mathrm{R}} \xrightarrow{a \rightarrow 0} 0 .
\end{gathered}
$$

- In practice, we input the bare coupling:

$$
g_{0}^{2}(a), a m_{0}=\text { arbitrary number }
$$

\Rightarrow Scanning in bare couplings, and keep the cut-off.

The continuum limit

$$
a \rightarrow 0 \text { and } \Lambda \rightarrow \infty
$$

- The key point is the separation of the scales.
- It can be achieved at 2 nd-order bulk phase transitions: $\xi / a \longrightarrow \infty$.
- Condensed matter physics:

At fixed a, take $\xi \rightarrow \infty$.

- For our purpose:

At fixed ξ, take $a \rightarrow 0$.

The constraint effective potential

- Phase structure is probed using the Higgs vev,

$$
\hat{v}=a \varphi_{c}=\langle\hat{m}\rangle=\left\langle\frac{1}{V}\right| \sum_{x} \Phi_{x}^{0}| \rangle .
$$

- The constraint effective potential is a useful tool,

$$
\begin{gathered}
\mathrm{e}^{-V U(\hat{v})} \sim \int \mathcal{D} \varphi \mathcal{D} \bar{\psi} \mathcal{D} \psi \delta\left(\varphi_{0}^{0}-\varphi_{c}\right) \mathrm{e}^{-S[\varphi, \bar{\psi}, \psi]}, \\
\text { where } \varphi_{0}^{0}=\frac{1}{V} \int d^{4} x \varphi^{0} .
\end{gathered}
$$

- Analytically calculated in perturbation theory.
- Numerically obtained by histograming \hat{m}.

The constraint effective potential

$$
\begin{aligned}
& U_{1}(\hat{v})=U_{f}(\hat{v})+\frac{m_{0}^{2}}{2} \hat{v}^{2}+\lambda \hat{v}^{4}+\lambda_{6} \hat{v}^{6} \\
&+\lambda \cdot \hat{v}^{2} \cdot 6\left(P_{H}+P_{G}\right)+\lambda_{6} \cdot\left(\hat{v}^{2} \cdot\left(45 P_{H}^{2}+54 P_{G} P_{H}+45 P_{G}^{2}\right)+\hat{v}^{4} \cdot\left(15 P_{H}+9 P_{G}\right)\right) . \\
& U_{2}(\hat{v})=U_{f}(\hat{v})+\frac{m_{0}^{2}}{2} \hat{v}^{2}+\lambda \hat{v}^{4}+\lambda_{6} \hat{v}^{6} \\
&+\frac{1}{2 V} \sum_{p \neq 0} \log \left[\left(\hat{p}^{2}+m_{0}^{2}+12 \lambda \hat{v}^{2}+30 \lambda_{6} \hat{v}^{4}\right) \cdot\left(\hat{p}^{2}+m_{0}^{2}+12 \lambda \hat{v}^{2}+30 \lambda_{6} \hat{v}^{4}\right)^{3}\right] \\
&+\lambda\left(3 \tilde{P}_{H}^{2}+6 \tilde{P}_{H} \tilde{P}_{G}+15 \tilde{P}_{G}^{2}\right)+\lambda_{6} \hat{v}^{2}\left(45 \tilde{P}_{H}^{2}+54 \tilde{P}_{H} \tilde{P}_{G}+45 \tilde{P}_{G}^{2}\right)_{1}^{2} \\
&+\lambda_{6}\left(15 \tilde{P}_{H}^{3}+27 \tilde{P}_{H}^{2} \tilde{P}_{G}+45 \tilde{P}_{H} \tilde{P}_{G}^{2}+105 \tilde{P}_{G}^{3}\right), \\
& \text { where } \\
& U_{f}(\hat{v})=-\frac{4}{V} \sum_{p} \log \left|\nu^{+}(p)+y \cdot \hat{v} \cdot\left(1-\frac{\nu^{+}(p)}{2 \rho}\right)\right|^{2}
\end{aligned}
$$

Investigate the non-thermal phase structure

With the dimension-6 operator

y tuned to have $m_{t}=173 \mathrm{GeV}$.

(a) $\lambda_{6}=0.001$
(b) $\lambda_{6}=0.1$

With the dimension-6 operator

$$
y \text { tuned to have } m_{t}=173 \mathrm{GeV} .
$$

$$
\lambda_{6}=0.1 \text { and } \lambda=-0.38
$$

First-order phase transition expected

With the dimension-6 operator

$$
y \text { tuned to have } m_{t}=173 \mathrm{GeV} .
$$

$$
\lambda_{6}=0.1 \text { and } \lambda=-0.40
$$

First-order phase transition expected

The phase structure

$$
y \text { tuned to have } m_{t}=173 \mathrm{GeV}
$$

Effects on the Higgs boson mass

The Higgs mass lower bounds from the CEP

(a) $\lambda_{6}=0.001$

(b) $\lambda_{6}=0.1$

The Higgs mass lower bounds

y tuned to have $m_{t}=173 \mathrm{GeV}$.

$\lambda_{6}=0.001$

$$
\lambda_{6}=0.1
$$

Finite temperature

Non-thermal v.s.Thermal

bare $\lambda_{6}=0.001$

Parameter choice at which non-thermal transition is 2nd-order, while thermal transition is Ist-order

Taking a closer look

$$
\lambda_{b}=-0.008, \kappa=0.122892
$$

Co-existence of two states

Remarks and outlook

- The Higgs-Yukawa model and its extensions contain rich phase structure.
- Adding a dimension-6 operator can alter the spectrum significantly.
- Bounds on new physics.
- Finite-temperature.
* Ist-order transitions near the 2nd-order non-thermal transitions.
\star Only observed with fermions.

