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Asymptotic expressions describing radiative heat transfer between polar
materials from the far-field regime to the nanoscale regime

Emmanuel Rousseau,1 Marine Laroche,1 and Jean-Jacques Greffet1

Laboratoire Charles Fabry, Institut d’Optique
CNRS, Univ Paris-sud
Campus Polytechnique RD 128
91127 Palaiseau cedex, France

Heat transfer between two plates of polar materials at nanoscale distance is known to be enhanced by several
orders of magnitude as compared with its far-field value. In this article, we derive accurate analytical expres-
sions to quantitatively predict heat fluxes in the near-field. These analytical expressions reveal the physical
mechanisms responsible for the enhancement. For two dielectric polar materials and for gaps smaller than 75
nm at the room temperature the heat transfer is dominated by the surface phonon polariton contribution.
Between 75 nm and 500 nm, the enhancement is mostly due to frustrated total internal reflection. The paper
reports accurate analytical expressions for both contributions. Our analytical results highlight two differences
between radiation flux at the nanoscale and in the far field: i)the heat flux spectrum depends on the gap
distance, ii) the temperature dependence of the heat transfer coefficient deviates strongly from the T 3 law
valid for grey bodies in the far-field.

I. INTRODUCTION

The heat flux between two bodies in a vacuum is only
due to radiative heat transfer. This transfer can be en-
hanced by many orders of magnitude when the distance
separating the bodies becomes smaller than the thermal
wavelength λT = h̄c

kBT
i.e. 7.6 µm at room temperature

(h̄ = h/2π is Planck constant, kB is Boltzmann con-
stant, c is the light velocity and T is the temperature).
This is due to energy tunneling mediated by evanescent
waves whose wavevector component parallel to the inter-
face is larger than ω/c where ω is the circular frequency.
Cravalho et al.1 were the first to point out the role of
the evanescent waves. However they considered only the
case where evanescent waves in the gap result from Frus-
trated Total Internal Reflection (FTIR) of propagating
waves in the material. They also restricted their work to
the case of materials with a low imaginary part of the
refractive index. Within the framework of the fluctua-
tional electrodynamics2 their work has been extended3–11

to account for modes with parallel wave vectors larger
than nrω/c where nr is the real part of the optical in-
dex. In particular, it has been shown8,12 that for ma-
terials supporting surface phonon polaritons the radia-
tive heat transfer is enhanced by an order of magnitude.
Recent experiments13–15 have taken advantage from this
enhancement and a good agreement with the Polder-Van
Hove theory3,8 has been reported15. These measurements
were made possible because the heat flux increases as 1/l2

in the case of two infinite planes separated by a vacuum
gap l. Yet, in the experiment, a sphere-plane geometry
is used so that different distance regimes are involved. In
addition, there have been little attention devoted to the
temperature dependence of the heat transfer.

Here, we report accurate analytical expressions for the
heat transfer between two surfaces supporting surface
phonon polaritons. By properly accounting for the de-
tailed dispersion relation of the surface modes, we are

able to significantly improve previously reported semi-
quantitative formulas11. Our approach highlights the
fundamental role of the density of states and the trans-
mission coefficient of each mode as pointed out in two
recent papers16,17. This approach is not restricted to
the surface phonon polariton contribution (quasi-static
limit). We used it beyond the quasi-static limit and give
asymptotic formulae which are valid for gap widths up
to 500 nm. Furthermore our analytical formulas do not
depend on a specific model of the dielectric constant.
They can be applied to a wide range of situations when
a proper estimate of the heat transfer is required. Such
expressions can be useful in order to control17–19 heat
fluxes at nanometric scales.

II. DESCRIPTION AND MODELLING

A. Description of the system

The system studied consists in two infinite media sepa-
rated by a vacuum gap l (see Fig. 1). Their temperatures
are supposed to be uniform and noted T and T +δT . We
assume that the temperature difference is small so that
we can linearize the flux and introduce a heat transfer
coefficient htot(l, T ) defined as:

ϕ(l, T ) = htot(l, T )δT (1)

where ϕ(l, T ) is the radiative flux, T the temperature
of the first plate, T + δT the temperature of the second
plate (see Fig. 1).

We will use silicon carbide (SiC), amorphous sil-
ica (SiO2) and alumina (Al2O3) to illustrate our re-
sults. As previously seen, optical properties affect heat
transfer8,20. Amorphous silica and alumina optical prop-
erties are taken from Ref.21. Since optical properties
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FIG. 1. Two semi-infinite half-spaces separated by a vacuum
gap (distance l). Materials 1 and 2 can be identicals or dif-
ferents.

variations with temperature are not known, an approx-
imation is made here. We suppose that the optical
properties remain the same in the range of tempera-
ture [200 K,600 K]. On the contrary concerning silicon
carbide we use the Lorentz model which describes with
great accuracy the optical index21,22. Four parameters
are needed to describe the optical properties: the dielec-
tric function at high frequency ε∞, the longitudinal and
the transverse optical-phonon frequency (ωLO and ωTO
respectively) and a damping factor Γ.

ε(ω) = ε∞(
ω2
LO − ω2 − iΓω
ω2
TO − ω2 − iΓω

) (2)

No approximations are done here concerning temper-
ature variations since these four parameters have been
measured22 at five different temperatures in the range
[300-800K]. The high-frequency dielectric function ε∞
and the optical-phonon frequencies ωTO and ωLO change
by less than 2% and will be taken to be constant. On
the other hand, the damping factor increases linearly
with temperature. The fit parameters are: Γ(T ) =
4.8329 + 0.0183(T − 300) cm−2. Note that this linear
fit yields a value at 300K Γ(300K) = 4.8329 cm−2 that
differs by 1.5% from the tabulated value (4.76 cm−2) in
Ref.21.

