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Overview and motivations

I will present a geometrical framework which, I believe, is the most
adequate when dealing with null-infinity

It generalises Tractor calculus from conformal geometry. In particular, it
is by construction manifestly conformally invariant.

It gives a natural and satisfying answer to an old question:

What is the geometrical (i.e invariant) structure induced at null-infinity by
the presence of gravitational waves?

This is a choice of tractor connection.

It also extends previous works on "Carroll geometry" (gives a definition
of "strong conformal Carroll structure").

This is very likely to be the correct formalism to efficiently couple fields to
the "Carrollian field theory" at null-infinity.
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Asymptotically flat space-times and gravitational
waves
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Asymptotically flat space-times
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The space-time
(
M̃, g̃µν

)
is asymptotically simple if there exists a space-

time (M, gµν) with boundary ∂M = I such that

M̃ is diffeomorphic to the interior M\I of M

there exists Ω ∈ C∞(M) a boundary defining function for I i.e

Ω > 0 on M, Ω = 0, dΩ 6= 0 on I

g̃µν =
1

Ω2
gµν on M̃
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The space-time
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time (M, gµν) with boundary ∂M = I such that
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there exists Ω ∈ C∞(M) a boundary defining function for I i.e

Ω > 0 on M, Ω = 0, dΩ 6= 0 on I

g̃µν =
1

Ω2
gµν on M̃

It is asymptotically flat ( resp AdS/dS) if on top of this

g̃µν is Einstein

gµν (dΩµ, dΩν) = 0 (resp ± 1) on I

!4There is nothing unique about Ω nor gµν ! Rather one is working with an
equivalence class:

(gµν ,Ω) ∼
(
λ2gµν , λΩ

)
λ ∈ C∞ (M)
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”Weak” null-infinity structure
Let ([gµν ], [Ω],M) be an asymptotically flat space-time (in particular

1

Ω2
gµν is

Einstein).

The “weak null-infinity structure” induced on the boundary I is

a degenerate conformal metric [hab ∼ λ2hab] with one-dimensional
kernel, obtained as

hab := gµν
∣∣
I

an equivalence class of vector fields
[
(na, hab) ∼ (λ−1na, λ2hab)

]
,

obtained as
na := gµνdΩν

∣∣
I

with compatibility conditions nahab = 0 (following from gµνdΩµdΩν = 0)
and Lnhab ∝ hab (following from Einstein equations).
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“Universal” null-infinity structure
Let I be 3-dimensional manifold, we will say that it is equipped with the
universal null-infinity structure if

I = S2 × R is the total space of a fibre bundle I
π−→ S2

it is equipped with

the conformal-sphere metric [h
(S2)
AB ] on S2

an equivalence class [na] of vertical vector fields nadπa = 0

NB: then hab = π∗h
(S2)
AB automatically implies nahab = 0, Lnhab = hab.
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“Universal” null-infinity structure
Let I be 3-dimensional manifold, we will say that it is equipped with the
universal null-infinity structure if

I = S2 × R is the total space of a fibre bundle I
π−→ S2

it is equipped with

the conformal-sphere metric [h
(S2)
AB ] on S2

an equivalence class [na] of vertical vector fields nadπa = 0

NB: then hab = π∗h
(S2)
AB automatically implies nahab = 0, Lnhab = hab.

Symmetry group
The group of diffeomorphism of I preserving the universal null-infinity
structure is the BMS group:

BMS (4) = C∞(S2)o SO (3, 1)
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Coordinates
Let

(
I → S2, [h

(S2)
ab ], [na]

)
be a manifold equipped with the universal

null-infinity structure.

A well-adapted trivialisation (u, hAB) is a choice

of trivialisation u : I → R of I
π−→ S2

(u, π) :

∣∣∣∣ I → R× S2

x 7→ (u(x), π(x))

of representative hAB ∈ [h
(S2)
AB ]

( since (na, hab) ∼
(
λna, λ2hab

)
, this also gives a representative na ∈ [na])

with compatibility condition nadua = 1 ( i.e “na = ∂u”)
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BMS coordinates
Let (M, [gµν ], [Ω]) be an asymptotically flat space-times such that the
induced structure on the boundary

(
I , [h

(S2)
ab ], [na]

)
is the universal

null-infinity structure.

