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2 av Fresnel

91127 Palaiseau cedex, France

In this letter, we revisit the role of surface plasmons for nanoscale radiative heat transfer between
doped silicon surfaces. We derive a new accurate and closed-form expression of the radiative near-
field heat transfer. We also analyse the flux and find that there is a doping level that maximizes
the heat flux.

Radiative heat transfer at nanoscale can be orders of
magnitude larger than predicted by Stefan’s law. This
is now well-known and well documented1–12. Several
groups have reported experimental evidence of the ef-
fect of the enhancement of the flux13,14. More re-
cently, the effect has been investigated in the nanometer
regime15–17. Finally, experimental measurements with a
well-controlled geometry in the nanometer regime have
confirmed the theoretical predictions18,19. These exper-
iments have been performed for silica taking adavan-
tage of the strong contribution of surface phonon polari-
tons to the nanoscale radiative heat transfer predicted
in ref.11,12. In this paper, we discuss the contribution of
surface plasmons to the nanoscale radiative heat trans-
fer. It is well-known that surface plasmons do not play
any role in the heat transfer between two parallel metallic
surfaces because they cannot be excited thermally. In-
deed, typical energies of surface plasmons are larger than
2 eV. However, when dealing with highly doped silicon,
the surface plasmon frequency is in the infrared. This ef-
fect was extensively analysed by Fu and Zhang20. In this
paper, we report a detailed analysis of the contribution of
the surface plasmon to the nanoscale heat transfer. We
derive an accurate asymptotic closed-form expression of
this contribution. Finally, we show that the flux can be
maximized by properly chosing the doping. The heat
transfer coefficient is then found to be on the same or-
der of magnitude than for silica and much larger than
for metals. The system considered in this letter consists
of a gap separating two homogeneous half spaces. Doped
silicon is characterized by its local isotropic dielectric con-
stant. It includes an intrinsic contribution denoted εint

and the carrier contribution which can be either electrons
(e) or holes (h). The intrinsic contribution is found from
optical data at room temperature21. The carrier contri-
bution is given by a Drude model20.

The plates temperatures are supposed to be uniform
and noted T and T + δT . We will assume that δT/T <<
1 so that we can introduce a heat transfer coefficient
ϕ(d, T ) = h(d, T )δT where ϕ(d, T ) is the radiative flux
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per unit area. The radiative heat transfer coefficient can
be cast in the form3,7–9,11 :

h(d, T ) =
∑

j

∫ ∞

0

du[hprop
j (u, T, d) + hevan

j (u, T, d)] (1)

where u = ~ω/kBT , prop and evan stand respectively for
propagating and evanescent waves and j = s, p stands for
the polarization. The coefficients are given by:

hprop
j (u, d, T ) = h0(u)

∫ ω/c
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hevan
j (u, d, T ) = h0(u)
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h0(u) is the derivative of the Planck function: h0(u) =
∂L
∂T (u) = 3

2π2
g0
λ2

T
u4 eu

(eu−1)2 with g0 = π2k2
bT/3h the quan-

tum of thermal conductance and λT = ~c/kbT the ther-
mal wavelength. The Fresnel coefficients are given by :
rs
3m = γ−γm

γ+γm
and rp

3m = εm(ω)γ−γm

εm(ω)γ+γm
, where 3 denotes the

vacuum and m stands for one of the two plates m = 1, 2.
p means Transverse Magnetic (TM) polarization and s
Transverse Electric (TE). γ is the normal component of
the wave vector in the gap and γm is the wave vector
in the media defined as γm =

√
εm(ω)(ω/c)2 − κ2. To

compute the total flux, it is necessary to add the contri-
butions of all the modes by integrating over κ and ω.