B. Theory

Computing radiative heat transfer in the pres-
ence of evanescent waves requires a full electromag-
netic approach3,5 in the framework of fluctuational
electrodynamics4 as introduced by Rytov. The flux is
obtained by calculating the Poynting vector across the
gap separating the two bodies as shown in refs7,8,10,11:

htot(l, T ) =
∑
i=s,p

∫ ∞
0

dω[hiprop(l, T, ω) + hievan(l, T, ω)]

(3)

where the sum over i = s (TE), p (TM) accounts for the
two polarizations. We have introduced the contribution
of the propagating modes (κ < ω/c):

hs,pprop(l, T, ω) = h0(ω, T )×∫ k0

0

κdκ

k2
0

(1− |rs,p31 |2)(1− |rs,p32 |2)

|1− rs,p31 r
s,p
32 e
−2iγl|2

and the contribution of the evanescent modes(κ > ω/c):

hs,pevan(l, T, ω) = h0(ω, T )×∫ ∞
k0

κdκ

k2
0

4Im(rs,p31 )Im(rs,p32 )

|1− rs,p31 r
s,p
32 e
−2γ′′l|2

e−2γ′′l, (4)

where h0(ω, T ) is the derivative of the blackbody in-
tensity:

h0(ω, T ) = π
∂L0

∂T
(ω, T ) =

1

T

h̄ω

kbT

h̄ω3

4π2c2
1

[2 sinh( h̄ω0

2kbT
)]2
.

rs,p31 and rs,p32 are the Fresnel coefficient of each interface
(3 denotes the vacuum) and are given in the Appendix
A. The Fresnel coefficients depend on the polarization s
or p of the incident wave.
γ′′ = Im[γ] is the imaginary part of the z-component

γ =
√

(ω/c)2 − κ2 of the wave vector in the vacuum
gap whereas κ is the component parallel to the inter-
face. They satisfy the relation: κ2 + γ2 = (ω/c)2. We
also define k0 = ω/c.

FIG. 2. Evolution of the heat transfer coefficient with distance
for two infinite planes of SiC. Black dots curve: Total heat
transfer coefficient (htot). Red triangles curve: Evanescent
s-polarized contribution (hs

evan). Blue square curve: Evanes-
cent p-polarized (hp

evan). Black dashed line: Contribution
of p-polarized evanescent waves coming from frustrated to-
tal internal reflections. The average temperature is the room
temperature (T=300 K). Colors are available online.

The dependence of the heat transfer coefficient for two
slabs of SiC as a function of the gap distance is shown in
Fig. 2. It represents the total heat transfer coefficient, its



3

evanescent p- and s-polarized component versus the gap
distance l. We can distinguish three regimes: 1) For gaps
smaller than λT /100 (i.e. 75nm at room temperature),
the heat transfer is mainly dominated by the p-polarized
evanescent waves contribution (blue squares curve in Fig.
2. 2)Between 75 nm and 500 nm there is an intermedi-
ate regime where both s- and p-polarized contribution
have to be taken into account. 3) For a distance larger
than λT ( i.e. 7.6 µm at room temperature), the heat
transfer coefficient is independent of the distance when
the propagating part of equation (3) dominates the heat
transfer.

III. ASYMPTOTIC EXPRESSIONS FOR EXTREME
NEAR-FIELD REGIME

In this section we focus on the regime where the p-
polarization dominates the heat transfer i.e. for gaps
smaller than λT /100.

In this extreme near-field regime, the heat transfer co-
efficient reduces to:

h(l, T ) '
∫ ∞

0

dωhpevan(l, T, ω) (5)

A. Closed-form expression of the heat transfer coefficient
in the electrostatic limit

We first turn to the calculation of the heat transfer
coefficient in the electrostatic limit. In this limit sur-
face modes contribution dominates the heat transfer8,16.
We rewrite equation (5) with dimensionless units: u =

h̄ω/kBT , κ̃ = κ/k0, γ̃ = k0

√
κ̃2 − 1, kT = 1/λT :

hpevan(l, T ) =

∫ ∞
0

duhpevan(l, T, u) (6)

with

hpevan(u, l, T ) =
3

2π3

g0

λ2
T

h0(u)×∫ ∞
0

γ̃dγ̃
4Im(r31)Im(r32)e−2kT γ̃ul

|1− r31r32e−2kT γ̃ul|2
(7)

where g0 = π2k2
BT/3h is the quantum of thermal con-

ductance.
Note that Fresnel coefficients are now function of u

and κ̃ and h0(u) = u4eu/(eu − 1)2. One can note that
for evanescent waves:

Im(r31r32)

|1− r31r32e−2kT γ̃ul|2
e−2kT γ̃ul = Im[

r31r32e
−2kT γ̃ul

1− r31r32e−2kT γ̃ul
]

This allows to obtain an analytical form of (7) by re-
moving the modulus function. In the electrostatic regime

(κ̃ � 1), the Fresnel coefficients are independent of the

parallel wave vector κ̃: r̃p = ε(u)−1
ε(u)+1 . A final change of

variable X = 2γ̃kTul yields the surface-phonon polariton
contribution noted hspp:

hspp(u, l, T ) =
3

2π3

g0

l2
h0(u)

u2
× (8)

