to the test

16/11

Montpellier L2C April 7th 2016

 $\phi_{\alpha} = M^{4} - \frac{(\phi)^{1/4}}{(\phi)^{2}M^{1/4}} = M^{4} - \frac{(\phi)^{1/4}}{(\phi)^{2}M^{1/4}}$

Vincent Vennin, ICG Portsmouth

Outline

- Inflation: Where do we Stand?
- Bayesian Model Comparison for Single-Field Models
- Including (and constraining) Reheating
- Adding a Light Scalar Field

Collaborators:

Jérôme Martin (IAP), Christophe Ringeval (Louvain U. CP3), and Roberto Trotta (Imp.Coll) David Wands (ICG), Kazuya Koyama (ICG)

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

• Is a high energy phase of accelerated expansion in the early Universe $\ddot{a} > 0$

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

• Is a high energy phase of accelerated expansion in the early Universe $\ddot{a} > 0$

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2\left(t\right)\mathrm{d}\vec{x}^2$$

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

• Is a high energy phase of accelerated expansion in the early Universe $\ddot{a}>0$

$$\rho_{\rm now} \simeq (10^{-12} {\rm GeV})^4$$

$$\rho_{\rm BBN} \simeq (10 {\rm MeV})^4$$
Inflation
$$\rho_{\rm GUT} \simeq (10^{16} {\rm GeV})^4$$

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

- Is a high energy phase of accelerated expansion in the early Universe $\ddot{a} > 0$
- Solves the Hot Big Bang horizon and flatness problems

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

- Is a high energy phase of accelerated expansion in the early Universe $\ddot{a} > 0$
- Solves the Hot Big Bang horizon and flatness problems
- Requires a fluid with negative pressure $\frac{\ddot{a}}{a} = -\frac{1}{6M_{\rm Pl}^2}\left(\rho + 3p\right)$

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

- Is a high energy phase of accelerated expansion in the early Universe $\ddot{a} > 0$
- Solves the Hot Big Bang horizon and flatness problems

• Requires a fluid with negative pressure
$$\ \frac{\ddot{a}}{a} = -\frac{1}{6M_{
m Pl}^2}\left(
ho+3p
ight)$$

Needs to be connected to the subsequent radiation era through a phase of reheating (driven by the coupling between the inflationary content and other fields)

Starobinsky (1980) Guth (1981) Mukhanov & Chibisov (1981) Linde (1982) Albrecht & Steinhardt (1982)

• Is a high energy phase of accelerated expansion in the early Universe $\ddot{a} > 0$

Solves the Hot Big Bang horizon and flatness problems

• Requires a fluid with negative pressure
$$\frac{\ddot{a}}{a} = -\frac{1}{6M_{
m Pl}^2}\left(
ho+3p
ight)$$

- Needs to be connected to the subsequent radiation era through a phase of reheating (driven by the coupling between the inflationary content and other fields)
- Combined with QM, accounts for the production of cosmological perturbations whose features depend on the underlying inflationary model.

Cosmological Perturbations

Lifshitz (1946), Grishchuk (1974) Starobinsky (1979) Bardeen (1980) Mukhanov and Chibisov (1981) Kodama & Sasaki (1984) Mukhanov, Feldman & Brandenberger (1992)

Cosmological Perturbations

Lifshitz (1946), Grishchuk (1974) Starobinsky (1979) Bardeen (1980) Mukhanov and Chibisov (1981) Kodama & Sasaki (1984) Mukhanov, Feldman & Brandenberger (1992)

Cosmological Perturbations

Lifshitz (1946), Grishchuk (1974) Starobinsky (1979) Bardeen (1980) Mukhanov and Chibisov (1981) Kodama & Sasaki (1984) Mukhanov, Feldman & Brandenberger (1992)

Coherent, Gaussian, almost scale invariant, adiabatic perturbations

Coherent, Gaussian, almost scale invariant, adiabatic perturbations

Standard Scalar Field

- Non Minimal Coupling
- Potential with Features
- Multi-Field Inflation
- Non-Canonical kinetic terms

