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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

General context
Thermodynamical equilibrium: Maximization of the entropy.
No particle, energy, charge flow in the system.

Peq(C) =
e−

E(C)
kBT

Z

Non-equilibrium stationary state: particle or energy currents
ρa ρb

Particle current

→ No general framework for such systems: Pstat(C) ∼ ?
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

1 A simple out-of-equilibrium model.
Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

2 Stationary state and Matrix Ansatz.
Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

3 Thermodynamical limit.
Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

C1

C2

C3

Ci−1

Ci

CN. . . . . .

phase space

The system can be in several different configurations.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

C1

C2

C3

Ci−1

Ci

CN. . . . . .

w(C2, C1)dt

w(C3, C1)dt

w(Ci−1, C1)dt

w(Ci , C1)dt

phase space

The system can be in several different configurations.
During infinitesimal time dt, the system can jump from a
configuration C to another configuration C′ with probability
w(C′, C)dt.
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Pt (C1)

Pt (C2)
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Pt (Ci−1)
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Let Pt(C) the probability for the system to be in configuration C at
time t.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

C1

C2

C3

Ci−1

Ci

CN. . . . . .

w(C2, C1)dt

w(C3, C1)dt

w(Ci−1, C1)dt

w(Ci , C1)dt

phase space

Pt (C1)

Pt (C2)

Pt (C3)

Pt (Ci−1)

Pt (Ci )

Pt (CN )

Let Pt(C) the probability for the system to be in configuration C at
time t.
The time evolution is governed by the master equation

Pt+dt(C) =
∑
C′ 6=C

w(C, C′)dtPt(C′) +

1− ∑
C′ 6=C

w(C′, C)dt

Pt(C) .
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Let S(C) the probability for the system to be in configuration C in
the stationary state.
It satisfies

0 =
∑
C′ 6=C

(
w(C, C′)S(C′)− w(C′, C)S(C)

)
.
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C2
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S(C1)w(C2, C1)− S(C2)w(C1, C2)
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phase space

In the thermodynamical equilibrium case, we have the detailed
balance w(C, C′)S(C′) = w(C′, C)S(C).
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C2
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Ci−1

Ci

CN. . . . . .
S(Ci−1)w(Ci , Ci−1)− S(Ci )w(Ci−1, Ci )

= 0

phase space

In the thermodynamical equilibrium case, we have the detailed
balance w(C, C′)S(C′) = w(C′, C)S(C).
We can compute easily the stationary distribution

S(Ci) =
w(Ci , Ci−1)

w(Ci−1, Ci)
S(Ci−1)
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In the thermodynamical equilibrium case, we have the detailed
balance w(C, C′)S(C′) = w(C′, C)S(C).
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C1

C2

C3

Ci−1

Ci

CN. . . . . .

phase space

e
− E(C1)

kB T

In the thermodynamical equilibrium case, we have the detailed
balance w(C, C′)S(C′) = w(C′, C)S(C).
We can compute easily the stationary distribution

S(Ci) =
w(Ci , Ci−1)

w(Ci−1, Ci)
. . .

w(C2, C1)
w(C1, C2)

S(C1)︸ ︷︷ ︸
e
− E(C1)

kBT
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E(Ci )−E(Ci−1)
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In the thermodynamical equilibrium case, we have the detailed
balance w(C, C′)S(C′) = w(C′, C)S(C).
We can compute easily the stationary distribution

S(Ci) =
w(Ci , Ci−1)

w(Ci−1, Ci)︸ ︷︷ ︸
e
−

E(Ci )−E(Ci−1)

kBT

. . .
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e
− E(C2)−E(C1)

kBT

S(C1)︸ ︷︷ ︸
e
− E(C1)

kBT
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In the thermodynamical equilibrium case, we have the detailed
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.
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phase space
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− E(C2)−E(C1)

kB T

e
− E(C3)−E(C2)
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−
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In the thermodynamical equilibrium case, we have the detailed
balance w(C, C′)S(C′) = w(C′, C)S(C).
We can compute easily the stationary distribution

S(Ci) = e−
E(Ci )

kBT Ok with Boltzmann statistics!