Im(r̃31)Im(r̃32)

Im(r̃31r̃32)

∫ ∞
0

XdXIm[
r̃31r̃32e

−X

1− r̃31r̃32e−X
]

The distance dependence (hspp(u, l, T ) ∝ 1/l2) is a
consequence of the electrostatic limit and equation (8)
can be integrated with the help of the polylogarithm
function of the second order23 which takes into account
the dispersion relation of the two infinite planes geome-
try:

hspp(u, l, T ) =
3

2π3

g0

l2
h0(u)

u2
× (9)

Im(r̃31)Im(r̃32)

Im(r̃31r̃32)
Im[Li2(r̃31r̃32)]

FIG. 3. Evolution of the the p-polarization of monochromatic
heat transfer coefficient for two infinite planes of SiC at two
different temperatures T=300 K (a) and T=1000 K (b). The
gap is l=10 nm. We represent only the p-polarization compo-
nent. The black curve is the exact numerical result and the
red line is the asymptotic expression (equation 9). The dashed
blue line is the derivative of the Planck function h0(ω, T ).
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No assumptions have been made on the form of the
Fresnel coefficients except that they are taken in the elec-
trostatic limit where they are independent of the parallel
wave vector. This result has already been obtained in the
case of doped silicon24 which supports surface-plasmon
polariton in the infrared. In this paper we go further by
performing the integration over the reduce frequency u
and we obtain an analytical formula (eq. (12)). Further-
more the method is generalized and we obtain then an
equation that gives the near-field radiative heat transfer
between two infinite planes without assuming any model
for the dielectric constant (eq. (13)).

FIG. 4. Evolution of the p-polarization of the monochromatic
heat transfer coefficient for two infinite planes of SiC for three
different distances l = 1 µm,l = 100 nm, l = 10 nm. We
represent only the p-polarization component. The black curve
is the exact numerical result and the red line is the surface-
phonon polariton contribution (Eq. 9).The temperature is
T = 300 K.

We now compare the closed-form expression
hspp(ω, l, T ) (Eq. 9) and a numerical integration of
the p-polarisation heat transfer coefficient hpevan(ω, l, T )
as a function of the frequency ω.

The comparison is done for two temperatures in Fig. 3
and three distances in Fig. 4. The black curve is a numer-
ical integration of Eq. (4). It describes only the contribu-
tion of the p-polarization. The red curves are the asymp-
totic expressions (Eq. 9) and the blue dashed curves are
the derivative of the Planck function h0(ω, T ). The sur-
face mode contribution hspp(ω, l, T ) describes correctly
the peak for a large range of distances (l ≤ 1µm) and
temperatures (T ≤ 1500K).

For distances smaller than 5 nm, the heat transfer is
completely dominated by the surface mode which con-
tributes for more than 99.5% to the total heat transfer
at 300K. On the contrary at 100 nm only 48 % of the to-
tal flux is due to the surface-phonon polariton coupling.
Actually, the closed-form expression fails to describe the
total curve and underestimates the contribution of the
low and high frequency modes. These modes follow the

Planck function as it can be seen on Fig. 3-a and 3-b
by considering the black (hpevan(ω, l, T )) and dashed blue
curves (h0(ω, T )) at low and high frequencies.

Fig. 4 shows that the spectrum of the heat flux de-
pends on the distance. This is a specific near-field feature
as in a vacuum, the far-field radiative heat flux spectrum
is always independent on the distance. Yet, mainly the
peak due to the surface phonon polariton depends on the
distance and varies as l−2. The remaining contributions
have a spectrum which is weakly dependent on the dis-
tance l. Their contribution is analyzed in section IV.

FIG. 5. Evolution of the p-polarization of the monochromatic
heat transfer coefficient at T=300 K for two infinite planes
of SiC. The gap is l=10 nm. Black curve: p-polarization
contribution to the monochromatic heat transfer coefficient
obtained by a numerical integration of hp

evan(ω, d, T ) (Eq.4).
This is the exact result. Red curve: Contribution to the sur-
face mode hspp(ω, d, T ). The dashed blue line is a rough esti-
mate from Ref.5,8.

We now focus on the peak seen in figures 3 and 4. In
Fig. 5, we compare two different asymptotic formulae.
The dashed blue line is a rough asymptotic estimate of
the heat transfer coefficient derived in Ref.5,8. While it
reproduces correctly the distance dependance (h ∝ 1/l2),
this expression does not yield the correct amplitude and
the correct width of the heat transfer coefficient. This is
due to the fact that the dispersion relation of SPP in a
gap had not been taken into account and that the trans-
mission factor is incorrectly assumed to be 1 indepen-
dently of the parallel wave-vector κ. Finally, let us em-
phasize that the closed-form expression Eq. (9) is valid
in a plane-plane geometry with similar or different polar
materials.