BMS coordinates
Choices of well-adapted trivialisation (u, hAB) on (I , [hab], [n

a]) are in
one-to-one correspondence with BMS-coordinates on M i.e local
coordinates

(u,Ω, π)

∣∣∣∣ M → R× R× S2

x → (u(x),Ω(x), yA(x))

on a neighbourhood of I in M such that

g̃µν =
1

Ω2

(
2dΩdu+ hAB(y) + ΩCAB(u, y) +O

(
Ω2
))
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Asymptotic shear and gravitational waves

BMS coordinates
Well-adapted trivialisations (u, hAB) on (I , [hab], [n

a]) are in one-to-one
correspondence with BMS-coordinates on (M, [gµν ], [Ω])

g̃µν =
1

Ω2

(
2dΩdu+ hAB(y) + ΩCAB(u, y) +O

(
Ω2
))

The “asymptotic shear” CAB is known to encode the gravitational radiation
reaching null-infinity.

⇒ this is however nothing like a tensor on I !

Had we chosen another well-adapted trivialisation(
û = λ (u− ξ) , ĥAB = λ2hAB

)
on (I , [hab], [n

a]) with ξ, λ ∈ C∞
(
S2
)

we would have

hAB 7→ ĥAB = λ2hAB

na 7→ n̂a = λ−1na

CAB 7→ ĈAB = λCAB − 2
(
∇A∇B

∣∣
0
ξ + ûλ ∇A∇B

∣∣
0
λ−1)
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ξ + ûλ ∇A∇B

∣∣
0
λ−1)

Intrinsic geometry of null-infinity 9 / 34



Asymptotic shear and gravitational waves

BMS coordinates
Well-adapted trivialisations (u, hAB) on (I , [hab], [n

a]) are in one-to-one
correspondence with BMS-coordinates on (M, [gµν ], [Ω])

g̃µν =
1

Ω2

(
2dΩdu+ hAB(y) + ΩCAB(u, y) +O

(
Ω2
))

The “asymptotic shear” CAB is known to encode the gravitational radiation
reaching null-infinity.
⇒ this is however nothing like a tensor on I !

Had we chosen another well-adapted trivialisation(
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Asymptotic shear and gravitational waves

BMS coordinates
Well-adapted trivialisations (u, hAB) on (I , [hab], [n

a]) are in one-to-one
correspondence with BMS-coordinates on (M, [gµν ], [Ω])

g̃µν =
1

Ω2

(
2dΩdu+ hAB(y) + ΩCAB(u, y) +O

(
Ω2
))

The “asymptotic shear” CAB is known to encode the gravitational radiation
reaching null-infinity.
⇒ this is however nothing like a tensor on I !

What is the (invariant) geometrical objects whose coordinates
transform as the asymptotic shear?
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Brief answer
The “asymptotic shear” CAB parametrizes

a choice of “tractor connection” on (M, [hAB ], [na]).

More precisely...

the tractor bundle is a natural vector bundle canonically associated to
conformal manifolds (here needs to be adapted to degenerate conformal
manifolds)

in conformal geometry the “normal” connection on this bundle is unique
(for n≥3)

however, for the degenerate conformal geometry of null-infinity,
“null-normal” connections on the tractor bundle are not unique

rather these null-normal tractor connections form an affine space
modelled on trace-free symmetric tensor on S2 (i.e “CAB”)

this is an invariant description but choices of well-adapted
trivialisation (u, hAB) (equivalently BMS coordinates) acts as a
trivialisation for this bundle, the tractor connection is then explicitly
parametrized as a function of CAB
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Gravitational radiation as a “gauge” connection at
null-infinity
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What kind of object is this tractor connection ?

Brief answer,

The tractor connection is a “gauge” connection
for the Poincaré group Iso(3, 1) = R4 o SO(3, 1)

In a well-adapted trivialisation (u, hAB) we have

Why is the Poincaré group showing up here ?

We all know that Minkowski space M4 is an homogenous space for the
Poincaré group,

M4 = Iso(3, 1)�SO(3, 1)

A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Intrinsic geometry of null-infinity 12 / 34



What kind of object is this tractor connection ?