Coherent, Gaussian, almost scale invariant, adiabatic perturbations

- Standard Scalar Field
- Non Minimal Coupling
- Potential with Features
- Multi-Field Inflation
- Non-Canonical kinetic terms

Coherent, Gaussian, almost scale invariant, adiabatic perturbations

- Standard Scalar Field
- Non Minimal Coupling
- Potential with Features
- Multi-Field Inflation
- Non-Canonical kinetic terms

Coherent, Conssist, almost scale invariant, adiabatic perturbations

- Standard Scalar Field
- Non Minimal Coupling
- Potential with Features
- Multi-Field Inflation
- Non-Canonical kinetic terms

Released March 2013, Updated February 2015 *Planck +...*

Released March 2013, Updated February 2015 *Planck +...*

Released March 2013, Updated February 2015 *Planck +...*

•Consequences for Inflation in General

• Flatness $|\Omega_{\mathcal{K}}| < 0.0005$

Released March 2013, Updated February 2015 *Planck +...*

- Flatness $|\Omega_{\mathcal{K}}| < 0.0005$
- Adiabatic Initial Conditions $\mathcal{I}/\mathcal{R} < 4\%$ (at 95% CL)

Released March 2013, Updated February 2015 *Planck +...*

- Flatness $|\Omega_{\mathcal{K}}| < 0.0005$
- Adiabatic Initial Conditions $\mathcal{I}/\mathcal{R} < 4\%$ (at 95% CL)
- Quasi scale Invariance $n_{
 m s} = 0.968 \pm 0.006$

Released March 2013, Updated February 2015 *Planck +...*

- Flatness $|\Omega_{\mathcal{K}}| < 0.0005$
- Adiabatic Initial Conditions $\mathcal{I}/\mathcal{R} < 4\%$ (at 95% CL)
- Quasi scale Invariance $n_{
 m S} = 0.968 \pm 0.006$
- Gaussianities of the CMB anisotropies $f_{\rm NL}^{\rm loc} = 0.8 \pm 5$ $f_{\rm NL}^{\rm eq} = -16 \pm 70$ $f_{\rm NL}^{\rm orth} = -34 \pm 33$

Released March 2013, Updated February 2015 *Planck* +...

•Consequences for Inflation in General

- Flatness $|\Omega_{\mathcal{K}}| < 0.0005$
- Adiabatic Initial Conditions $\mathcal{I}/\mathcal{R} < 4\%$ (at 95% CL)
- Quasi scale Invariance $n_{
 m S} = 0.968 \pm 0.006$
- Gaussianities of the CMB anisotropies $f_{\rm NL}^{\rm loc} = 0.8 \pm 5$ $f_{\rm NL}^{\rm eq} = -16 \pm 70$ $f_{\rm NL}^{\rm orth} = -34 \pm 33$

single-field, slow-roll models with canonical kinetic terms are favored Giannantonio & Komatsu (2014)

Released March 2013, Updated February 2015 *Planck +...*

•Consequences for Inflation in General

- Flatness $|\Omega_{\mathcal{K}}| < 0.0005$
- Adiabatic Initial Conditions $\mathcal{I}/\mathcal{R} < 4\%$ (at 95% CL)
- Quasi scale Invariance $n_{
 m S} = 0.968 \pm 0.006$
- Gaussianities of the CMB anisotropies $f_{\rm NL}^{\rm loc} = 0.8 \pm 5$ $f_{\rm NL}^{\rm eq} = -16 \pm 70$ $f_{\rm NL}^{\rm orth} = -34 \pm 33$

single-field, slow-roll models with canonical kinetic terms are favored Giannantonio & Komatsu (2014)

•Consequences for Inflationary Models in Particular ...

of single-field slow-roll models

of single-field slow-roll models

•The slow-roll approximation

Sasaki, Nambu & Nakao (1988) Liddle, Pearsons & Barrow (1994)

of single-field slow-roll models

•The slow-roll approximation

Sasaki, Nambu & Nakao (1988) Liddle, Pearsons & Barrow (1994)

 $^{\rm FM/M}_{\rm o.4}$

During inflation, H is almost constant

$$\epsilon_0 = \frac{H_{\rm in}}{H} \simeq {\rm constant}$$

of single-field slow-roll models

•The slow-roll approximation

Sasaki, Nambu & Nakao (1988) Liddle, Pearsons & Barrow (1994)