As an example, we plot in Fig.1 the heat transfer co-
efficient versus the distance for a doping level equal to
Ne = 2.1019 cm−3. Two features appear clearly. It
is seen that the contribution of s-polarized evanescent
waves first increases and then saturates as the gap width
decreases. On the other hand, the contribution of the p-
polarized evanescent waves varies as d−2 and dominates
for gaps smaller than 50 nm. This contribution does not
exist for intrinsic silicon. It can be attributed to the
contribution of the surface plasmon polariton associated
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FIG. 1: Colors are available on-line.Total heat transfer coef-
ficient at high doping level: Ne = 2.1019 cm−3. Dot black
curve: Total heat transfer coefficient. Red triangles curve:
s-polarization evanescent waves contribution. Blue square
curve: p-polarization evanescent waves contribution. The
temperature is T = 300 K.

with the free carriers as discussed in refs3,5,9,12,20. To
support this assumption, we plot A = 4Im[rp]2e−2γ′′l

|1−r2
se−2γ′′l|2 in

the (ω, κ) domain in Fig.2.
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FIG. 2: Colors are available on-line. Ratio A in the plane
(ω, κ). Doping concentration is Ne = 1020 cm−3. The two
lines result from the coupling of surface-plasmon polaritons
(SPP) on both interfaces. The lines coincide with the disper-
sion relation of the SPP for the two interfaces system. The
gap is d = 10 nm and the temperature is T = 300 K.

The leading contribution to the heat transfer is con-
fined along two lines. Their shape is given by the disper-
sion relation of the surface plasmon polariton in the two-
interfaces geometry. This behaviour is similar to polar
materials which support surface phonon-polariton. The
ratio A tends to zero for wave-vectors larger than 1/d
because in that case, the surface plasmon on both in-
terfaces no longer overlap. A quantitative estimate of
the contribution of the coupled Surface Plasmon Polari-
ton hspp

p (d, T ) can be derived by noting that the parallel

wavevector satisfies κ � ω/c. Hence, the Fresnel coeffi-
cients become independent of the parallel wave vector κ:
r̃p = ε(ω)−1

ε(ω)+1 so that the integration over κ can be per-
formed with the help of the second-order polylogarithm
function22:

hspp
p (u, d, T ) =

3
2π3

g0

d2

Im(r̃p
31)Im(r̃p

32)
Im(r̃p

31r̃
p
32)

×

Im[Li2(r̃
p
31r̃

p
32)]u

2 eu

(eu − 1)2
, (4)

This closed-form expression (eq.4) is general and also
applies when the doping is different for the two plates. It
accounts for the temperature dependence and the dop-
ing dependence. In order to compare it with the exact
numerical result of Eq.(3), we define the thermal conduc-
tance δG(Ne, T ) as:

hspp
p (d, T ) =

δG(Ne, T )
d2

. (5)

δG(Ne, T ) is compared with the exact numerical re-
sult in Fig.3. In contrast with previous approximate
formulas5,11,20, the new asymptotic expression describes
accurately the surface mode contribution for a large
range of doping levels 1016 ≤ Ne ≤ 1021 cm−3 and tem-
peratures 100 ≤ T ≤ 1000.
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FIG. 3: Colors are available on-line. Comparison between the
closed-from expression (plain line) of δG(Ne, T ) and the exact
numerical integration (symbols). a) Dependance on doping at
T = 300 K. b) Dependance on temperature for three doping
concentrations.

Changing the doping level can increase the SPP contri-
bution by several orders of magnitude as seen in Fig.3-
a. Fig.3-b shows that whatever the doping level is, a
maximum is found for a precise temperature. However
tuning the temperature changes δG(Ne, T ) by less than
one order of magnitude. In order to maximize the near-
field radiative heat transfer, we plot δG(Ne, T ) versus
Ne and T (Fig.4). It is seen that there is a maximum
for Ne ' 1020 cm−3 and T ' 600 K corresponding to
3.910−12WK−1. This has the same order of magnitude
than SiC at 300K ( 9.110−13WK−1) or silica at 300K
(2.810−12WK−1).

Finally, we note that the heat transfer coefficient can
be viewed as the quantum of thermal conductance g0
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FIG. 4: Colors are available on-line. Evolution of δG(Ne, T )
with temperature and doping level. δG(Ne, T ) is maximal for
temperature T ' 600K and doping level Ne = 1020 cm−3.

times the number of modes per unit area. As expected
the number of modes is proportional to λ−2

T in the far field
regime (eq.2). The 1/d2 dependance of the radiative heat
transfer coefficient in the near-field regime (eq.4) comes
from the number of modes per unit area contributing to
the heat transfer.

In summary, we have derived an asymptotic closed-
form expression for the nanoscale heat transfer coefficient
mediated by surface plasmons. We showed that the heat
transfer coefficient for doped silicon depends on doping
and temperature. It has a maximum that can be as large
as for polar materials.
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