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

C1

C2

C3

Ci−1

Ci
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6= 0

S(C2)w(C3, C2)− S(C3)w(C2, C3)
6= 0

S(Ci−1)w(Ci , Ci−1)− S(Ci )w(Ci−1, Ci )
6= 0

phase space

In the out-of-equilibrium stationary state case, the detailed balance
is broken w(C, C′)S(C′) 6= w(C′, C)S(C).
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In the out-of-equilibrium stationary state case, the detailed balance
is broken w(C, C′)S(C′) 6= w(C′, C)S(C).
There are probability currents flowing in the phase space in the
stationary state.
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S(C1)w(C2, C1)− S(C2)w(C1, C2)
6= 0

S(C2)w(C3, C2)− S(C3)w(C2, C3)
6= 0

S(Ci−1)w(Ci , Ci−1)− S(Ci )w(Ci−1, Ci )
6= 0

phase space

In the out-of-equilibrium stationary state case, the detailed balance
is broken w(C, C′)S(C′) 6= w(C′, C)S(C).
There are probability currents flowing in the phase space in the
stationary state.

The system does not obey a Boltzmann statistic!
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

Dissipative symmetric simple exclusion process (DiSSEP)

Stochastic process on a one dimensional lattice with boundaries

in the bulk, particles can jump to the left or to the right with rate 1
in the bulk, particle pairs can attach or detach with rate λ2

Fermi-like exclusion principle
on the left boundary, particles enter with rate α, leave with rate γ
on the right boundary, particles enter with rate δ, leave with rate β

The system is driven out-of-equilibrium by the reservoirs: there are
particle currents in the stationary state.
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Dissipative symmetric simple exclusion process (DiSSEP)

α

γ

Stochastic process on a one dimensional lattice with boundaries
in the bulk, particles can jump to the left or to the right with rate 1
in the bulk, particle pairs can attach or detach with rate λ2

Fermi-like exclusion principle
on the left boundary, particles enter with rate α, leave with rate γ

on the right boundary, particles enter with rate δ, leave with rate β
The system is driven out-of-equilibrium by the reservoirs: there are
particle currents in the stationary state.
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Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
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Dissipative symmetric simple exclusion process (DiSSEP)

β

δ
Stochastic process on a one dimensional lattice with boundaries

in the bulk, particles can jump to the left or to the right with rate 1
in the bulk, particle pairs can attach or detach with rate λ2

Fermi-like exclusion principle
on the left boundary, particles enter with rate α, leave with rate γ
on the right boundary, particles enter with rate δ, leave with rate β

The system is driven out-of-equilibrium by the reservoirs: there are
particle currents in the stationary state.
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Dissipative symmetric simple exclusion process (DiSSEP)

α

γ

1 1 {λ2 {

λ2 β

δ
Stochastic process on a one dimensional lattice with boundaries

in the bulk, particles can jump to the left or to the right with rate 1
in the bulk, particle pairs can attach or detach with rate λ2

Fermi-like exclusion principle
on the left boundary, particles enter with rate α, leave with rate γ
on the right boundary, particles enter with rate δ, leave with rate β

The system is driven out-of-equilibrium by the reservoirs: there are
particle currents in the stationary state.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

What is the configurations space?

Denote by C = (τ1, τ2, . . . , τL) a configuration of the system.

τi = 0 if site i is empty, τi = 1 if it is occupied.

(0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1)

Attach to each site a two dimensional vector space C2 with basis

|0〉 =
(

1
0

)
and |1〉 =

(
0
1

)
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Attach to each site a two dimensional vector space C2 with basis
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

The probabilities of all configurations can be gathered in a vector:

|Pt〉 =


Pt( (0, . . . , 0, 0, 0) )
Pt( (0, . . . , 0, 0, 1) )
Pt( (0, . . . , 0, 1, 0) )

...
Pt( (1, . . . , 1, 1, 1) )

 =
∑

τ1,...,τL∈{0,1}

Pt( (τ1, . . . , τL) ) |τ1〉 ⊗ · · · ⊗ |τL〉

The master equation rewrite in a vector form:

Master equation

d |Pt〉
dt = M|Pt〉,

where M is the Markov matrix whose entries are MC,C′ = w(C, C′) and
MC,C = −

∑
C′ 6=C

w(C′, C).
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Framework: Markov process, master equation.
Presentation of the model.
Configurations space, Markov matrix.