During inflation, H is almost constant

$$\epsilon_0 = \frac{H_{\rm in}}{H} \simeq {\rm constant}$$

Slow-Roll hierarchy

$$\epsilon_{n+1} = \frac{1}{\epsilon_n} \frac{\mathrm{d}\epsilon_n}{\mathrm{d}N}$$

of single-field slow-roll models

•The slow-roll approximation

Sasaki, Nambu & Nakao (1988) Liddle, Pearsons & Barrow (1994)

During inflation, H is almost constant

$$\epsilon_0 = \frac{H_{\rm in}}{H} \simeq {\rm constant}$$

Slow-Roll hierarchy

$$\epsilon_{n+1} = \frac{1}{\epsilon_n} \frac{\mathrm{d}\epsilon_n}{\mathrm{d}N}$$

$$\epsilon_1 \simeq \frac{1}{2M_{\rm Pl}^2} \left(\frac{V_{\phi}}{V}\right)^2 \qquad \epsilon_2 \simeq \frac{2}{M_{\rm Pl}^2} \left[\left(\frac{V_{\phi}}{V}\right)^2 - \frac{V_{\phi\phi}}{V} \right] \qquad \epsilon_3 \simeq \text{etc...}$$

Inflationary Observables Starobinsky (1979) Hawking (1982) Starobinsky (1982) Starobinsky (1982)

Starobinsky (1982) Guth, Pi (1982) Mukhanov (1985 & 1988)

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C\epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

of single-field slow-roll models

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

Inflationary Observables Starobinsky (1979) Hawking (1982) Starobinsky (1982) Starobinsky (1982)

Starobinsky (1982) Guth, Pi (1982) Mukhanov (1985 & 1988)

of single-field slow-roll models

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C \epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

$$f_{_{
m NL}}^{
m loc}=rac{5}{12}\left(2\epsilon_{1*}+\epsilon_{2*}
ight)$$
 Maldacena (2002)

Starobinsky (1979) Inflationary Observables Hawking (1979) Hawking (1982) Starobinsky (1979) of single-field slow-roll models

Guth, Pi (1982) Mukhanov (1985 & 1988)

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C \epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

Spectral index

$$\begin{split} n_{\rm S} &\equiv 1 + \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq 1 - 2\epsilon_{1*} - \epsilon_{2*} \\ n_{\rm T} &\equiv \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq -2\epsilon_{1*} \end{split}$$

Starobinsky (1979) Inflationary Observables Hawking (1979) Hawking (1982) Starobinsky (1979) of single-field slow-roll models

Guth, Pi (1982) Mukhanov (1985 & 1988)

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C \epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

$$\begin{split} & \text{Spectral index} & \text{Tensor-to-Scalar Ratio} \\ & n_{\text{S}} \equiv 1 + \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq 1 - 2\epsilon_{1*} - \epsilon_{2*} & r \equiv \frac{\mathcal{P}_h\left(k_*\right)}{\mathcal{P}_{\zeta}\left(k_*\right)} \simeq 16\epsilon_{1*} \\ & n_{\text{T}} \equiv \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq -2\epsilon_{1*} \end{split}$$

Starobinsky (1979) Inflationary Observables Hawking (1979) Hawking (1982) Starobinsky (1979) of single-field slow-roll models

Guth, Pi (1982) Mukhanov (1985 & 1988)

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C + 1\right) \epsilon_{1*} - C \epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

$$\begin{split} & \text{Spectral index} & \text{Tensor-to-Scalar Ratio} \\ & n_{\text{S}} \equiv 1 + \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq 1 - 2\epsilon_{1*} - \epsilon_{2*} & r \equiv \frac{\mathcal{P}_h\left(k_*\right)}{\mathcal{P}_{\zeta}\left(k_*\right)} \simeq 16\epsilon_{1*} \\ & n_{\text{T}} \equiv \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq -2\epsilon_{1*} \end{split}$$