Brief answer,

The tractor connection is a “gauge” connection
for the Poincaré group Iso(3, 1) = R4 o SO(3, 1)

In a well-adapted trivialisation (u, hAB) we have

with

CbA = CAB θBb ,

ξbA =

(
1

2
∂uCAB −

R

4
hAB

)
θBb ,

ψb =
1

4
R dub −

1

2
∇CCBC θBb .

Why is the Poincaré group showing up here ?

We all know that Minkowski space M4 is an homogenous space for the
Poincaré group,

M4 = Iso(3, 1)�SO(3, 1)

A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Intrinsic geometry of null-infinity 12 / 34



What kind of object is this tractor connection ?

Brief answer,

The tractor connection is a “gauge” connection
for the Poincaré group Iso(3, 1) = R4 o SO(3, 1)

In a well-adapted trivialisation (u, hAB) we have

with

CbA = CAB θBb ,

ξbA =

(
1

2
∂uCAB −

R

4
hAB

)
θBb ,

ψb =
1

4
R dub −

1

2
∇CCBC θBb .

Why is the Poincaré group showing up here ?

We all know that Minkowski space M4 is an homogenous space for the
Poincaré group,

M4 = Iso(3, 1)�SO(3, 1)

A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Intrinsic geometry of null-infinity 12 / 34



What kind of object is this tractor connection ?

Brief answer,

The tractor connection is a “gauge” connection
for the Poincaré group Iso(3, 1) = R4 o SO(3, 1)

In a well-adapted trivialisation (u, hAB) we have

with

CbA = CAB θBb ,

ξbA =

(
1

2
∂uCAB −

R

4
hAB

)
θBb ,

ψb =
1

4
R dub −

1

2
∇CCBC θBb .

Why is the Poincaré group showing up here ?

We all know that Minkowski space M4 is an homogenous space for the
Poincaré group,

M4 = Iso(3, 1)�SO(3, 1)

A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Intrinsic geometry of null-infinity 12 / 34



What kind of object is this tractor connection ?

Brief answer,

The tractor connection is a “gauge” connection
for the Poincaré group Iso(3, 1) = R4 o SO(3, 1)

Why is the Poincaré group showing up here ?

We all know that Minkowski space M4 is an homogenous space for the
Poincaré group,

M4 = Iso(3, 1)�SO(3, 1)

A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Intrinsic geometry of null-infinity 12 / 34



What kind of object is this tractor connection ?

Brief answer,

The tractor connection is a “gauge” connection
for the Poincaré group Iso(3, 1) = R4 o SO(3, 1)

Why is the Poincaré group showing up here ?

We all know that Minkowski space M4 is an homogenous space for the
Poincaré group,

M4 = Iso(3, 1)�SO(3, 1)

A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Intrinsic geometry of null-infinity 12 / 34



What kind of object is this tractor connection ?

Brief answer,

The tractor connection is a “gauge” connection
for the Poincaré group Iso(3, 1) = R4 o SO(3, 1)

Why is the Poincaré group showing up here ?

We all know that Minkowski space M4 is an homogenous space for the
Poincaré group,

M4 = Iso(3, 1)�SO(3, 1)

A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Intrinsic geometry of null-infinity 12 / 34



A lesser known fact is that the conformal boundary Iflat of this
homogeneous space is also an homogeneous space for the Poincaré
group,

Iflat = Iso(3, 1)�Carr(3)oR

Wait a minute...

The conformal boundary of Minkowski space comes equipped with
more than the universal structure, it is equipped with
a set {s : S2 → I }s∈H of good-cuts on top of the universal structure
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The conformal boundary Iflat of Minkowski space comes equipped
with more than the universal structure, it is equipped with
a set {s : S2 → I }s∈H of good-cuts on top of the universal structure

"Good-cut"

Each of the null-cones emanating from M4 intersects Iflat along a “cut”
s : I → S2 (really the image of the section). (There is thus a 4-dimensional
space H of these “good-cuts”, s ∈ H)

The subgroup of BMS stabilizing these cuts is isomorphic to the
Poincaré group
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What kind of object is this tractor connection ?

Precise answer,

the tractor connection is a Cartan connection

modelled on the homogenous space Iflat = Iso(3, 1)�Carr(3)oR

Flat tractor connections D...

I Give an isomorphism φ : I → Iflat to the homogenous space.