The Markov matrix can be written in a more explicit way:

M = B1 +
L−1∑
k=1

wk,k+1 + BL,

where

B =

(
−α γ
α −γ

)
; w =

 −λ2 0 0 λ2

0 −1 1 0
0 1 −1 0
λ2 0 0 −λ2

 ; B =

(
−δ β
δ −β

)
End(C2) End(C2 ⊗ C2) End(C2)

The subscript index indicate on which sites the operators are acting

α

γ

1 1 {λ2 {

λ2 β

δ
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

Stationary state and Matrix Ansatz
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

Recall
We want to find the steady state |S〉 such that M|S〉 = 0.

|S〉 =


S( (0, . . . , 0, 0, 0) )
S( (0, . . . , 0, 0, 1) )

...
S( (1, . . . , 1, 1, 1) )

 =
1
ZL


〈〈W |EE . . .EE |V 〉〉
〈〈W |EE . . .ED|V 〉〉

...
〈〈W |DD . . .DD|V 〉〉

 .
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

The vector computed using this ansatz can be written

|S〉 = 1
ZL
〈〈W |

(
E
D

)
⊗
(

E
D

)
⊗ · · · ⊗

(
E
D

)
|V 〉〉

Assume that

w
(

E
D

)
⊗
(

E
D

)
=

(
E
D

)
⊗
(
−H
H

)
−
(
−H
H

)
⊗
(

E
D

)
and

〈〈W |B
(

E
D

)
= 〈〈W |

(
−H
H

)
, B

(
E
D

)
|V 〉〉 = −

(
−H
H

)
|V 〉〉.

Then we get a telescopic sum

M|S〉 =
(

B1 +
L−1∑
k=1

wk,k+1 + BL

)
|S〉 = 0.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

The previous relations are fulfilled if and only if the matrices E , D and H
satisfy the algebraic relations

Algebraic relations

DE − ED = EH + HD,
λ2(D2 − E 2) = HE − EH = HD − DH

(δE − βD)|V 〉〉 = −H|V 〉〉
〈〈W |(αE − γD) = 〈〈W |H
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

Can we compute something interesting with this algebra?

Yes!
Change of generators basis in the algebra {E ,D,H} → {G1,G2,G3}

E = G1 + G2 + G3, D = −G1 + G2 − G3, H = 2λ(G3 − G1).

with much simpler commutation relations:

G3G1 = G1G3, G2G1 = φG1G2, G3G2 = φG2G3,

and relations on the boundaries:

〈〈W |G1 = 〈〈W |(aG3 + cG2), G3|V 〉〉 = (bG1 + dG2)|V 〉〉

φ =
1− λ
1+ λ

,

{
a= 2λ−α−γ

2λ+α+γ
,

c= γ−α
2λ+α+γ

.

{
b= 2λ−δ−β

2λ+δ+β
,

d= β−δ
2λ+δ+β

.
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with much simpler commutation relations:

G3G1 = G1G3, G2G1 = φG1G2, G3G2 = φG2G3,

and relations on the boundaries:

〈〈W |G1 = 〈〈W |(aG3 + cG2), G3|V 〉〉 = (bG1 + dG2)|V 〉〉

φ =
1− λ
1+ λ

,

{
a= 2λ−α−γ

2λ+α+γ
,

c= γ−α
2λ+α+γ

.

{
b= 2λ−δ−β

2λ+δ+β
,

d= β−δ
2λ+δ+β

.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

Mean particle density at site i:

〈τi〉 = 〈〈W |(E+D)i−1D(E+D)L−i |V 〉〉
〈〈W |(E+D)L|V 〉〉

=
〈〈W |G i−1

2 (G2−G1−G3)GL−i
2 |V 〉〉

〈〈W |GL
2 |V 〉〉

We have

〈〈W |G i−1
2 G1GL−i

2 |V 〉〉 = φi−1〈〈W |G1GL−1
2 |V 〉〉

= φi−1(c〈〈W |GL
2 |V 〉〉+a〈〈W |G3GL−1

2 |V 〉〉)

= φi−1(c+adφL−1)〈〈W |GL
2 |V 〉〉+abφ2L−2〈〈W |G i−1

2 G1GL−i
2 |V 〉〉

Hence
〈〈W |G i−1

2 G1GL−i
2 |V 〉〉 = φi−1(c+adφL−1)

1−abφ2L−2 〈〈W |GL
2 |V 〉〉.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Matrix Ansatz.
Commutation relations.
Computation of physical quantities.

Mean particle density at site i :

〈τi〉 =
1
2

(
1− φi−1(c + adφL−1) + φL−i(d + bcφL−1)

1− abφ2L−2

)
.

Mean particle current on the lattice between sites i and i + 1:

〈J lat
i→i+1〉 =

1− φ
2

φL−i−1(d + bcφL−1)− φi−1(c + adφL−1)

1− abφ2L−2 .

