Laboratoire Charles Coulomb UMR 5221 CNRS/UM2 (L2C)

français


Accueil > La Recherche > Axes & Equipes > Matière Molle & Verres > Equipe : Physique des Verres > Thème : Nanophysique des surfaces des verres

Fracture dynamics in the peeling of adhesives

par Sébastien LAYSSAC - publié le

Involved researchers : M. Ciccotti
(collaboration : L. Vanel, LPMCN, UCLB, Lyon – P-P. Cortet, FAST, Paris XI, Orsay)

Using a high speed camera, we study the peeling dynamics of an adhesive tape under a constant load with a special focus on the so-called stick–slip regime of the peeling. It is the first time that the very fast motion of the peeling point has been imaged. The speed of the camera, up to 16 000 fps, allows us to observe and quantify the details of the peeling point motion during the stick and slip phases : stick and slip velocities, durations and amplitudes. First, in contrast with previous observations, the stick–slip regime appears to be only transient in the force controlled peeling. Additionally, we discover that the stick and slip phases have similar durations and that at high mean peeling velocity, the slip phase actually lasts longer than the stick phase. Depending on the mean peeling velocity, we also observe that the velocity change between stick and slip phases ranges from a rather sudden to a smooth transition. These new observations can help to discriminate between the various assumptions used in theoretical models for describing the complex peeling of an adhesive tape. The present imaging technique opens the door to an extensive study of the velocity controlled stick–slip peeling of an adhesive tape that will allow us to understand the statistical complexity of the stick–slip in a stationary case.

Lateral view of the peeling experiment and space-time diagram of the dynamics corresponding to the section marked in red - © L2C

AIGLe

MathJax