I Defines a 4-dimensional space of good-cuts HD
I Selects a copy of the Poincaré group inside the BMS group

I What is more,
a good-cut then is equivalent to a covariantly constant section of the
tractor bundle.

i.e {
s : S2 → I | s ∈ HD

}
⇔

{
ΦI ∈ Γ [T ] | DΦI = 0

}
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Relation with asymptotically flat space-times

Let (M, [gµν ], [Ω]) be an asymptotically flat space-times.

[Ω] defines an “infinity tractor” II ∈ Γ [TM ].
the sub-bundle I⊥

∣∣
I
⊂ TM is canonically isomorphic to TI

the normal tractor connection of [gµν ] induces on I a null-normal
tractor connection
the curvature of the tractor connection at I is parametrized by the
unphysical Weyl tensor Ω−1Cµνρσ
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A heuristic approach to the physics of null-infinity
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Maxwell’s equation on Minkowski space
Background:

(
M = R4, gµν

)
where gµν is a flat metric.

Symmetry group: Poincaré group
(= subgroup of diffeomorphism preserving the background)

Well-adapted coordinates: 3+1 orthonormal splitting
(
t, xi

)
⇒ the Poincaré group sends a well-adapted set of coordinates to another.

Potential (in coordinates ):
(
φ,Ai

)
Field (in coordinates ): Ei = −(∇φ)i − ∂tAi

Bi = (∇×A)i

Field eqs (in coordinates ):
∇.E = ρ

(∇×B)i − ∂tEi = ji
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Bi = (∇×A)i

Field eqs (in coordinates ):
∇.E = ρ

(∇×B)i − ∂tEi = ji

⇒ Changing the set of adapted coordinates mixes the fields
⇒ This however preserve the “form” of Maxwell equations
⇒ If we fix a coordinate system, the Poincaré group takes solutions of the
fields equations to others
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where gµν is a flat metric.

Symmetry group: Poincaré group
(= subgroup of diffeomorphism preserving the background)

Well-adapted coordinates: 3+1 orthonormal splitting
(
t, xi

)
⇒ the Poincaré group sends a well-adapted set of coordinates to another.

Potential (invariant form) : a 1-form Aµ on M

Field (invariant form): Fµν = (dA)µν

Field eqs (invariant form): (d ? F )µνρ = Jµνρ

⇒ This is a “Poincaré invariant” point of view (i.e does not depend on the
choice of adapted coordinates)
⇒ The Poincaré group takes solutions of the fields equations to others
⇒ Gives a “4D-type” of intuition, allows to easily construct invariants, suggest
Yang-Mills as generalisation, etc
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Gravitational radiations at Null-infinity
Background:

(
I = R× S2, [hAB ], [na]

)
, i.e "universal null-infinity structure".

Symmetry group: BMS group, BMS(3) = C∞
(
S2
)
o SO(3, 1)

(= subgroup of diffeomorphism preserving the background)

Well-adapted coordinates: (u, hAB)
⇒ the BMS group sends a well-adapted set of coordinates to another.

Potential (in coordinates ): CAB
Field (in coordinates): ψ4,ψ3,Im (ψ2)

Field eqs (in coordinates ): ψ4,ψ3,Im (ψ2) are choices of outcoming
gravitational radiations
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(
S2
)
o SO(3, 1)

(= subgroup of diffeomorphism preserving the background)

Well-adapted coordinates: (u, hAB)
⇒ the BMS group sends a well-adapted set of coordinates to another.

Potential (invariant form) : a tractor connection D = d+AIJ on M

Field (invariant form): F IJ = dAIJ +AIK ∧AKJ
Field eqs (invariant form): The curvature encodes the outcoming
gravitational radiations "F IJ = JIJ "
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(= subgroup of diffeomorphism preserving the background)

Well-adapted coordinates: (u, hAB)
⇒ the BMS group sends a well-adapted set of coordinates to another.