B. Dependence of the near-field conductance on the
temperature

For a grey body, (i.e. a body with an emissivity ε in-
dependent on the the frequency), the far-field heat flux
coefficient varies as 4εσT 3. In this section, we investi-
gate the dependence of the near-field heat transfer coef-
ficient versus temperature. As we have just shown be-
fore, the heat flux spectrum is dramatically modified in
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FIG. 6. Evolution of δG with temperature for different ma-
terials. In all curves, symbols are extracted from the exact
numerical integration of Eq. (4). Materials are indicated
near the curves (a) The blue line is a numerical integra-
tion of the asymptotic expression Eq. (11). The red curve
is the analytical formula Eq. (12) b) The red curve is the
analytical expression Eq. (13) whereas the dotted and the
dashed blue curves are the contribution of each resonance fre-
quency (ω1

SiO2−SiO2
= 9.26 1013 rad/s and ω2

SiO2−SiO2
=

2.17 1014 rad/s respectively.). (c) Plain lines come from Eq.
(13).

the short-distance regime and becomes quasi monochro-
matic. Hence, the temperature dependence which results
from the integral over all frequencies is expected to be
significantly modified in this particular regime. To this
aim, we first define δG(T ) as:

hspp(l, T ) =
δG(T )

l2
(10)

with

δG(T ) =
3

2π3
g0 × (11)∫ ∞

0

du
h0(u)

u2

Im(r̃31)Im(r̃32)

Im(r̃31r̃32)
Im[Li2(r̃31r̃32)]

Our task is now to perform the integration over all
frequencies in order to derive the heat transfer coefficient
as a function of temperature. This is done in Appendix
B in the case of two SiC planes. We find that that the
contribution of the surface modes can be cast in the form
:

δG(T ) = − 3

2π2
g0 × (12)

Γu
4
u2
spp

euspp

(euspp − 1)2
Re[Li2(r̃2(uspp)]

Where Γu = h̄Γ/kBT is proportional to the material
losses Γ and uspp is the single-interface surface-phonon
polariton resonance. δG(T ) is shown in Fig. 6-a). First
we compare the numerical computation of Eq. (4) (black
dots) and a numerical integration of Eq. (11) (blue line)
in order to test the accuracy of the electrostatic limit.
The two curves perfectly fit for temperatures lower than
1500 K. A small discrepancy appears at high tempera-
ture. It can be attributed to the failure of the electro-
static limit. High frequency modes are activated by the
Planck function and the condition κ ≥ ω/c can be no
longer satisfied. Moreover it is clearly seen that δG(T )
presents a maximum for T ' 1500K. This temperature
behaviour differs drastically from the blackbody. For a
blackbody, the flux always increases with increasing T be-
cause the number of modes thermally activated increases.
In the electrostatic regime the number of modes is fixed
by the vacuum gap between the two slabs.

Now we compare the analytic result Eq. (12) (red
curve) and the black dots which are a numerical inte-
gration of Eq. (4). Although the difference is 7% at 2000
K the accuracy is better than 2% for temperatures lower
than 1000 K. This discrepancy comes mainly from the ap-
proximation uB ' uspp meaning that the surface-mode
frequency is independent of losses which is no more cor-
rect when the temperature increases. Another source of
errors at high temperatures comes from the fact that we
have neglected the contribution of the poles of the Planck
function. Nevertheless Eq. (12) is simple and gives an
accurate result for useful temperatures.

We now study the general case of two different ma-
terials. We do not assume any model for the dielectric
constants. They can be given by experimental data. As

shown in the Appendix B the pre-factor Im(r̃31)Im(r̃32)
Im(r̃31r̃32) =

1
f(u) plays an important role since it determines the poles

of Eq. (11) (i.e. resonance frequencies) and the magni-
tude of the heat transfer. The previous study with two
SiC half-spaces shows that: i) only poles of the pre-factor
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contribute to the heat transfer, poles of the fresnel coeffi-
cients do not, and, ii) theses poles are simples even in the
case of similar materials. Such remarks enable us to in-
tegrate Eq. (11) in the general case of different materials
described by experimental data. We find:

δG(T ) =
3

2π2
g0 × (13)∑

ui

1

f ′(ui)
u2
i

eui

(eui − 1)2
Re[Li2(r̃1(ui)r̃2(ui))]

Where ui are zeros of f(u) which give a negative value
of the derivative f ′(ui) < 0. Theses frequencies are the
coupled-mode resonances and give a positive contribution
to the heat transfer. The other solutions f(uj) = 0 which
lead to a positive value of the derivative f ′(uj) > 0 give
a small negative contribution that is neglected. More
details can be found the Appendix B.

Equation (13) and f(u) are a key result of this pa-
per since they give the first correct and general analytic
closed-form expression for the heat transfer in the electro-
static regime. From f(u) and the optical data, resonance
frequencies and magnitude of the heat transfer coefficient
can be obtained. Such equations can be used to optimize
the heat transfer as it has been done in Ref.18,19.

The heat transfer between two slabs of silica is shown
in Fig. 6-b). The squares curve is obtained from the
exact numerical computation. The optical properties are
taken from Ref.21. This material is interesting since its
optical data exhibits two surface-phonon polariton res-
onances. Indeed two solutions satisfied f(ui) = 0 and
f ′(ui) < 0. The corresponding frequency resonances
are ω1

SiO2−SiO2
= 9.26 1013 rad/s and ω2

SiO2−SiO2
=

2.17 1014 rad/s. Injected into Eq. (13) they give respec-
tively the dotted blue curve and the dashed blue curve.
The contribution of the first coupled mode dominates the
heat transfer at low temperature since only this mode is
activated by the Planck function. When increasing the
temperature the second coupled-mode contributes to the
heat transfer. Eq. 13 perfectly reproduces δG(T ) varia-
tions with the temperature.