Measurements

$$\mathcal{P}_{\zeta} \left(k_{*} \right) \simeq 2 \times 10^{-9}$$
$$n_{\rm s} \simeq 0.96$$
Starobinsky (1979) Inflationary Observables Hawking (1979) Hawking (1982) Starobinsky (1979) of single-field slow-roll models

Guth, Pi (1982) Mukhanov (1985 & 1988)

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C \epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

$$\begin{split} & \text{Spectral index} & \text{Tensor-to-Scalar Ratio} \\ & n_{\text{S}} \equiv 1 + \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq 1 - 2\epsilon_{1*} - \epsilon_{2*} & r \equiv \frac{\mathcal{P}_h(k_*)}{\mathcal{P}_{\zeta}(k_*)} \simeq 16\epsilon_{1*} \\ & n_{\text{T}} \equiv \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq -2\epsilon_{1*} & \text{Targeted Measurements} \end{split}$$

Measurements

$$\mathcal{P}_{\zeta}(k_*) \simeq 2 \times 10^{-9}$$

 $n_{\rm s} \simeq 0.96$

Starobinsky (1979) Inflationary Observables Hawking (1979) Starobinsky (1979) Starobinsky (1979)

Guth, Pi (1982) Mukhanov (1985 & 1988)

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C \epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

of single-field slow-roll models

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

Spectral index

$$\begin{split} n_{\rm S} &\equiv 1 + \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq 1 - 2\epsilon_{1*} - \epsilon_{2*} \\ n_{\rm T} &\equiv \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq -2\epsilon_{1*} \end{split}$$

Tensor-to-Scalar Ratio

$$r \equiv \frac{\mathcal{P}_{h}(k_{*})}{\mathcal{P}_{\zeta}(k_{*})} \simeq 16\epsilon_{1*}$$

Targeted Measurements

energy scale of inflation r

$$\frac{H_*^2}{M_{\rm Pl}^2} \simeq \frac{\pi^2}{2} r \mathcal{P}_{\zeta} \left(k_* \right)$$

Measurements

$$\mathcal{P}_{\zeta}(k_*) \simeq 2 \times 10^{-9}$$

 $n_{\rm s} \simeq 0.96$

Inflationary Observables Starobinsky (1979) Hawking (1982) Starobinsky (1982)

Starobinsky (1982) Guth, Pi (1982) Mukhanov (1985 & 1988)

$$\mathcal{P}_{\zeta} = \frac{H_*^2}{8\pi^2 M_{\rm Pl}^2 \epsilon_{1*}} \left[1 - 2\left(C+1\right) \epsilon_{1*} - C \epsilon_{2*} - \left(2\epsilon_{1*} + \epsilon_{2*}\right) \ln\left(\frac{k}{k_*}\right) \right]$$

of single-field slow-roll models

$$\mathcal{P}_{h} = \frac{2H_{*}^{2}}{\pi^{2}M_{\mathrm{Pl}}^{2}} \left[1 - 2\left(C+1\right)\epsilon_{1*} - 2\epsilon_{1*}\ln\left(\frac{k}{k_{*}}\right) \right]$$

Spectral index

$$\begin{split} n_{\rm S} &\equiv 1 + \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq 1 - 2\epsilon_{1*} - \epsilon_2 \\ n_{\rm T} &\equiv \left. \frac{\mathrm{d} \ln \mathcal{P}_h}{\mathrm{d} \ln k} \right|_{k_*} \simeq -2\epsilon_{1*} \end{split}$$

Tensor-to-Scalar Ratio $r \equiv \frac{\mathcal{P}_h(k_*)}{\mathcal{P}_{\zeta}(k_*)} \simeq 16\epsilon_{1*}$

Targeted Measurements

 $r \longrightarrow \text{energy scale of inflation}$ $n_{\mathrm{T}} \longrightarrow \text{consistency relation}$ $n_{\mathrm{T}} \simeq -r/8$

Measurements

$$\mathcal{P}_{\zeta} \left(k_{*} \right) \simeq 2 \times 10^{-9}$$
$$n_{s} \simeq 0.96$$

7/20

Described in terms of ϵ_{i*}

Martin & Ringeval (2010) Easther & Peiris (2011)