Potential (invariant form) : a tractor connection D = d+AIJ on M

Field (invariant form): F IJ = dAIJ +AIK ∧AKJ
Field eqs (invariant form): The curvature encodes the outcoming
gravitational radiations "F IJ = JIJ "

⇒ This is a “BMS invariant” point of view (i.e does not depend on the choice
of well-adapted coordinates)
⇒ The BMS group takes solutions of the fields equations to others
⇒ Gives a “conformally invariant” type of intuition, allows to easily construct
invariants etc
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Relations to Carroll manifolds (and others)
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“Weak” Carroll geometries
weak Carroll structure ∼ universal null-infinity structure in a fixed scale

I = R2 × R is the total space of a fibre bundle I
π−→ R2

it is equipped with

the flat metric h(flat)AB on R2

a vertical vector fields na, nadπa = 0

NB: then hab = π∗h
(S2)
AB automatically implies nahab = 0, Lnhab = hab.

Symmetry group
The group of diffeomorphism of I preserving the weak Carroll structure is

Sym
(
I → R2, na, h

(flat)
AB

)
= C∞(R2)o Iso (2)
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“Strong” Carroll geometries
Strong Carroll structure ∼ add an affine connection to the weak structure

I = R2 × R is the total space of a fibre bundle I
π−→ R2

it is equipped with

the flat metric h(flat)AB on R2

a vertical vector fields na, nadπa = 0

a compatible affine connection ∇ i.e ∇na = 0, ∇hab = 0

(With hab = π∗hAB .)

Symmetry group
When ∇ is flat, the group of diffeomorphism of I preserving the strong
Carroll structure is the Carroll group

Carr (3) = R3 o Iso (2)
(
⊂ C∞(R2)o Iso (2)

)
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"Strong" conformal Carroll geometries
Strong conformal Carroll structure ?

I = S2 × R is the total space of a fibre bundle I
π−→ S2

it is equipped with

the flat metric [h
(S2)
AB ] on S2

a vertical vector fields [na], nadπa = 0

a compatible "null-normal" tractor connection D

Symmetry group
When D is flat, the group of diffeomorphism of I preserving the strong
conformal Carroll structure is the Poincaré group

Iso(3, 1) = R4 o SO (3, 1)
(
⊂ C∞(S2)o SO (3, 1)

)
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Carroll vs Null-infinity
Since the "weak Carroll structure"(

I → R2, h
(flat)
AB , na

)
is essentially a "weak Null-infinity structure"(

I → S2, [h
(S2)
AB ], [na]

)
together with a choice of flat representative

h
(flat)
AB ∈ [hAB ]

one might get the impression that working in a conformally invariant manner
is unnecessary.

In particular one might get the impression that "strong Carroll structures"
(=affine connection ∇) are obtained from the "strong Null-infinity structure"
(= tractor connection) by choosing a representative.

This is however not the case and indeed the asymptotic shear does not
amounts to a choice of affine connection, even when working with a fixed
representatives.
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Carroll vs Null-infinity

In particular one might get the impression that "strong Carroll structures"
(=affine connection ∇) are obtained from the "strong Null-infinity structure"
(= tractor connection) by choosing a scale.

To convince oneself that it is wrong, it suffices to check that the subgroup

R4 o Iso(2),

obtained as the subgroup of the Poincaré group R4 o SO(3, 1) stabilizing the
flat metric,

is not the Carroll group

Carr(3) = R3 o Iso(2).

Therefore a tractor connection cannot be equivalent to an affine connection,
even when working in a fixed scale.
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Carroll vs Null-infinity
In particular one might get the impression that "strong Carroll structures"
(=affine connection ∇) are obtained from the "strong Null-infinity structure"
(= tractor connection D) by choosing a scale.

Rather, when working with a fixed representative, a strong null-infinity
structure D is equivalent to an equivalence class of affine connection :

∇ ∼ ∇̂ ⇔ ∇a − ∇̂a = fhabn
c with f ∈ C∞(I )

I These are the equivalence class of connections described by
Ashtekar/Geroch: These are equivalent to choices of asymptotic shear.

I These were proposed as a geometrization of the asymptotic shear at
null-infinity.
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Comparison with Ashtekar/Geroch results

Ashetkar/Geroch connections
When working with a fixed representative, a strong null-infinity structure D is
equivalent to an equivalence class of affine connection :

∇ ∼ ∇̂ ⇔ ∇a − ∇̂a = fhabn
c with f ∈ C∞(I )

Even thought in principle equivalent to the tractor connection, in practice
working with these equivalence class of connections is not very practical:

How are we suppose to guess quantities invariant under this shift?