We now compare in Fig. 6-c) our closed-form expres-
sion for two different materials. δG, extracted from the
exact numerical results, is plotted as diamonds in the
case of a slab of SiC and a slab of alumina. As a com-
parison we also plot δG for two slabs of SiC (circles) and
two slabs of alumina (triangles). Plain curves are Eq.
13. One finds only one solution for the SiC − Al2O3

geometry satisfying f(ui) = 0 and f ′(ui) < 0. This
resonance frequency is ωSiC−Al2O3

= 1.69 1014 rad/s.
For the Al2O3 − Al2O3 system the frequency resonance
is ωAl2O3−Al2O3

= 1.55 1014 rad/s and ωSiC−SiC =
1.79 1014 rad/s for the SiC − SiC geometry. One can
remark that dissimilar materials reduce the heat trans-
fer coefficient. In summary Eq. 13 perfectly captures
the physics of the heat transfer in the electrostatic limits
since it reproduces the exact numerical data for a wide

range of temperature even in the case of dissimilar ma-
terials.

IV. ASYMPTOTIC EXPRESSIONS FOR THE
INTERMEDIATE NEAR-FIELD REGIME.

As already mentioned, at room temperature the
surface-phonon polariton dominates the heat transfer for
distances smaller than 75 nm. In order to describe the
heat transfer in a wider range of gap widths one has to
include the other modes contribution. In this section, we
analyse the contribution of the evanescent waves com-
ing from frustrated total internal reflections and find an
asymptotic expression describing their contribution. We
restrict our study to the case of two slab made of the
same materials. Our results will be illustrated with sili-
con carbide.

A. Contribution of evanescent waves coming from
frustrated total internal reflection.

These modes are characterized by a parallel wave vec-
tor that satisfies: k0 ≤ κ ≤ nr(ω)k0 where nr(ω) is the
real part of the refractive index and k0 denotes ω/c which
defines the Frustrated Total Internal Reflection (FTIR)
range. Note that the refractive index depends on the cir-
cular frequency and that the previous condition excludes
all frequencies giving nr(ω) < 1. In the case of SiC the
previous condition excludes the window [ωTO, ωLO].

We plot in Fig.2 the contribution of frustrated to-
tal internal reflections in p (dashed black line) and s-
polarization (red triangles). Both curves saturate and
reach the same value at small gaps. Note that the s-
component reaches its saturation value for gaps larger
than the p-component which saturates at extremely small
gaps.

B. Closed-form expression beyond the electrostatic limit

The contribution of frustrated total internal reflec-
tions in s-polarization hsf (ω, l, T ) and in p-polarization

hpf (ω, l, T ) are calculated in Appendix C. We recall here
only the asymptotic form of the closed-form expressions
in the first order of (k0l2 )2 since they exhibit two different
length scales explaining why the saturation is reached at
different gaps depending on the polarization:

hsf (ω, l, T ) ' hsat(ω, T )× (14){
1 + (

k0l

2
)2(εr − 1) ln[(

k0l

2
)2(εr − 1)]

}
for the s-polarization and:
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FIG. 7. Evolution of the total monochromatic heat transfer
coefficient with circular frequency for two infinite planes of
SiC. The gap is l=10 nm and the temperature is T = 300 K.
a) The black curve is the total monochromatic heat transfer
coefficient (polarization s+p). It is obtained from a numeri-
cal integration of Eq. (3). The red line is the surface-mode
contribution hspp(ω, d, T ) (Eq. 9). The dashed green line is
the contribution of the s- and p-polarization in the satura-
tion regime hmax

f (ω, T ) given by Eq. (15). b) is a zoom in a
narrow frequency range.

hpf (ω, l, T ) ' hsat(ω, T )×{
1 + (

k0l

2
)2(εr − 1)ε2

r ln[(
k0l

2
)2(εr − 1)ε2

r]
}

for the p-polarization. In previous formulae εr is the
real part of the dielectric function. Validity ranges of
these asymptotic expressions are given in the Appendix
C.

For nearly touching slabs l ' 0 the same value is
reached for both polarizations:

hsat(ω, T ) = h0(ω)
nr(ω)2 − 1

2

The maximal heat transfer due to evanescent waves
coming from frustrated total internal reflection is then
given by:

hmaxf (ω, T ) = h0(ω)(nr(ω)2 − 1) (15)

This limit has been previously obtained by Cravalho
et al1 in the case of materials whose optical index is fre-
quency independent and have a low imaginary part. Here
we show that this simple formula giving the maximum
heat flux due to frustrated total internal reflections can
be extended to both s- and p-polarizations and for any
materials supporting or not surface phonon polariton.

For a 10 nm gap, we plot in Fig.7-a the monochro-
matic total heat transfer coefficient (polarization s+p)
htot(ω, d, T ) (Eq. 4) obtained from exact numerical re-
sults versus the frequency. We also plot the surface
mode contribution hspp(ω, d, T ) (Eq. 9) and the contri-
bution of frustrated total internal reflections hsf (ω, l, T )+

hpf (ω, l, T ). The sum of these three contributions now
completely describes the exact numerical result. The
shape and the peak are perfectly reproduced. We then
focus on the peak seen in Fig.7-b. There are actually two
peaks. One at ωspp due to the surface-phonon polariton
frequency and described by the surface mode contribu-
tion hspp(ω, T ) as previously discussed. A small peak ap-
pears at ωTO. It results from the resonant behaviour of
the dielectric constant when frequencies approach ωTO.