Martin & Ringeval (2010) Easther & Peiris (2011)

A technical aspect

 $\rho_{\rm BBN} < \rho_{\rm reh} < \rho_{\rm end}$

Martin & Ringeval (2010) Easther & Peiris (2011)

Martin & Ringeval (2010) Easther & Peiris (2011)

$$\Delta N_* = \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right)$$
$$+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4}\frac{\rho_*}{\rho_{\text{end}}}\right)$$
$$- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right)$$

Martin & Ringeval (2010) Easther & Peiris (2011)

$$\Delta N_* = \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) + \frac{1}{4}\ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4}\frac{\rho_*}{\rho_{\text{end}}}\right) - \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right)$$

• depends on reheating parameters

$$\Delta N_* = \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) + \frac{1}{4}\ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4}\frac{\rho_*}{\rho_{\text{end}}}\right) - \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right)$$

- depends on reheating parameters
- depends on V parameters (model dependent)

$$\Delta N_* = \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) + \frac{1}{4}\ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4}\frac{\rho_*}{\rho_{\text{end}}}\right) - \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right)$$

- depends on reheating parameters
- depends on V parameters
- accurately measured

$$\begin{split} \Delta N_* &= \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) \\ &+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4} \frac{\rho_*}{\rho_{\text{end}}}\right) \\ &- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right) \end{split}$$

- depends on reheating parameters
- depends on V parameters
- accurately measured
- implicit equation (requires numerical solving)

$$\begin{split} \Delta N_* &= \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) \\ &+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4} \frac{\rho_*}{\rho_{\text{end}}}\right) \\ &- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right) \end{split}$$

In practice:

- depends on reheating parameters
- depends on V parameters
- accurately measured
- implicit equation

$$\begin{split} \Delta N_* &= \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) \\ &+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4} \frac{\rho_*}{\rho_{\text{end}}}\right) \\ &- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right) \end{split}$$

In practice: • $ho_{
m BBN} <
ho_{
m reh} <
ho_{
m end}$

- depends on reheating parameters
- depends on V parameters
- accurately measured
- implicit equation

$$\begin{split} \Delta N_* &= \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) \\ &+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4} \frac{\rho_*}{\rho_{\text{end}}}\right) \\ &- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right) \end{split}$$

In practice: • $ho_{
m BBN} <
ho_{
m reh} <
ho_{
m end}$

• $-1/3 < \bar{w}_{\rm reh} < 1$

- depends on reheating parameters
- depends on V parameters
- accurately measured
- implicit equation

$$\begin{split} \Delta N_* &= \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) \\ &+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4} \frac{\rho_*}{\rho_{\text{end}}}\right) \\ &- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right) \end{split}$$

- depends on reheating parameters
- depends on V parameters
- accurately measured
- implicit equation

$$\begin{split} \Delta N_* &= \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) \\ &+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4} \frac{\rho_*}{\rho_{\text{end}}}\right) \\ &- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right) \end{split}$$

- depends on reheating parameters
- depends on V parameters
- accurately measured
- implicit equation

• ho_γ set to measured value, $k_*/a_{
m now}$ chosen to pivot scale

$$\begin{split} \Delta N_* &= \frac{1 - 3\bar{w}_{\text{reh}}}{12\left(1 + \bar{w}_{\text{reh}}\right)} \ln\left(\frac{\rho_{\text{reh}}}{\rho_{\text{end}}}\right) \\ &+ \frac{1}{4} \ln\left(\frac{\rho_*}{3M_{\text{Pl}}^4} \frac{\rho_*}{\rho_{\text{end}}}\right) \\ &- \ln\left(\frac{k_*/a_{\text{now}}}{\rho_{\gamma,\text{now}}^{1/4}}\right) \end{split}$$

- depends on reheating parameters
- depends on V parameters
- accurately measured
- implicit equation

• ho_{γ} set to measured value, $k_*/a_{
m now}$ chosen to pivot scale

11/20

Martin, Ringeval, V.V (2013)

Martin, Ringeval, V.V (2013)

An example: « large field inflation »

Martin, Ringeval, V.V (2013)