Conformal invariance completely occulted

On its side the tractor connection is

a bona fide connection on the tractor bundle
(one can construct invariants in the standard way)

and is manifestly conformally invariant.
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Gravity vacua
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Gravity vaccua
The presence of gravitational wave at null-infinity is encoded in the
curvature of the tractor connection.

The space Γ0 of “gravity vaccua” is therefore the space of
flat null-normal tractor connections.

This space isn’t a point, rather the BMS group act transitively on it with
stabilisers isomorphic to the Poincaré group:

Γ0 = BMS�Iso (3, 1)

Therefore the “gravity vacuum”, Minkowski space, is not unique but
rather we have a space of “gravity vacua” corresponding to all the
possible flat null-normal tractor connections.
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Wait...what do you mean Minkowski is not unique?
Let us consider a flat Lorentzian metric ηµν which is conformally compact
such that the conformal compactification M is Penrose’s diamonds and the
conformal boundary ∂M = I has a fixed universal null-infinity structure(
I → S2,nahab

)
:

This is “a” Minkowski space-time. Is this unique?

surely no for any diffeomorphism φ will send a solution to another φ∗η.

What if we quotient by diffeomorphisms?

quotienting by all diffeomorphism will give you a unique gravity vacuum

quotienting only by diffeomorphisms fixing the conformal boundary
φ
∣∣
I

= Id results in the gravity vacua Γ0!
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Memory effect
Gravity vacua have the following interesting property: they are completely
defined by there value on an open set of the form (α, β)× S2.

i.e if D is flat on U = (α, β) × S2 there is a unique flat extension DU
0 on the

whole of I .
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Memory effect
Gravity vacua have the following interesting property: they are completely
defined by there value on an open set of the form (α, β)× S2.

i.e if D is flat on U = (α, β) × S2 there is a unique flat extension DU
0 on the

whole of I .

This is at the origin of a memory effect...
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Memory effect
Gravity vacua have the following interesting property: if D is flat
on U = (α, β)× S2 there is a unique flat extension DU

0 on the whole of I .

Let D be a null-normal tractor connection corresponding to a “burst” of
gravitational waves
i.e such that it is both flat in the “far future” and “far past”
(i.e its curvature is compactly supported on I .)
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Memory effect
Gravity vacua have the following interesting property: if D is flat
on U = (α, β)× S2 there is a unique flat extension DU

0 on the whole of I .

By the above property, such a connection D defines two flat tractor
connections D±0 ∈ Γ0 by the requirement that they coincide with D in the far
past/future:

D+
0

∣∣
S2×(ε,+∞)

= D
∣∣
S2×(ε,+∞)

D−0
∣∣
S2×(−∞,ε′) = D

∣∣
S2×(−∞,ε′)
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Memory effect
Gravity vacua have the following interesting property: if D is flat
on U = (α, β)× S2 there is a unique flat extension DU

0 on the whole of I .

Therefore gravitational radiation

has sent one gravity vacua D−0 to another one D+
0 .

The difference D+
0 −D

−
0 is an invariant of the underlying space-times.
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Conclusion and outlook
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Conclusion

The geometry of null-infinity is intrinsically conformal.
I suggest that tractor calculus (adapted to degenerate conformal
geometries) is best adapted to deal with this difficulty in a
completely invariant way.
Gravitational radiation is neatly encoded in the curvature of
null-normal tractor connections
Gravity vacua correspond to the degeneracy of flat tractor
connections
The memory effect is completely transparent in these terms
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Outlook
Neat, but what is it good for?
I Probably the only formalism that allows to describe physics at

null-infinity completely invariantly
I We1 have an Einstein-Hilbert variational principle in terms of

tractor variables:
I In principle all physics at null-infinity can thus be reformulated in

this way!
I We2 are working on computing BMS charges and fluxes.

I Application to holographic duality: The null-normal tractor
connection describes the geometrical background to which the
boundary theory should be coupled.

I Very versatile formalism: it unifies all cosmological constant and
both 3D and 4D space-times. Raise the hope to import ideas from
one of these to others.

1Upcoming work with C.Scarinci
2Upcoming work with R.Ruzziconi
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Thank You
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