FIG. 8. Evolution of the total heat transfer coefficient with
distance for two infinite planes of SiC. Black dots curve: Total
heat transfer coefficient htot(l, T ) (Eq. 3). Red plain curve:
evanescent s-polarization contribution hs

evan(l, T ) (Eq. 4).
Orange plain curve: evanescent p-polarization contribution
hp
evan(l, T ) (Eq. 4) limited to the FTIR range. Next curves

result from closed-form expressions. Blue dashed curve: con-
tribution of the surface-phonon polariton hp

spp(d, T ) (Eq. 10).
Black dashed curves are respectively FTIR s-pol hs

f (l, T ) (Eq.
C2) for the FTIR contribution in s-polarization and FTIR
p-pol hp

f (l, T ) (Eq. C4) for the FTIR contribution in p-
polarization The green curve is the approximate expression
happrox(l, T ) (Eq. 17).

We now focus on the distance dependence of the con-
tribution of frustrated total internal reflections. To this
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aim we have to integrate over the circular frequencies:

hs,pf (l, T ) =

∫
ω/∈[ωTO,ωLO]

dωhs,pf (ω, l, T ) (16)

The integration range is of course restricted to the
FTIR range ω /∈ [ωTO, ωLO] which makes the integra-
tion difficult to be performed analytically. Thus we nu-
merically integrate it and compare with the exact results
given by Eq. 4.

Black dashed curves in Fig. 8 are the result of the
numerical integration of Eq. (16) with respectively Eq.
(C2) (FTIR s-pol) and Eq. (C4) (FTIR p-pol) as the
integrand for the s- or the p-polarization. The plain red
and orange curves result from a numerical integration
of Eq. 4. In this exact numerical integration we re-
strict the wave-vectors range to the window [k0, nr(ω)k0]
for the p-polarization (FTIR range) whereas we used
the entire range [k0,+∞] for the s-polarization. Al-
though the asymptotic expression hsf (l, T ) slightly over-
estimates the evanescent s-polarization contribution, the
closed-form expression hpf (l, T ) perfectly reproduces the
p-polarization contribution. Note that the distance de-
pendence is perfectly reproduced in both case. Such
a comparison prove that equations (C2) and (C4) cap-
ture the physics of the heat transfer beyond the electro-
static limit. As a consequence in s-polarization evanes-
cent modes result only from frustrated total internal re-
flections which is expected for a non-magnetic material
as SiC.

One can note that for each polarization two regimes ap-
pear. A first one where the heat transfer coefficient varies
slowly with the gap width and a second one for gaps
larger than ls,?f in s-polarization or lp,?f in p-polarization
where the heat transfer coefficient quickly decreases with
the gap width l (see Appendix C for definition of ls,?f and

lp,?f ). Such behaviour can be understand with a meso-

scopic point of view of the radiative heat transfer16,17.
Our treatment of the contribution of evanescent waves
coming from frustrated total internal reflection consists
of fixing the number of modes by fixing the parallel wave
vector in the range k0 ≤ κ ≤ nr(ω)k0. Then we com-
pute their transmission factor As,p(ω, γ, l, T ). When gap
widths are small compared to characteristic gap width
l� ls,?f for s-polarization and l� lp,?f for p-polarization
transmission factors are close to As,p ' 1. Each mode
contributes then as the quantum of thermal conductance.
Summing over all the allowed modes gives Eq.15. When
the gap width increases the transmission factors As,p de-
crease leading to a reduction of the thermal conductance
whereas the number of contributing modes remains con-
stant.

V. VALIDITY RANGE.

We now investigate the accuracy of the different
asymptotic expressions and examine their validity range.
We only consider the case of two silicon carbide slabs.

We define the approximate heat transfer coefficient as
the sum of the surface-phonon polariton contribution and
the contribution of frustrated total internal reflections in
s- and p-polarization:

happrox(l, T ) = hpspp(l, T ) + hsf (l, T ) + hpf (l, T ) (17)

where hpspp(l, T ) is given by Eq. (10) and Eq. (13),

hsf (l, T ) and hpf (l, T ) result from a numerical integration

over the angular frequencies (Eq. (16)) of the closed-form
expressions given by Eq. (C2) and Eq. (C4). The ap-
proximate coefficient happrox(l, T ) (green curve) is com-
pared with the exact numerical results (black dots) in
the Fig. 8 at room temperature. With this procedure,
the total heat transfer coefficient is well-described for dis-
tances up to 500 nm whereas the surface-phonon polari-
ton hpspp(l, T ) contribution (dashed blue curve in Fig. 8)
can only describe the heat transfer coefficient for distance
smaller than 75 nm at the room temperature. As an ex-
ample, the relative difference between the exact numeri-
cal result (black dots) and the surface phonon contribu-
tion (dashed blue curve) is 48% at d = 100 nm whereas
it is only 3% with the approximate happrox(l, T ) (green
curve).

Fig. 9 shows the relative difference between the total
heat transfer htot(l, T ) (Eq. 3) and the approximation
happrox(l, T ) (Eq. 17) for temperature varying between
[200-900 K] and gaps varying between [10−9, 10−5 m].
The relative difference (R) is in percent: R = 100 ×
|htot(l,T )−happrox(l,T )|

htot(l,T ) .

FIG. 9. Relative difference between the total heat transfer
htot(d, T ) coefficient and the approximation happrox(d, T ) in
the case of two infinite planes of SiC. Numbers indicate the
relative difference (in percent).