An example: « large field inflation »

11/20

An example: « large field inflation »

to model comparison

to model comparison

to model comparison

to model comparison

to model comparison

to model comparison

to model comparison

Bayesian evidence: Integral of the likelihood over parameter prior

$$\mathcal{E}\left(\mathcal{M}\right) = \mathcal{L}_{\max} \frac{\Delta \mathcal{L}}{\Delta \pi}$$

Compromise between quality of fit and simplicity

to model comparison

Posterior-to-Prior Ratio computed with Planck

Bayesian evidences computed with Planck

Bayesian evidences computed with Planck

Summary of the results

One third of the models are "ruled out"

Bayesian evidences computed with Planck

Bayesian evidences computed with Planck

- One third of the models are "ruled out"
- Planck favors "Plateau Inflation"

Bayesian evidences computed with Planck

- One third of the models are "ruled out"
- Planck favors "Plateau Inflation"
- Some models are killed by "fine-tuning"

Martin, Ringeval, V.V (2014)

$$\ln R_{\rm reh} = \frac{1 - 3\bar{w}_{\rm reh}}{12\left(1 + \bar{w}_{\rm reh}\right)} \ln\left(\frac{\rho_{\rm reh}}{\rho_{\rm end}}\right) + \ln\left(\frac{\rho_{\rm end}^{1/4}}{M_{\rm Pl}}\right)$$

Martin, Ringeval, V.V (2014)

Reheating does Matters!

Martin, Ringeval, V.V (2014)

Example: $\text{LI}_{\alpha>0}$ $V(\phi) = M^4 \left[1 + \alpha \ln\left(\frac{\phi}{M_{\text{Pl}}}\right) \right]$

Curvaton Scenarios

CASE # 5 10⁰ $V\!\propto\!\phi^6$ $V \propto \phi^4$ $V \propto \phi^2$ o contribution 10^{-1} **⊱**10⁻² 10⁻³ 10⁻⁴ $\overset{-1.1}{\overset{-0.94}{n}}_{
m s}$ 88.0 0.90 0.92 0.96 0.98 1.00

18/20

V.V, Koyama and Wands (2015)

V.V, Koyama and Wands (2015)

•Main Results:

Planck data favor single-field, slow-roll scenarios with canonical kinetic term.

- Planck data favor single-field, slow-roll scenarios with canonical kinetic term.
- Within this class, Planck favors plateau shaped potentials.

- Planck data favor single-field, slow-roll scenarios with canonical kinetic term.
- Within this class, Planck favors plateau shaped potentials.
- One third of the models are ruled out, some of them because of fine tuning.

- Planck data favor single-field, slow-roll scenarios with canonical kinetic term.
- Within this class, Planck favors plateau shaped potentials.
- One third of the models are ruled out, some of them because of fine tuning.
- Planck also constraints reheating (excludes 40% of prior space)

- Planck data favor single-field, slow-roll scenarios with canonical kinetic term.
- Within this class, Planck favors plateau shaped potentials.
- One third of the models are ruled out, some of them because of fine tuning.
- Planck also constraints reheating (excludes 40% of prior space)
- Details of coupling between inflaton and SM fields now matter

- Planck data favor single-field, slow-roll scenarios with canonical kinetic term.
- Within this class, Planck favors plateau shaped potentials.
- One third of the models are ruled out, some of them because of fine tuning.
- Planck also constraints reheating (excludes 40% of prior space)
- Details of coupling between inflaton and SM fields now matter
- Single-field ranking robust under introduction of light scalar fields, with the exception of quartic potentials in some specific reheating scenarios

•Main Results:

- Planck data favor single-field, slow-roll scenarios with canonical kinetic term.
- Within this class, Planck favors plateau shaped potentials.
- One third of the models are ruled out, some of them because of fine tuning.
- Planck also constraints reheating (excludes 40% of prior space)
- Details of coupling between inflaton and SM fields now matter
- Single-field ranking robust under introduction of light scalar fields, with the exception of quartic potentials in some specific reheating scenarios

• Prospects: Future CMB missions?
Future CMB Missions

Future CMB Missions

Future CMB Missions