Mean particle condensation current on sites i and i + 1:

〈Jcond
i ,i+1〉 =

(1− φ)2
2(1+ φ)

φL−i−1(d + bcφL−1) + φi−1(c + adφL−1)

1− abφ2L−2 .
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

We want to keep a competition between the evaporation/condensation
process and the diffusion process as L→∞.

d〈τi〉
dt = 〈τi+1〉 − 2〈τi〉+ 〈τi−1〉+ λ2 (2− 〈τi+1〉 − 〈τi−1〉 − 2〈τi〉)

We set x =
i
L and ρ(x) = 〈τi〉.

dρ
dt (x) =

1
L2 ρ

′′
(x) + 2λ2 (1− 2ρ(x)) .

We have to take

λ =
λ0
L .
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

In the stationary state, the mean particle density is given by

〈ρ(x)〉 := lim
L→∞
〈nLx 〉

=
1
2 +

1
2 sinh 2λ0

(
q1e−2λ0(x−1/2) + q2e2λ0(x−1/2)

)

with

q1 =

(
ρa −

1
2

)
eλ0 −

(
ρb −

1
2

)
e−λ0

q2 =

(
ρb −

1
2

)
eλ0 −

(
ρa −

1
2

)
e−λ0 .
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

Figure : Plot of the density for ρa = 0.35, ρb = 0.2 and λ0 = 3.
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Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

Figure : Plot of the density for ρa = 1, ρb = 0.65 and λ0 = 3.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

We can also compute the mean particle current on the lattice

〈j lat(x)〉 := lim
L→∞

L× 〈J lat
Lx→Lx+1〉

=
λ0

sinh 2λ0

(
q1e−2λ0(x−1/2) − q2e2λ0(x−1/2)

)
,

and the mean particle condensation current

〈jcond(x)〉 := lim
L→∞

L2 × 〈Jcond
Lx ,Lx+1〉

=
−λ20

sinh 2λ0

(
q1e−2λ0(x−1/2) + q2e2λ0(x−1/2)

)
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

We can also compute exactly in the thermodynamical limit the variance
of the lattice current

µ2(x) = 2q1 q2 λ20

{
(2x−1)

sinh
(
2λ0 (2 x−1)

)
(sinh(2λ0))3

−
cosh(2λ0) cosh

(
2λ0 (2x−1)

)
+1

(sinh(2λ0))4

}
− q2

2λ0
e4λ0 x +e−4λ0 (1−x)−e4λ0 (2 x−1)+3

4(sinh(2λ0))3
−q2

1λ0
e4λ0 (1−x)+e−4λ0 x−e4λ0 (1−2 x)+3

4(sinh(2λ0))3

+
λ0 cosh(2λ0 x) cosh

(
2λ0 (1−x)

)
sinh(2λ0)

.
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory

Allows to compute fluctuations of the density and currents profiles
ρ(x , t), j lat(x , t) and jcond(x , t) around their mean values.

Main idea
P[0,T ]

(
{ρ, j lat , jcond}

)
∼ exp

[
−LI[0,T ](ρ, j lat , jcond)

]
∼ ′′ exp [−A] ′′

The “action” is called the large deviation functional.
The fields are related through particle conservation law

∂tρ = −∂x j lat + jcond .

Minimizing this large deviation functional (over the three fields)
gives the “equations of motion” that is the hydrodynamic equation
satisfied by the mean values of the fields.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory
Allows to compute fluctuations of the density and currents profiles
ρ(x , t), j lat(x , t) and jcond(x , t) around their mean values.

Main idea
P[0,T ]

(
{ρ, j lat , jcond}

)
∼ exp

[
−LI[0,T ](ρ, j lat , jcond)

]
∼ ′′ exp [−A] ′′

The “action” is called the large deviation functional.
The fields are related through particle conservation law

∂tρ = −∂x j lat + jcond .

Minimizing this large deviation functional (over the three fields)
gives the “equations of motion” that is the hydrodynamic equation
satisfied by the mean values of the fields.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory
Allows to compute fluctuations of the density and currents profiles
ρ(x , t), j lat(x , t) and jcond(x , t) around their mean values.

Main idea
P[0,T ]

(
{ρ, j lat , jcond}

)
∼ exp

[
−LI[0,T ](ρ, j lat , jcond)

]
∼ ′′ exp [−A] ′′

The “action” is called the large deviation functional.
The fields are related through particle conservation law

∂tρ = −∂x j lat + jcond .

Minimizing this large deviation functional (over the three fields)
gives the “equations of motion” that is the hydrodynamic equation
satisfied by the mean values of the fields.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory
Allows to compute fluctuations of the density and currents profiles
ρ(x , t), j lat(x , t) and jcond(x , t) around their mean values.