VI. CONCLUSION

In this paper, we have shown that radiative heat trans-
fer mainly results from the coupling of surface phonon-
polariton for distances shorter than 75 nm. A careful
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analysis of their contribution allowed to derive a closed-
form expression of the heat transfer coefficient. It can be

cast in the form ϕ(l, T ) = δG(T )
l2 SδT . We have investi-

gated the temperature dependence of δG and we have
found a behaviour markedly different from the black-
body radiation case. For distances larger than 75 nm,
other contributions must be included. We derived a
closed-form expressions beyond the electrostatic limit in
s- and p-polarization. This yields an analytical formula
valid for distances up to 500 nm at room temperature.
In summary, the results presented in this paper clarify
the physical origin of the different contributions to the
nanoscale heat transfer and provides closed-form expres-
sions to compute quantitatively nanoscale heat transfer
between polar materials.

The authors acknowledge the support of Agence Na-
tionale de la Recherche through Monaco projects (ANR-
06-NANO-062) and Leti-Carnot Institute.

Appendix A: Fresnel coefficients

The optical properties of the interface is included in
the Fresnel reflection factors. Their explicit form is given
below:

for the s-polarization:

rs31 =
γ − γ1

γ + γ1

with γ =
√

(ω/c)2 − κ2 the z-component of wave vec-

tor in the vacuum and γ1 =
√
ε1(ω/c)2 − κ2 the z-

component of the wave vector in the material 1.
and for the p-polarization:

rp31 =
ε1γ − γ1

ε1γ + γ1

Appendix B: Temperature dependence of the heat transfer
coefficient in the short distance regime

In the electrostatic limit, the pre-factor Im(r̃31)Im(r̃32)
Im(r̃31r̃32)

is 1/f(u) with f(u) = 1
2 ( |ε1|

2−1
Im[ε1] + |ε2|

2−1
Im[ε2] ). This function

plays an important role since it determines the poles of
Eq. (11) (i.e. resonance frequencies) and the magnitude
of the heat transfer. In order to make our point clear we
consider in this appendix the case of two slabs of silicon
carbide. Then we integrate Eq. (11) in the general case
of two different materials (see text).

For two SiC slabs, f(u) is given by:

f(u) =
2

Γu(u2
ch − u2

spp)

(u2 − u2
ch)(u2 − u2

spp) + (Γuu)2

u

where uspp = h̄ωspp/kBT with ωspp =
√

ε∞ω2
LO+ω2

TO

ε∞+1

the single-interface surface-phonon polariton resonant

frequency, uch = h̄ωch/kBT with ωch =
√

ε∞ω2
LO−ω2

TO

ε∞−1

the Christiansen frequency ωch (ε(ωch) = 0) and Γu =
h̄Γ/kBT .
f(u) has 4 zeros: ±uA, ±uB with:

u2
A=

u2
spp + u2

ch − Γ2
u

2
−

√
(u2
spp + u2

ch − Γ2
u)2 − 4u2

sppu
2
ch

2

' u2
ch

u2
B=

u2
spp + u2

ch − Γ2
u

2
+

√
(u2
spp + u2

ch − Γ2
u)2 − 4u2

sppu
2
ch

2

' u2
spp

Note that those poles lie on the real axis on the con-
trary to the single-interface geometry where poles are
complex numbers. We also emphasize that these poles
coincide with the surface-phonon polariton frequency and
the Christiansen frequency of the single-interface geom-
etry only in the limit of low losses Γ � ωspp, ωch. This
approximation is correct for temperatures lower than
1000 K.

FIG. 10. Path of integration used to integrate eq. (11). uA,
uB and uf are poles of the integrand of eq. (11). uA and uB

are poles of the pre-factor Im(r̃31)Im(r̃32)
Im(r̃31r̃32)

. uf is a pole of the

fresnel coefficients. The integration path excludes the origin,
uA and uB .

Now we will integrate Eq. (11) in the upper-positive
part of the complex plane as plotted in Fig. 10. The path
of integration is a quarter of circle whose radius extend
to the infinity and exclude uA, uB and the origin. The

Fresnel coefficient’s poles are uf = ±
√
u2
spp − Γ2

u/4 −
iΓu/2 and are excluded from this integration contour.
The contribution of the pole uA (i.e. the Christiansen
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frequency) is small and negative and will be neglected.
We also neglect the contribution of poles coming from the
Planck function. We then obtain the following formula
for the contribution of the coupled surface modes:

δG(T ) = − 3

2π2
g0 × (B1)

Γu
4
u2
spp

euspp

(euspp − 1)2
Re[Li2(r̃2(uspp)]

Note that Re[Li2(r̃2(uspp)] is negative so that δG(T )
is positive.

We now consider the general case of two different ma-
terials without assuming any model for dielectric con-
stants. The integration path is the same so only poles of

1
f(u) contribute to the heat transfer. Integrating Eq. 11

gives:

δG(T ) =
3

2π2
g0 ×∑

ui

1

f ′(ui)
u2
i

eui

(eui − 1)2
Re[Li2(r̃1(ui)r̃2(ui))]

Where ui are zeros of f(u) which give a negative value
of the derivative f ′(ui) < 0. This solution is equivalent
to the coupled mode resonance uB in the previous case of
two SiC slabs and give a positive contribution to the heat
transfer. The other solution f(uj) = 0 which leads to a
positive value of the derivative f ′(uj) > 0 is the equiva-
lent of the Christiansen frequency uA. This contribution
is small and then neglected.

Appendix C: Calculation of the contribution of evanescent
waves coming from frustrated total internal reflection

1. s-polarization

Let us estimate the value of the heat transfer coeffi-
cient due to frustrated total internal reflections. Follow-
ing Pendry6, the integrand in Eq. 4 is bounded by:

As =
4Im(rs)

2e−2γ′′d

|1− r2
se
−2γ′′d|2

≤ 1

The maximum value is reached in the following
condition6:

|rs|2 = e2γ′′l (C1)

Evanescent modes coming from frustrated total inter-
nal reflections are characterized by |rs|2 = 1 so that con-
dition (C1) is satisfied in the asymptotic limit l → 0.
The heat transfer coefficient then saturates to a max-
imum value. In order to get the distance dependence

we will develop |rs|2 around condition (C1) by writing
|rs|2 = e2γl + (1− e2γl). One then gets:

As(ω, γ, l, T ) =
1

1 + sinh[γk0l]2

Im[rs]2

' 1

1 + (γk0l)2

Im[rs]2

We recall here that we focus on the contribution of
frustrated total internal reflections, i.e. modes charac-
terized by k0 ≤ κ ≤ nr(ω)k0. Such a condition implies
that the real part of the optical index is greater than
1 (nr(ω) ≥ 1) and that its imaginary part is negligi-
ble (ni(ω)/nr(ω) � 1). In the case of SiC these condi-
tions excludes the range [ωTO, ωLO]. Through the follow-
ing approximations the fresnel coefficient for evanescent
modes coming from frustrated total internal reflections
can be written as rs = (i|γ| −

√
εr(ω)− 1− |γ|2)/(i|γ|+√

εr(ω)− 1− |γ|2)) where εr(ω) is the real part of
the dielectric constant. It follows that the imaginary
part of the fresnel coefficient is given by Im[rs] =

2 |γ|√
εr(ω)−1

√
1− |γ|2

εr(ω)−1 .

Within these approximations we are now able to
perform integration over the parallel waves vectors.
The contribution of frustrated total internal reflections
hsf (ω, l, T ) to the monochromatic heat transfer coefficient
is then given by:

hsf (ω, l, T ) = h0(ω)

∫ k0
√
nr(ω)2−1

0

γdγ

k2
0

As(ω, γ, l, T )

hsf (ω, l, T ) = h0(ω)
n2
r − 1

2
× (C2)

{
1 + (

k0l

2
)2 (εr − 1)2

n2
r − 1

ln[1−
n2
r−1
εr−1

1 + (k0l2 )2(εr − 1)
]
}

This is the general solution. In the case of two slabs
of SiC, the previous equation can be simplify because
(εr−1)
n2
r−1 ' 1 all over the frequency range allowed by the

requirement k0 ≤ κ ≤ nr(ω)k0. In the first order of
(k0l2 )2(εr − 1) the closed-form expression simplifies as:

hsf (ω, l, T ) ' h0(ω)
n2
r − 1

2
× (C3){

1 + (
k0l

2
)2(εr − 1)ln[(

k0l

2
)2(εr − 1)]

}
The heat transfer coefficient reaches its saturation

value when the second term in the bracket becomes
negligible i.e. when gap widths l are smaller than ls,?f
l � ls,?f = λT

π
1√

εr(ωT )−1
where λT is the thermal wave-

length and ωT = kBT
h̄ is the thermal circular frequency.

At the room temperature, the heat transfer coefficient is
predicted by Eq. C3 within an error less than 10% for
gap widths smaller than ls,?f /10 = 80nm.
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2. p-polarization

Similar approximations can be done to compute the
contribution of frustrated total internal reflection in p-
polarization. Thus the transmission factor writes:

As(ω, γ, l, T ) ' 1

1 + (γk0l)2

Im[rp]2

and

Im[rp31] =
2εrγ

√
εr − 1− γ2

ε2
rγ

2 + εr − 1− γ2

The integration over the parallel wave-vectors gives:

hpf (ω, l, T ) = h0(ω)
εr − 1

2
× (C4)

ε2
r

a1(1− ε2
r)

2

1

xm − xp
×{

(1− xp)ln(1− R

xp
)− (1− xm)ln(1− R

xm
))
}

where:

a1 = (k0l2 )2(εr − 1)

xm = − 1
ε2r−1 +

ε2r
2a1(ε2r−1)2 −

ε2r
a1

√
1+4a1(1−ε2r)

2(ε2r−1)2

xp = − 1
ε2r−1 +

ε2r
2a1(ε2r−1)2 +

ε2r
a1

√
1+4a1(1−ε2r)

2(ε2r−1)2

R =
n2
r−1
εr−1

The previous equations are the most general results
concerning the contribution of p-polarized frustrated to-
tal internal reflections. In the asymptotic limits where
l → 0 and within the approximation R ' 1 the closed-
form expression simplifies as:

hpf (ω, l, T ) ' h0(ω)
n2
r − 1

2
× (C5){

1 + (
k0l

2
)2(εr − 1)ε2

r ln[(
k0l

2
)2(εr − 1)ε2

r]
}

The heat transfer coefficient reaches its saturation
value when the second term in the bracket becomes neg-
ligible i.e. when gap widths l are smaller than lp,?f =

λT

π
1

εr(ωT )
√
εr(ωT )−1

. Compared to the characteristic gap

width ls,?f in s-polarization the characteristic gap width

in p-polarization is divided by a factor εr(ωT ) ' 10 which
explain why the p-polarization contribution reaches the
asymptotic limit at extremely small gaps. At the room
temperature Eq. (C5) predicts with an accuracy bet-
ter than 10% the heat transfer coefficient for gap widths
smaller than l ≤ lp,?f /10 = 8 nm.
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