Main idea
P[0,T ]

(
{ρ, j lat , jcond}

)
∼ exp

[
−LI[0,T ](ρ, j lat , jcond)

]
∼ ′′ exp [−A] ′′

The “action” is called the large deviation functional.

The fields are related through particle conservation law

∂tρ = −∂x j lat + jcond .

Minimizing this large deviation functional (over the three fields)
gives the “equations of motion” that is the hydrodynamic equation
satisfied by the mean values of the fields.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory
Allows to compute fluctuations of the density and currents profiles
ρ(x , t), j lat(x , t) and jcond(x , t) around their mean values.

Main idea
P[0,T ]

(
{ρ, j lat , jcond}

)
∼ exp

[
−LI[0,T ](ρ, j lat , jcond)

]
∼ ′′ exp [−A] ′′

The “action” is called the large deviation functional.
The fields are related through particle conservation law

∂tρ = −∂x j lat + jcond .

Minimizing this large deviation functional (over the three fields)
gives the “equations of motion” that is the hydrodynamic equation
satisfied by the mean values of the fields.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

General framework in the thermodynamical limit: Macroscopic
Fluctuation Theory
Allows to compute fluctuations of the density and currents profiles
ρ(x , t), j lat(x , t) and jcond(x , t) around their mean values.

Main idea
P[0,T ]

(
{ρ, j lat , jcond}

)
∼ exp

[
−LI[0,T ](ρ, j lat , jcond)

]
∼ ′′ exp [−A] ′′

The “action” is called the large deviation functional.
The fields are related through particle conservation law

∂tρ = −∂x j lat + jcond .

Minimizing this large deviation functional (over the three fields)
gives the “equations of motion” that is the hydrodynamic equation
satisfied by the mean values of the fields.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
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The large deviation functional is given by (Bodineau, Lagouge, 2009)

I[0,T ](ρ,j lat ,jcond )=
∫ T
0 dt

∫ 1
0 dx

{
(j lat +D(ρ)∂xρ)2

2σ(ρ)
+Φ(ρ,jcond)

}
,

where

Φ(ρ,jcond )= 1
2

[
A(ρ)+C(ρ)−

√
(jcond )2+4A(ρ)C(ρ)+jcond ln

(√
(jcond )2+4A(ρ)C(ρ)+jcond

2C(ρ)

)]
.

Only 4 relevant parameters: the diffusion coefficient D(ρ), the
conductivity σ(ρ), the creation and annihilation rates C(ρ) and
A(ρ).
The action vanishes (is minimal) when

j lat = D(ρ)∂xρ, jcond = C(ρ)− A(ρ).
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A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

It requires to minimize a slightly modified functional.
For that we need to solve coupled non linear differential equations.
To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.
We can solve to get the variance.
It matches exactly the value computed previously from the finite size
lattice: this provides a check of the MFT.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

It requires to minimize a slightly modified functional.

For that we need to solve coupled non linear differential equations.
To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.
We can solve to get the variance.
It matches exactly the value computed previously from the finite size
lattice: this provides a check of the MFT.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

It requires to minimize a slightly modified functional.
For that we need to solve coupled non linear differential equations.

To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.
We can solve to get the variance.
It matches exactly the value computed previously from the finite size
lattice: this provides a check of the MFT.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

It requires to minimize a slightly modified functional.
For that we need to solve coupled non linear differential equations.
To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.

We can solve to get the variance.
It matches exactly the value computed previously from the finite size
lattice: this provides a check of the MFT.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

It requires to minimize a slightly modified functional.
For that we need to solve coupled non linear differential equations.
To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.
We can solve to get the variance.

It matches exactly the value computed previously from the finite size
lattice: this provides a check of the MFT.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

With this formalism we can compute the fluctuations of the lattice
current

It requires to minimize a slightly modified functional.
For that we need to solve coupled non linear differential equations.
To compute the variance it is enough to expand the fields to the
first order around their mean value: the differential equations then
become linear.
We can solve to get the variance.
It matches exactly the value computed previously from the finite size
lattice: this provides a check of the MFT.

Matthieu VANICAT, LAPTh Integrable dissipative exclusion process



A simple out-of-equilibrium model.
Stationary state and Matrix Ansatz.

Thermodynamical limit.

Scaling of the parameters.
Limit of the physical quantities.
Macroscopic fluctuation theory.

Perspectives

Compute, using a matrix ansatz, the full generating function of the
cumulants of the currents.
Construct the excited states in a matrix product form.
Solve more complicated models: for instance a 2-species TASEP
with boundaries (work in progress).
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